1
|
Pucci P, Lee LC, Han M, Matthews JD, Jahangiri L, Schlederer M, Manners E, Sorby-Adams A, Kaggie J, Trigg RM, Steel C, Hare L, James ER, Prokoph N, Ducray SP, Merkel O, Rifatbegovic F, Luo J, Taschner-Mandl S, Kenner L, Burke GAA, Turner SD. Targeting NRAS via miR-1304-5p or farnesyltransferase inhibition confers sensitivity to ALK inhibitors in ALK-mutant neuroblastoma. Nat Commun 2024; 15:3422. [PMID: 38653965 PMCID: PMC11039739 DOI: 10.1038/s41467-024-47771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.
Collapse
Affiliation(s)
- Perla Pucci
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Liam C Lee
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Merck & Co, 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Miaojun Han
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- OncoSec, San Diego, CA, 92121, USA
| | - Jamie D Matthews
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Leila Jahangiri
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Department of Life Sciences, Birmingham City University, Birmingham, UK
- Nottingham Trent University, School of Science & Technology, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Michaela Schlederer
- Department of Pathology, Division of Experimental and Translational Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Eleanor Manners
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Chelsea and Westminster Hospital, NHS Foundation Trust, London, SW10 9NH, UK
| | - Annabel Sorby-Adams
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Joshua Kaggie
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ricky M Trigg
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Functional Genomics, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Christopher Steel
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Lucy Hare
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Department of Paediatric Haematology, Oncology and Palliative Care, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Emily R James
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Nina Prokoph
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Stephen P Ducray
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Olaf Merkel
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- European Research Initiative for ALK related malignancies (ERIA), Cambridge, CB2 0QQ, UK
| | - Firkret Rifatbegovic
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- European Research Initiative for ALK related malignancies (ERIA), Cambridge, CB2 0QQ, UK
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
| | - G A Amos Burke
- Department of Paediatric Haematology, Oncology and Palliative Care, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Suzanne D Turner
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, CB20QQ, UK.
- European Research Initiative for ALK related malignancies (ERIA), Cambridge, CB2 0QQ, UK.
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Mo Z, Liu J, Zhang J, Deng Y, Xu M, Jiang Y. Association of NRAS mutations and tertiary lymphoid structure formation with clinical outcomes of adjuvant PD-1 inhibitors for acral melanoma. Int Immunopharmacol 2023; 124:110973. [PMID: 37769536 DOI: 10.1016/j.intimp.2023.110973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVES This study evaluates the efficacy of programmed death-1 (PD-1) inhibitors as adjuvant therapy for acral melanoma (AM) and the predictive value of genetic mutations and tertiary lymphoid structures (TLSs). METHODS AND RESULTS A single-center retrospective longitudinal cohort study was conducted between October 1, 2018, and September 31, 2022. Patients with stages II-III completely resected AM were treated with at least two doses of adjuvant PD-1 inhibitors. A total of 44 participants were included in the final analysis, of which 41 patients with stage III. The median follow-up time, median relapse-free survival (RFS), and median distance metastasis-free survival (DMFS) for all patients were 18.4 months, 21.6 months, and 30.6 months, respectively. 21 (47.7%) and 20 (45.5%) patients were intravenously administered pembrolizumab and toripalimab, respectively. There were no significant differences in RFS (24.4 months vs. 18.9 months, p = 0.432) or DMFS (30.6 months vs. not reached, p = 0.865) between the pembrolizumab and toripalimab groups, respectively. The median DMFS (41.1 months vs. 9.0 months, p < 0.001) in the wild-type NRAS group was significantly longer than that in the NRAS mutation group. Overall, different levels of TLSs infiltration did not significantly affect patient survival. Only three people discontinued treatment due to adverse events. No treatment-related death occurred during the study period. CONCLUSION Our study suggests that adjuvant toripalimab and pembrolizumab therapy have comparable efficacies in patients with AM and are both well tolerated. Adjuvant monotherapy with PD-1 inhibitors may not be appropriate for AM with NRAS mutations.
Collapse
Affiliation(s)
- Zeming Mo
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Liu
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinyan Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaotiao Deng
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Xu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| | - Yu Jiang
- Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Panning A, Samlowski W, Allred G. Lack of Influence of Non-Overlapping Mutations in BRAF, NRAS, or NF1 on 12-Month Best Objective Response and Long-Term Survival after Checkpoint Inhibitor-Based Treatment for Metastatic Melanoma. Cancers (Basel) 2023; 15:3527. [PMID: 37444637 DOI: 10.3390/cancers15133527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Non-overlapping somatic mutations in BRAF, NRAS, or NF1 genes occur in 85% of metastatic melanoma patients. It is not known whether these mutations affect immunotherapy outcome. MATERIALS AND METHODS Next-Gen sequencing of 324 oncogenes was performed in 73 metastatic melanoma patients. A retrospective review of immunotherapy outcome was performed. RESULTS BRAF fusions/internal rearrangements, BRAF V600E, NRAS, NF1 mutations, and triple-negative genotypes occurred in 6.9%, 30.1%, 17.8%, 32.9%, and 12.3% of patients, respectively. Median potential follow-up was 41.0 months. Patients with BRAF fusion/rearrangement had decreased progression-free and overall survival (p = 0.015). The other genotypes each had similar progression-free and overall survival. Patients who achieved a complete best objective response at 12 months (n = 36, 49.3%) were found to have significantly improved survival compared those who failed to achieve remissions (n = 37, 50.7%, p < 0.001). CONCLUSIONS The most important determinant of long-term survival was achievement of a complete response by 12 months following immunotherapy. PR and SD were not a stable type of response and generally resulted in progression and death from melanoma. Rare patients with BRAF fusions or rearrangements had decreased progression-free and overall survival following initial immunotherapy. Other BRAF, NRAS, or NF1 mutations were not associated with significant differences in outcome.
Collapse
Affiliation(s)
- Alyssa Panning
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV 89106, USA
| | - Wolfram Samlowski
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV 89106, USA
- Comprehensive Cancer Centers of Nevada, Las Vegas, NV 89148, USA
- School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Gabriel Allred
- Gables Statistical Consulting, Bella Vista, AR 72714, USA
| |
Collapse
|
4
|
Zhang S, Zhang J, Guo J, Si L, Bai X. Evolving Treatment Approaches to Mucosal Melanoma. Curr Oncol Rep 2022; 24:1261-1271. [PMID: 35511393 DOI: 10.1007/s11912-022-01225-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW This review mainly focuses on the unique features and the development of available therapeutic options for mucosal melanoma in different treatment settings, i.e., neoadjuvant, adjuvant, and palliative. RECENT FINDINGS Mucosal melanoma is distinct from cutaneous melanoma in epidemiology, clinical features, and molecular landscape, characterized by more aggressive biological behavior, lower mutational burden, more chromosomal structure variants, unique driver mutation profile, and distinct tumor microenvironment. Systemic therapy is generally less effective to mucosal melanoma than its cutaneous counterpart. Therapeutic landscape for mucosal melanoma has evolved substantially in recent years: with new targeted therapy options as well as combination therapies built on the backbone of anti-PD-1/PD-L1 antibodies available (esp. anti-angiogenic agent and PD-1/PD-L1 combination), which, based on early phase trial data, seem to be promising. Mucosal melanoma is unique and distinct from cutaneous subtype. Unraveling the unique features of mucosal melanoma is a key to improve clinical outcomes.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jiaran Zhang
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jun Guo
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Lu Si
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Xue Bai
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
5
|
Fibroblasts Influence Metastatic Melanoma Cell Sensitivity to Combined BRAF and MEK Inhibition. Cancers (Basel) 2021; 13:cancers13194761. [PMID: 34638245 PMCID: PMC8507536 DOI: 10.3390/cancers13194761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Preclinical 3D in vitro coculture models are known to be more complex systems than monolayer cell culture and mimic the physiological environment more closely. Three-dimensional dermal equivalents provide a relevant environment for cutaneous metastatic melanoma cells and are capable of modulating a cancer cell’s response to drugs. We showed that a combined targeted therapy (vemurafenib and cobimetinib) efficiently inhibits cell proliferation and induces apoptosis, especially in the 3D coculture model. A cancer-associated fibroblast population isolated from a cutaneous melanoma was also sensitive to the treatment but with no detectable induction of apoptosis. To better understand the complex crosstalk between melanoma cells and their microenvironment, we compared the influence of conditioned media obtained from healthy or cancer-associated fibroblasts on the response of metastatic melanomas to the drugs. Our data indicate that normal fibroblast supernatants potentialize the therapy’s efficiency, whereas cancer-associated fibroblast secretomes favor melanoma cell survival. Abstract The sensitivity of melanoma cells to targeted therapy compounds depends on the tumor microenvironment. Three-dimensional (3D) in vitro coculture systems better reflect the native structural architecture of tissues and are ideal for investigating cellular interactions modulating cell sensitivity to drugs. Metastatic melanoma (MM) cells (SK-MEL-28 BRAF V600E mutant and SK-MEL-2 BRAF wt) were cultured as a monolayer (2D) or cocultured on 3D dermal equivalents (with fibroblasts) and treated with a BRAFi (vemurafenib) combined with a MEK inhibitor (MEKi, cobimetinib). The drug combination efficiently inhibited 2D and 3D MM cell proliferation and survival regardless of their BRAF status. Two-dimensional and three-dimensional cancer-associated fibroblasts (CAFs), isolated from a cutaneous MM biopsy, were also sensitive to the targeted therapy. Conditioned media obtained from healthy dermal fibroblasts or CAFs modulated the MM cell’s response differently to the treatment: while supernatants from healthy fibroblasts potentialized the efficiency of drugs on MM, those from CAFs tended to increase cell survival. Our data indicate that the secretory profiles of fibroblasts influence MM sensitivity to the combined vemurafenib and cobimetinib treatment and highlight the need for 3D in vitro cocultures representing the complex crosstalk between melanoma and CAFs during preclinical studies of drugs.
Collapse
|
6
|
Vulvar and Vaginal Melanomas-The Darker Shades of Gynecological Cancers. Biomedicines 2021; 9:biomedicines9070758. [PMID: 34209084 PMCID: PMC8301463 DOI: 10.3390/biomedicines9070758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022] Open
Abstract
Melanomas of the skin are poorly circumscribed lesions, very frequently asymptomatic but unfortunately with a continuous growing incidence. In this landscape, one can distinguish melanomas originating in the mucous membranes and located in areas not exposed to the sun, namely the vulvo-vaginal melanomas. By contrast with cutaneous melanomas, the incidence of these types of melanomas is constant, being diagnosed in females in their late sixties. While hairy skin and glabrous skin melanomas of the vulva account for 5% of all cancers located in the vulva, melanomas of the vagina and urethra are particularly rare conditions. The location in areas less accessible to periodic inspection determines their diagnosis in advanced stages, often metastatic. Moreover, despite the large number of drugs newly approved in recent decades for the treatment of cutaneous melanoma, especially in the category of biological drugs, the mortality of vulvo-vaginal melanomas has remained almost constant. This, together with the absence of specific treatment guidelines due to the lack of a sufficient number of cases to conduct randomized clinical trials, makes melanomas with this localization a discouraging diagnosis, associated with a very poor prognosis. Our aim is therefore to draw attention to this oftentimes overlooked entity in order to encourage the community to employ various strategies meant to increase research in this area. By highlighting the main risk factors of vulvar and vaginal melanomas, as well as the clinical manifestations and molecular changes underlying these neoplasms, ideally novel therapeutic schemes will, in time, be brought into effect.
Collapse
|
7
|
Analysis of Copy Number Variations in Solid Tumors Using a Next Generation Sequencing Custom Panel. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Somatic copy number variations (CNV; i.e., amplifications and deletions) have been implicated in the origin and development of multiple cancers and some of these aberrations are designated targets for therapies. Although FISH is still considered the gold standard for CNV detection, the increasing number of potentially druggable amplifications to be assessed makes a gene-by-gene approach time- and tissue-consuming. Here we investigated the potential of next generation sequencing (NGS) custom panels to simultaneously determine CNVs across FFPE solid tumor samples. DNA was purified from cell lines and FFPE samples and analyzed by NGS sequencing using a 20-gene custom panel in the GeneReader Platform®. CNVs were identified using an in-house algorithm based on the UMI read coverage. Retrospective validation of in-house algorithm to identify CNVs showed 97.1% concordance rate with the NGS custom panel. The prospective analysis was performed in a cohort of 243 FFPE samples from patients arriving at our hospital, which included 74 NSCLC tumors, 148 CRC tumors, and 21 other tumors. Of them, 33% presented CNVs by NGS and in 14 cases (5.9%) the CNV was the only alteration detected. We have identified CNV alterations in about one-third of our cohort, including FGFR1, CDK6, CDK4, EGFR, MET, ERBB2, BRAF, or KRAS. Our work highlights the need to include CNV testing as a part of routine NGS analysis in order to uncover clinically relevant gene amplifications that can guide the selection of therapies.
Collapse
|
8
|
Resistance to Molecularly Targeted Therapies in Melanoma. Cancers (Basel) 2021; 13:cancers13051115. [PMID: 33807778 PMCID: PMC7961479 DOI: 10.3390/cancers13051115] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is the most aggressive type of skin cancer with invasive growth patterns. In 2021, 106,110 patients are projected to be diagnosed with melanoma, out of which 7180 are expected to die. Traditional methods like surgery, radiation therapy, and chemotherapy are not effective in the treatment of metastatic and advanced melanoma. Recent approaches to treat melanoma have focused on biomarkers that play significant roles in cell growth, proliferation, migration, and survival. Several FDA-approved molecular targeted therapies such as tyrosine kinase inhibitors (TKIs) have been developed against genetic biomarkers whose overexpression is implicated in tumorigenesis. The use of targeted therapies as an alternative or supplement to immunotherapy has revolutionized the management of metastatic melanoma. Although this treatment strategy is more efficacious and less toxic in comparison to traditional therapies, targeted therapies are less effective after prolonged treatment due to acquired resistance caused by mutations and activation of alternative mechanisms in melanoma tumors. Recent studies focus on understanding the mechanisms of acquired resistance to these current therapies. Further research is needed for the development of better approaches to improve prognosis in melanoma patients. In this article, various melanoma biomarkers including BRAF, MEK, RAS, c-KIT, VEGFR, c-MET and PI3K are described, and their potential mechanisms for drug resistance are discussed.
Collapse
|
9
|
Zhao J, Galvez C, Beckermann KE, Johnson DB, Sosman JA. Novel insights into the pathogenesis and treatment of NRAS mutant melanoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:281-294. [PMID: 34485698 PMCID: PMC8415440 DOI: 10.1080/23808993.2021.1938545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION NRAS was the first mutated oncogene identified in melanoma and is currently the second most common driver mutation in this malignancy. For patients with NRASmutant advanced stage melanoma refractory to immunotherapy or with contraindications to immune-based regimens, there are few therapeutic options including low-efficacy chemotherapy regimens and binimetinib monotherapy. Here, we review recent advances in preclinical studies of molecular targets for NRAS mutant melanoma as well as the failures and successes of early-phase clinical trials. While there are no targeted therapies for NRAS-driven melanoma, there is great promise in approaches combining MEK inhibition with inhibitors of the focal adhesion kinase (FAK), inhibitors of autophagy pathways, and pan-RAF inhibitors. AREAS COVERED This review surveys new developments in all aspects of disease pathogenesis and potential treatment - including those that have failed, stalled, or progressed through various phases of preclinical and clinical development. EXPERT OPINION There are no currently approved targeted therapies for BRAF wild-type melanoma patients harboring NRAS driver mutations though an array of agents are in early phase clinical trials. The diverse strategies taken exploit combined MAP kinase signaling blockade with inhibition of cell cycle mediators, inhibition of the autophagy pathway, and alteration of kinases involved in actin cytoskeleton signaling. Future advances of developmental therapeutics into late stage trials may yield new options beyond immunotherapy for patients with advanced stage disease and NRAS mutation status.
Collapse
Affiliation(s)
- Jeffrey Zhao
- Northwestern University Feinberg School of Medicine
| | - Carlos Galvez
- Northwestern Medicine, Division of Hematology and Oncology.,Robert H. Lurie Comprehensive Cancer Center
| | - Kathryn Eby Beckermann
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology and Oncology, 1301 Medical Center Drive, Nashville, 37232, USA
| | - Douglas B Johnson
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology and Oncology, 1301 Medical Center Drive, Nashville, 37232, USA
| | - Jeffrey A Sosman
- Northwestern Medicine, Division of Hematology and Oncology.,Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
10
|
The TERT copy number gain is sensitive to telomerase inhibitors in human melanoma. Clin Sci (Lond) 2020; 134:193-205. [PMID: 31919521 DOI: 10.1042/cs20190890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Telomerase reverse transcriptase (TERT) copy number gain is frequently observed in Asian melanoma patients. Here, we explored the correlation between TERT copy number and the effect of telomerase inhibitors in melanoma. A total of 78 melanoma cases were enrolled in the study. The TERT copy number was examined by QuantiGene Plex DNA assay. The sensitivity to telomerase inhibitors was evaluated in cell lines and patient-derived xenograft (PDX) models with or without TERT copy number gain. Among the 78 patients, 33.3% showed TERT copy number gain, and the incidence of this gain in acral melanoma (61.5%) was higher than that in other melanoma subtypes (P=0.02). The telomerase inhibitors 6-thio-2'-deoxyguanosine (6-Thio-dG) and epigallocatechin-3-gallate (EGCG) inhibited cell viability and repressed tumor growth in PDX models with TERT copy number gain. TERT copy number gain is frequently observed in Chinese patients with melanoma. Targeting telomerase may benefit melanoma patients with TERT copy number gain.
Collapse
|
11
|
Zou Z, Ou Q, Ren Y, Lv Q, Qin L, Zhao L, Su S, Wu X, Bao H, Wang A, Zhu D, Wang X, Shao YW, Liu B. Distinct genomic traits of acral and mucosal melanomas revealed by targeted mutational profiling. Pigment Cell Melanoma Res 2020; 33:601-611. [PMID: 31944535 DOI: 10.1111/pcmr.12865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
The incidence of melanoma is rising globally including China. Comparing to Caucasians, the incidence of non-cutaneous melanomas is significantly higher in Chinese. Herein, we performed genomic profiling of 89 Chinese surgically resected primary melanomas, including acral (n = 54), cutaneous (n = 22), and mucosal (n = 13), by hybrid capture-based next-generation sequencing. We show that mucosal melanomas tended to harbor more pathogenic mutations than other types of melanoma, though the biological significance of this finding remains uncertain. Chromosomal arm-level alterations including 6q, 9p, and 10p/q loss were highly recurrent in all subtypes, but mucosal melanoma was significantly associated with increased genomic instability. Importantly, 7p gain significantly correlated with unfavorable clinical outcomes in non-cutaneous melanomas, representing an intriguing prognostic biomarker of those subtypes. Furthermore, focal amplification of 4q12 (KIT, KDR, and PDGFRα) and RAD51 deletion were more abundant in mucosal melanoma, while NOTCH2 amplification was enriched in acral melanoma. Additionally, cutaneous melanomas had higher mutation load than acral melanomas, while mucosal melanomas did not differ from other subtypes in mutation burden. Together, our data revealed important features of acral and mucosal melanomas in Chinese including distinctive driver mutation pattern and increased genomic instability. These findings highlight the possibilities of combination therapies in the clinical management of melanoma.
Collapse
Affiliation(s)
- Zhengyun Zou
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Qiuxiang Ou
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, ON, Canada
| | - Yu Ren
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Qing Lv
- Yixing Tumor Hospital, Yixing, China
| | - Lanqun Qin
- Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Lianjun Zhao
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Shu Su
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xue Wu
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, ON, Canada
| | - Hua Bao
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, ON, Canada
| | - Ao Wang
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, ON, Canada
| | - Dongqin Zhu
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xiaonan Wang
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yang W Shao
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, ON, Canada.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Yan J, Xu L, Yu J, Wu X, Dai J, Xu T, Yu H, Guo J, Kong Y. Prognostic role of NRAS isoforms in Chinese melanoma patients. Melanoma Res 2019; 29:263-269. [PMID: 30489482 DOI: 10.1097/cmr.0000000000000557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neuroblastoma rat-sarcoma viral oncogene homolog (NRAS) isoforms are expressed in melanoma tumor tissues, which have been described in Caucasian melanoma. However, the status and the clinical significance of NRAS isoforms in the Asian population have not been investigated on a large scale. We examined the expression levels of NRAS isoforms of 140 melanoma samples using quantitative real-time PCR. Furthermore, the relationship of mRNA expression of NRAS isoforms to clinicopathological characteristics and survival of patients was analyzed. Statistical analysis showed that NRAS isoform 2 expression was correlated with melanoma subtypes (P=0.007), and NRAS isoform 4 expression was correlated with tumor thickness (P=0.031) and clinical stage (P=0.006). The median overall survival for patients with high expression of NRAS isoform 3 was significantly shorter than that for patients with low expression of NRAS isoform 3 (P=0.007). In addition, high expression of NRAS isoform 5 was associated with a worse prognosis (P=0.049 and 0.002 for overall survival and disease-free survival, respectively). Multivariate Cox regression analysis showed that high expression levels of NRAS isoform 3 and isoform 5 were independent poor prognostic factors for patients. Our results indicated that the mRNA expressions of NRAS isoform 3 and isoform 5 may be novel indicators of the prognosis of Chinese melanoma patients.
Collapse
Affiliation(s)
- Junya Yan
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou
| | - Longwen Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiayi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaowen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tianxiao Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huan Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
13
|
Yu J, Yan J, Guo Q, Chi Z, Tang B, Zheng B, Yu J, Yin T, Cheng Z, Wu X, Yu H, Dai J, Sheng X, Si L, Cui C, Bai X, Mao L, Lian B, Wang X, Yan X, Li S, Zhou L, Flaherty KT, Guo J, Kong Y. Genetic Aberrations in the CDK4 Pathway Are Associated with Innate Resistance to PD-1 Blockade in Chinese Patients with Non-Cutaneous Melanoma. Clin Cancer Res 2019; 25:6511-6523. [PMID: 31375512 DOI: 10.1158/1078-0432.ccr-19-0475] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/18/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE PD-1 checkpoint blockade immunotherapy induces long and durable response in patients with advanced melanoma. However, only a subset of patients with melanoma benefit from this approach. The mechanism triggering the innate resistance of anti-PD-1 therapy remains unclear.Experimental Design: Whole-exome sequencing (WES) and RNA sequencing (RNA-Seq) analyses were performed in a training cohort (n = 31) using baseline tumor biopsies of patients with advanced melanoma treated with the anti-PD-1 antibody. Copy-number variations (CNVs) for the genes CDK4, CCND1, and CDKN2A were assayed using a TaqMan copy-number assay in a validation cohort (n = 85). The effect of CDK4/6 inhibitors combined with anti-PD-1 antibody monotherapy was evaluated in PD-1-humanized mouse (C57BL/6-hPD-1) and humanized immune system (HIS) patient-derived xenograft (PDX) models. RESULTS WES revealed several significant gene copy-number gains in the patients of no clinical benefit cohort, such as 12q14.1 loci, which harbor CDK4. The association between CDK4 gain and innate resistance to anti-PD-1 therapy was validated in 85 patients with melanoma (P < 0.05). RNA-Seq analysis of CDK4-normal cell lines and CDK4-normal tumors showed altered transcriptional output in TNFα signaling via NF-κB, inflammatory response, and IFNγ response gene set. In addition, CDK4/6 inhibitor (palbociclib) treatment increased PD-L1 protein levels and enhanced efficacy (P < 0.05) in the C57BL/6-hPD-1 melanoma cell and the HIS PDX model. CONCLUSIONS In summary, we discovered that genetic aberrations in the CDK4 pathway are associated with innate resistance to anti-PD-1 therapy in patients with advanced melanoma. Moreover, our study provides a strong rationale for combining CDK4/6 inhibitors with anti-PD-1 antibody for the treatment of advanced melanomas.
Collapse
Affiliation(s)
- Jiayi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Junya Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qian Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bixia Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Jinyu Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ting Yin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiyuan Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaowen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huan Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xue Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xieqia Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Siming Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Li Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
14
|
Newell F, Kong Y, Wilmott JS, Johansson PA, Ferguson PM, Cui C, Li Z, Kazakoff SH, Burke H, Dodds TJ, Patch AM, Nones K, Tembe V, Shang P, van der Weyden L, Wong K, Holmes O, Lo S, Leonard C, Wood S, Xu Q, Rawson RV, Mukhopadhyay P, Dummer R, Levesque MP, Jönsson G, Wang X, Yeh I, Wu H, Joseph N, Bastian BC, Long GV, Spillane AJ, Shannon KF, Thompson JF, Saw RPM, Adams DJ, Si L, Pearson JV, Hayward NK, Waddell N, Mann GJ, Guo J, Scolyer RA. Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nat Commun 2019; 10:3163. [PMID: 31320640 PMCID: PMC6639323 DOI: 10.1038/s41467-019-11107-x] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Knowledge of key drivers and therapeutic targets in mucosal melanoma is limited due to the paucity of comprehensive mutation data on this rare tumor type. To better understand the genomic landscape of mucosal melanoma, here we describe whole genome sequencing analysis of 67 tumors and validation of driver gene mutations by exome sequencing of 45 tumors. Tumors have a low point mutation burden and high numbers of structural variants, including recurrent structural rearrangements targeting TERT, CDK4 and MDM2. Significantly mutated genes are NRAS, BRAF, NF1, KIT, SF3B1, TP53, SPRED1, ATRX, HLA-A and CHD8. SF3B1 mutations occur more commonly in female genital and anorectal melanomas and CTNNB1 mutations implicate a role for WNT signaling defects in the genesis of some mucosal melanomas. TERT aberrations and ATRX mutations are associated with alterations in telomere length. Mutation profiles of the majority of mucosal melanomas suggest potential susceptibility to CDK4/6 and/or MEK inhibitors.
Collapse
Affiliation(s)
- Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Yan Kong
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Peter A Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Chuanliang Cui
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhongwu Li
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Stephen H Kazakoff
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Hazel Burke
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tristan J Dodds
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Katia Nones
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Varsha Tembe
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Ping Shang
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Kim Wong
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Oliver Holmes
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Serigne Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Qinying Xu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Robert V Rawson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | | | - Reinhard Dummer
- Dermatology Clinic, University Hospital Zürich, University of Zurich, Zurich, 8091, Switzerland
| | - Mitchell P Levesque
- Dermatology Clinic, University Hospital Zürich, University of Zurich, Zurich, 8091, Switzerland
| | - Göran Jönsson
- Department of Oncology, Clinical Sciences, Lund University, Lund, 221 85, Sweden
| | - Xuan Wang
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Iwei Yeh
- Departments of Dermatology and Pathology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Hong Wu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Nancy Joseph
- Department of Pathology, University of California, San Francisco, CA, 94143, USA
| | - Boris C Bastian
- Departments of Dermatology and Pathology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
- Royal North Shore and Mater Hospitals, Sydney, NSW, 2065, Australia
| | - Andrew J Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kerwin F Shannon
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
- Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Lu Si
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Jun Guo
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
- Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
15
|
Exacerbation of skin psoriasis when associating an MEK inhibitor with anti-PD1 immunotherapy for metastatic melanoma. Melanoma Res 2019; 29:447-448. [PMID: 31246728 DOI: 10.1097/cmr.0000000000000601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Bernicker EH. What the Oncologist Needs From the Pathologist for Tyrosine Kinase Inhibitor Therapies. Arch Pathol Lab Med 2019; 143:1089-1092. [PMID: 31100016 DOI: 10.5858/arpa.2019-0210-sa] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eric H Bernicker
- From Thoracic and Uveal Melanoma Medical Oncology, Cancer Center, Houston Methodist Hospital, Houston, Texas; and Clinical Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
17
|
Establishment and characterization of melanoma patient-derived xenograft models for preclinical evaluation of novel therapeutics. Melanoma Res 2019; 28:527-535. [PMID: 30086074 DOI: 10.1097/cmr.0000000000000494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Patient-derived xenograft (PDX) models mostly retain the histological and genetic features of their donor tumors, which have been used for investigating various types of cancer. However, PDX models for melanoma, especially acral melanoma, are reported occasionally. We aimed to establish a large panel of melanoma PDX models representing the predominant Asian melanomas. Ninety-three fresh melanoma samples were implanted subcutaneously into nonobese diabetic/severe combined immunodeficiency mice. The histological and genetic characteristics were analyzed in both patient tumors and PDX models using immunohistochemistry, PCR amplification, and Sanger sequencing. Furthermore, the sensitivities of PDX models harboring distinct mutation profiles to binimetinib (a MEK inhibitor), vemubrafenib (a BRAF inhibitor), and imatinib (a KIT inhibitor) were also evaluated. Twenty-five PDX models were established successfully [25/93 (26.9%)] and passaged to maintain tumors in vivo. Clinical stage and origin of tumor sample were correlated with successful establishment rates (P=0.008 and <0.001, respectively). The histological (expression of NRAS, P16, and RB) and genetic (mutation status of NRAS, BRAF, and KIT) characteristics were stably maintained from patient tumors to PDX models. Targeted drugs could inhibit the tumor growth of PDX models harboring the corresponding target gene mutations. These PDX models constitute a pharmacological platform, enabling personalized development of therapeutic strategies for Asian melanomas.
Collapse
|
18
|
Genetics of metastasis: melanoma and other cancers. Clin Exp Metastasis 2018; 35:379-391. [PMID: 29722002 DOI: 10.1007/s10585-018-9893-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/13/2022]
Abstract
Melanoma is a malignant neoplasm of melanocytes that accounts for the majority of skin cancer deaths despite comprising less than 5% of all cutaneous malignancies. Its incidence has increased faster than that of any other cancer over the past half-century and the annual costs of treatment in the United States alone have risen rapidly. Although the majority of primary melanomas are cured with local excision, metastatic melanoma historically carries a grim prognosis, with a median survival of 9 months and a long-term survival rate of 10%. Given the urgent need to develop treatment strategies for metastatic melanoma and the explosion of genetic technologies over the past 20 years, there has been extensive research into the genetic alterations that cause melanocytes to become malignant. More recently, efforts have focused on the genetic changes that drive melanoma metastasis. This review aims to summarize the current knowledge of the genetics of primary cutaneous and ocular melanoma, the genetic changes associated with metastasis in melanoma and other cancer types, and non-genetic factors that may contribute to metastasis.
Collapse
|