1
|
Zhu M, Wang Y, Park J, Titus A, Guo F. Dispensable regulation of brain development and myelination by the immune-related protein Serpina3n. J Neurochem 2024. [PMID: 39450611 DOI: 10.1111/jnc.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Serine protease inhibitor clade A member 3n (Serpina3n) or its human orthologue SERPINA3 is a secretory immune-related molecule produced primarily in the liver and brain under homeostatic conditions and up-regulated in response to system inflammation. Yet, it remains elusive regarding its cellular identity and physiological significance in the development of the postnatal brain. Here, we reported that oligodendroglial lineage cells are the major cell population expressing Serpina3n protein in the postnatal murine CNS. Using loss-of-function genetic tools, we found that Serpina3n conditional knockout (cKO) from Olig2-expressing cells does not significantly affect cognitive and motor functions in mice. Serpina3n depletion does not appear to interfere with oligodendrocyte differentiation and developmental myelination nor affects the population of other glial cells and neurons in vivo. Interestingly, Serpina3n is significantly up-regulated in response to oxidative stress and its deficiency alleviates oxidative injury and diminishes cell senescence of oligodendrocytes in vitro. Together, our data suggest that the immune-related molecule Serpina3n plays a minor role in neural cell development under homeostasis, yet it primes oligodendrocytes for CNS insults and regulates oligodendrocyte health under injured conditions. Our findings raise the interest in pursuing its functional significance in the CNS under disease/injury conditions.
Collapse
Affiliation(s)
- Meina Zhu
- Department of Neurology, School of Medicine, UC Davis, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Yan Wang
- Department of Neurology, School of Medicine, UC Davis, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Joohyun Park
- Department of Neurology, School of Medicine, UC Davis, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Annlin Titus
- Department of Neurology, School of Medicine, UC Davis, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Fuzheng Guo
- Department of Neurology, School of Medicine, UC Davis, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| |
Collapse
|
2
|
Villacis RAR, Côrtes L, Basso TR, do Canto LM, Souza JS, Aagaard MM, da Cruz Formiga MN, Aguiar S, Achatz MI, Rogatto SR. Germline DNA Damage Repair Gene Alterations in Patients with Metachronous Breast and Colorectal Cancer. Int J Mol Sci 2024; 25:10275. [PMID: 39408606 PMCID: PMC11476855 DOI: 10.3390/ijms251910275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
A hereditary component of breast (BC) and colorectal cancer (CRC) has been described in approximately one-third of these tumor types. BC patients have an increased risk of developing CRC as a second primary tumor and vice versa. Germline genomic variants (NextSeq550, Illumina) were investigated in 24 unrelated BC and/or CRC patients and 7 relatives from 3 index patients. Fifty-six pathogenic or likely pathogenic variants were identified in 19 of 24 patients. We detected single-nucleotide variants (SNVs) in CRC predisposition genes (MLH1 and MUTYH) and other promising candidates (CDK5RAP3, MAD1L1, NOS3, and POLM). Eighteen patients presented SNVs or copy number variants (CNVs) in DNA damage repair genes. We also identified SNVs recently associated with BC or CRC predisposition (PABPC1, TYRO3, MAP3K1, SLC15A4, and LAMA1). The PABPC1c.1255C>T variant was detected in nine unrelated patients. Each patient presented at least one SNV/CNV in a candidate gene, and most had alterations in more than one gene, reinforcing a polygenic model for BC/CRC predisposition. A significant fraction of BC/CRC patients with a family history of these tumors harbored deleterious germline variants in DNA repair genes. Our findings can lead to strategies to improve the diagnosis, genetic counseling, and treatment of patients and their relatives.
Collapse
Affiliation(s)
- Rolando André Rios Villacis
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília-UnB, Brasília 70910-900, DF, Brazil
| | - Luiza Côrtes
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
- Tocogynecology Graduation Program, Medical School, São Paulo State University UNESP, Botucatu 18618-687, SP, Brazil
| | - Tatiane Ramos Basso
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
| | - Luisa Matos do Canto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
| | | | - Mads Malik Aagaard
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
| | | | - Samuel Aguiar
- Colorectal Cancer Reference Center, A.C. Camargo Cancer Center, São Paulo 01509-010, SP, Brazil;
| | - Maria Isabel Achatz
- Cancer Genetics Unit, Oncology Branch, Hospital Sirio-Libanês, São Paulo 01308-050, SP, Brazil;
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (R.A.R.V.); (L.C.); (T.R.B.); (L.M.d.C.); (M.M.A.)
- Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
- Botucatu Medical School Hospital, São Paulo State University UNESP, Botucatu 18618-687, SP, Brazil
| |
Collapse
|
3
|
Zhu M, Wang Y, Park J, Titus A, Guo F. Dispensable regulation of brain development and myelination by the immune-related protein Serpina3n. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579239. [PMID: 38370831 PMCID: PMC10871299 DOI: 10.1101/2024.02.06.579239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Serine protease inhibitor clade A member 3n (Serpina3n) or its human orthologue SERPINA3 is a secretory immune-related molecule produced primarily in the liver and brain under homeostatic conditions and upregulated in response to system inflammation. Yet it remains elusive regarding its cellular identity and physiological significance in the development of the postnatal brain. Here, we reported that oligodendroglial lineage cells are the major cell population expressing Serpina3n protein in the postnatal murine CNS. Using loss-of-function genetic tools, we found that Serpina3n conditional knockout (cKO) from Olig2-expressing cells does not significantly affect cognitive and motor functions in mice. Serpina3n depletion does not appear to interfere with oligodendrocyte differentiation and developmental myelination nor affects the population of other glial cells and neurons in vivo. Together, these data suggest that the immune-related molecule Serpina3n plays a minor role, if any, in regulating neural cell development in the postnatal brain under homeostatic conditions. We found that Serpina3n is significantly upregulated in response to oxidative stress, and it potentiates oxidative injury and cell senescence of oligodendrocytes. Our data raise the interest in pursuing its functional significance in the CNS under disease/injury conditions.
Collapse
Affiliation(s)
- Meina Zhu
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| | - Yan Wang
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| | - Joohyun Park
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| | - Annlin Titus
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| | - Fuzheng Guo
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| |
Collapse
|
4
|
Bianchi A, Zelli V, D’Angelo A, Di Matteo A, Scoccia G, Cannita K, Dimas A, Glentis S, Zazzeroni F, Alesse E, Di Marco A, Tessitore A. A method to comprehensively identify germline SNVs, INDELs and CNVs from whole exome sequencing data of BRCA1/2 negative breast cancer patients. NAR Genom Bioinform 2024; 6:lqae033. [PMID: 38633426 PMCID: PMC11023157 DOI: 10.1093/nargab/lqae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
In the rapidly evolving field of genomics, understanding the genetic basis of complex diseases like breast cancer, particularly its familial/hereditary forms, is crucial. Current methods often examine genomic variants-such as Single Nucleotide Variants (SNVs), insertions/deletions (Indels), and Copy Number Variations (CNVs)-separately, lacking an integrated approach. Here, we introduced a robust, flexible methodology for a comprehensive variants' analysis using Whole Exome Sequencing (WES) data. Our approach uniquely combines meticulous validation with an effective variant filtering strategy. By reanalyzing two germline WES datasets from BRCA1/2 negative breast cancer patients, we demonstrated our tool's efficiency and adaptability, uncovering both known and novel variants. This contributed new insights for potential diagnostic, preventive, and therapeutic strategies. Our method stands out for its comprehensive inclusion of key genomic variants in a unified analysis, and its practical resolution of technical challenges, offering a pioneering solution in genomic research. This tool presents a breakthrough in providing detailed insights into the genetic alterations in genomes, with significant implications for understanding and managing hereditary breast cancer.
Collapse
Affiliation(s)
- Andrea Bianchi
- Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, L’Aquila 67100, Italy
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila 67100, Italy
| | - Andrea D’Angelo
- Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, L’Aquila 67100, Italy
| | - Alessandro Di Matteo
- Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, L’Aquila 67100, Italy
| | - Giulia Scoccia
- Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, L’Aquila 67100, Italy
| | - Katia Cannita
- Oncology Division, Mazzini Hospital, ASL Teramo, Teramo 64100, Italy
| | - Antigone S Dimas
- Institute for Bioinnovation, Biomedical Sciences Research Center, Alexander Fleming, Vari 16672, Greece
| | - Stavros Glentis
- Institute for Bioinnovation, Biomedical Sciences Research Center, Alexander Fleming, Vari 16672, Greece
- Pediatric Hematology/Oncology Unit (POHemU), First Department of Pediatrics, University of Athens, Aghia Sophia Children’s Hospital, Athens 11527, Grece
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila 67100, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila 67100, Italy
| | - Antinisca Di Marco
- Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, L’Aquila 67100, Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila 67100, Italy
| |
Collapse
|
5
|
de Mezer M, Markowska A, Markowska J, Krzyżaniak M, Grabarek BO, Pokusa F, Żurawski J. Immunohistochemical Expression of the SERPINA3 Protein in Uterine Fibroids. Curr Pharm Biotechnol 2024; 25:1758-1765. [PMID: 38204235 DOI: 10.2174/0113892010264673231111082438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND SERPINA3 (α-1-antichymotrypsin, AACT, ACT) is produced by the liver and released into plasma in an anti-inflammatory response and plays a role as a modulator of extracellular matrix (ECM) by inhibiting serine proteases. Numerous studies proved an increased level of SERPINA3 in many types of cancer, which could be linked to SERPINA3's anti-apoptotic function. AIM In the context of progressive ECM fibrosis during the development of uterine fibroids, which are one of the most common hypertrophic changes within the uterus, it is interesting to describe the level of SERPINA3 protein in this type of lesion and the surrounding tissues. METHODS We used immunohistochemical staining of the SERPINA3 protein and compared the intensity of the signal between the myoma tissue and the surrounding normal tissue. RESULTS We showed a surprising reduction in the amount of the SERPINA3 protein within uterine fibroids compared to surrounding tissues. CONCLUSION This observation sheds new light on the role of this protein in the formation of proliferative changes and suggests that understanding the mechanism of its action may become the basis for the development of new diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Mateusz de Mezer
- Department of Immunobiology, Chair of Medical Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Markowska
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Monika Krzyżaniak
- Department of Oncological Pathology, Lord's Transfiguration Clinical Hospital, Partner of Poznan University of Medical Sciences, Poznan, Poland
| | - Beniamin Oskar Grabarek
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland
- Department of Histology, Cytophysiology and Embryology, Katowice School of Technology, Katowice, Poland
| | - Filip Pokusa
- Faculty of Economics and Pedagogy, Higher School of Management and Administration in Opole, 46-020 Opole, Poland
| | - Jakub Żurawski
- Department of Immunobiology, Chair of Medical Biology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
6
|
Nurmi AK, Pelttari LM, Kiiski JI, Khan S, Nurmikolu M, Suvanto M, Aho N, Tasmuth T, Kalso E, Schleutker J, Kallioniemi A, Heikkilä P, Aittomäki K, Blomqvist C, Nevanlinna H. NTHL1 is a recessive cancer susceptibility gene. Sci Rep 2023; 13:21127. [PMID: 38036545 PMCID: PMC10689455 DOI: 10.1038/s41598-023-47441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
In search of novel breast cancer (BC) risk variants, we performed a whole-exome sequencing and variant analysis of 69 Finnish BC patients as well as analysed loss-of-function variants identified in DNA repair genes in the Finns from the Genome Aggregation Database. Additionally, we carried out a validation study of SERPINA3 c.918-1G>C, recently suggested for BC predisposition. We estimated the frequencies of 41 rare candidate variants in 38 genes by genotyping them in 2482-4101 BC patients and in 1273-3985 controls. We further evaluated all coding variants in the candidate genes in a dataset of 18,786 BC patients and 182,927 controls from FinnGen. None of the variants associated significantly with cancer risk in the primary BC series; however, in the FinnGen data, NTHL1 c.244C>T p.(Gln82Ter) associated with BC with a high risk for homozygous (OR = 44.7 [95% CI 6.90-290], P = 6.7 × 10-5) and a low risk for heterozygous women (OR = 1.39 [1.18-1.64], P = 7.8 × 10-5). Furthermore, the results suggested a high risk of colorectal, urinary tract, and basal-cell skin cancer for homozygous individuals, supporting NTHL1 as a recessive multi-tumour susceptibility gene. No significant association with BC risk was detected for SERPINA3 or any other evaluated gene.
Collapse
Affiliation(s)
- Anna K Nurmi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Liisa M Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Johanna I Kiiski
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Mika Nurmikolu
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Maija Suvanto
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Niina Aho
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland
| | - Tiina Tasmuth
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, and FICAN West Cancer Centre, and Department of Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Anne Kallioniemi
- Tays Cancer Center, Tampere University Hospital, and BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories, Tampere, Finland
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. Box 700, 00290, Helsinki, Finland.
| |
Collapse
|
7
|
Gregga I, Pharoah PDP, Gayther SA, Manichaikul A, Im HK, Kar SP, Schildkraut JM, Wheeler HE. Predicted Proteome Association Studies of Breast, Prostate, Ovarian, and Endometrial Cancers Implicate Plasma Protein Regulation in Cancer Susceptibility. Cancer Epidemiol Biomarkers Prev 2023; 32:1198-1207. [PMID: 37409955 PMCID: PMC10528410 DOI: 10.1158/1055-9965.epi-23-0309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Predicting protein levels from genotypes for proteome-wide association studies (PWAS) may provide insight into the mechanisms underlying cancer susceptibility. METHODS We performed PWAS of breast, endometrial, ovarian, and prostate cancers and their subtypes in several large European-ancestry discovery consortia (effective sample size: 237,483 cases/317,006 controls) and tested the results for replication in an independent European-ancestry GWAS (31,969 cases/410,350 controls). We performed PWAS using the cancer GWAS summary statistics and two sets of plasma protein prediction models, followed by colocalization analysis. RESULTS Using Atherosclerosis Risk in Communities (ARIC) models, we identified 93 protein-cancer associations [false discovery rate (FDR) < 0.05]. We then performed a meta-analysis of the discovery and replication PWAS, resulting in 61 significant protein-cancer associations (FDR < 0.05). Ten of 15 protein-cancer pairs that could be tested using Trans-Omics for Precision Medicine (TOPMed) protein prediction models replicated with the same directions of effect in both cancer GWAS (P < 0.05). To further support our results, we applied Bayesian colocalization analysis and found colocalized SNPs for SERPINA3 protein levels and prostate cancer (posterior probability, PP = 0.65) and SNUPN protein levels and breast cancer (PP = 0.62). CONCLUSIONS We used PWAS to identify potential biomarkers of hormone-related cancer risk. SNPs in SERPINA3 and SNUPN did not reach genome-wide significance for cancer in the original GWAS, highlighting the power of PWAS for novel locus discovery, with the added advantage of providing directions of protein effect. IMPACT PWAS and colocalization are promising methods to identify potential molecular mechanisms underlying complex traits.
Collapse
Affiliation(s)
- Isabelle Gregga
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, USA
| | - Paul D. P. Pharoah
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Siddhartha P. Kar
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Heather E. Wheeler
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Kumpula TA, Vorimo S, Mattila TT, O’Gorman L, Astuti G, Tervasmäki A, Koivuluoma S, Mattila TM, Grip M, Winqvist R, Kuismin O, Moilanen J, Hoischen A, Gilissen C, Mantere T, Pylkäs K. Exome sequencing identified rare recurrent copy number variants and hereditary breast cancer susceptibility. PLoS Genet 2023; 19:e1010889. [PMID: 37578974 PMCID: PMC10449128 DOI: 10.1371/journal.pgen.1010889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/24/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
Copy number variants (CNVs) are a major source of genetic variation and can disrupt genes or affect gene dosage. They are known to be causal or underlie predisposition to various diseases. However, the role of CNVs in inherited breast cancer susceptibility has not been thoroughly investigated. To address this, we performed whole-exome sequencing based analysis of rare CNVs in 98 high-risk Northern Finnish breast cancer cases. After filtering, selected candidate alleles were validated and characterized with a combination of orthogonal methods, including PCR-based approaches, optical genome mapping and long-read sequencing. This revealed three recurrent alterations: a 31 kb deletion co-occurring with a retrotransposon insertion (delins) in RAD52, a 13.4 kb deletion in HSD17B14 and a 64 kb partial duplication of RAD51C. Notably, all these genes encode proteins involved in pathways previously identified as essential for breast cancer development. Variants were genotyped in geographically matched cases and controls (altogether 278 hereditary and 1983 unselected breast cancer cases, and 1229 controls). The RAD52 delins and HSD17B14 deletion both showed significant enrichment among cases with indications of hereditary disease susceptibility. RAD52 delins was identified in 7/278 cases (2.5%, P = 0.034, OR = 2.86, 95% CI = 1.10-7.45) and HSD17B14 deletion in 8/278 cases (2.9%, P = 0.014, OR = 3.28, 95% CI = 1.31-8.23), the frequency of both variants in the controls being 11/1229 (0.9%). This suggests a role for RAD52 and HSD17B14 in hereditary breast cancer susceptibility. The RAD51C duplication was very rare, identified only in 2/278 of hereditary cases and 2/1229 controls (P = 0.157, OR = 4.45, 95% CI = 0.62-31.70). The identification of recurrent CNVs in these genes, and especially the relatively high frequency of RAD52 and HSD17B14 alterations in the Finnish population, highlights the importance of studying CNVs alongside single nucleotide variants when searching for genetic factors underlying hereditary disease predisposition.
Collapse
Affiliation(s)
- Timo A. Kumpula
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sandra Vorimo
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Taneli T. Mattila
- Department of Pathology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Luke O’Gorman
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Galuh Astuti
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Susanna Koivuluoma
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Tiina M. Mattila
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Outi Kuismin
- Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jukka Moilanen
- Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Alexander Hoischen
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Human Genetics and Radboud Institute of Medical Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Research Unit of Translational Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
- Northern Finland Laboratory Centre Nordlab, Oulu, Finland
| |
Collapse
|
9
|
Kumpula TA, Koivuluoma S, Soikkonen L, Vorimo S, Moilanen J, Winqvist R, Mantere T, Kuismin O, Pylkäs K. Evaluating the role of CHEK2 p.(Asp438Tyr) allele in inherited breast cancer predisposition. Fam Cancer 2023; 22:291-294. [PMID: 36653541 PMCID: PMC10276058 DOI: 10.1007/s10689-023-00327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
CHEK2 is a well-established breast cancer susceptibility gene. The most frequent pathogenic CHEK2 variant is 1100delC, a loss-of-function mutation conferring 2-fold risk for breast cancer. This gene also harbors other rare variants encountered in the clinical gene panels for hereditary cancer. One of these is CHEK2 c.1312 G > T, p.(Asp438Tyr) in the kinase domain of the protein, but due to its rarity its clinical significance for breast cancer predisposition has remained unclear. Here, we tested the prevalence of CHEK2 p.(Asp438Tyr) allele showing enrichment in the Northern Finnish population, in a total of 2284 breast cancer patients from this geographical region. Genotyping was performed for DNA samples extracted from peripheral blood using high-resolution melt analysis. Fourteen CHEK2 p.(Asp438Tyr) carriers were identified (14/2284, 0.6%, P = 0.67): two in the cohort of breast cancer cases with the indication of inherited disease susceptibility (2/281, 0.7%, P = 1.00) and twelve in the breast cancer cohort unselected for the family history of disease and age at disease onset (12/2003, 0.6%, P = 0.66). This frequency did not differ from the frequency in the general population (10/1299, 0.8%). No CHEK2 p.(Asp438Tyr) homozygotes were identified. Our results indicate that CHEK2 p.(Asp438Tyr) carriers do not have an increased risk for breast cancer and the classification of the CHEK2 p.(Asp438Tyr) variant can be changed from the variant of uncertain significance (VUS) to likely benign for breast cancer.
Collapse
Affiliation(s)
- Timo A Kumpula
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu and NordLab Oulu, FI-90014 University of Oulu, Oulu, P.O. Box 5000, Finland
| | - Susanna Koivuluoma
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu and NordLab Oulu, FI-90014 University of Oulu, Oulu, P.O. Box 5000, Finland
| | - Leila Soikkonen
- Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Sandra Vorimo
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu and NordLab Oulu, FI-90014 University of Oulu, Oulu, P.O. Box 5000, Finland
| | - Jukka Moilanen
- Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu and NordLab Oulu, FI-90014 University of Oulu, Oulu, P.O. Box 5000, Finland
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu and NordLab Oulu, FI-90014 University of Oulu, Oulu, P.O. Box 5000, Finland
| | - Outi Kuismin
- Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, Oulu and NordLab Oulu, FI-90014 University of Oulu, Oulu, P.O. Box 5000, Finland.
| |
Collapse
|
10
|
Imyanitov EN, Kuligina ES, Sokolenko AP, Suspitsin EN, Yanus GA, Iyevleva AG, Ivantsov AO, Aleksakhina SN. Hereditary cancer syndromes. World J Clin Oncol 2023; 14:40-68. [PMID: 36908677 PMCID: PMC9993141 DOI: 10.5306/wjco.v14.i2.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
Hereditary cancer syndromes (HCSs) are arguably the most frequent category of Mendelian genetic diseases, as at least 2% of presumably healthy subjects carry highly-penetrant tumor-predisposing pathogenic variants (PVs). Hereditary breast-ovarian cancer and Lynch syndrome make the highest contribution to cancer morbidity; in addition, there are several dozen less frequent types of familial tumors. The development of the majority albeit not all hereditary malignancies involves two-hit mechanism, i.e. the somatic inactivation of the remaining copy of the affected gene. Earlier studies on cancer families suggested nearly fatal penetrance for the majority of HCS genes; however, population-based investigations and especially large-scale next-generation sequencing data sets demonstrate that the presence of some highly-penetrant PVs is often compatible with healthy status. Hereditary cancer research initially focused mainly on cancer detection and prevention. Recent studies identified multiple HCS-specific drug vulnerabilities, which translated into the development of highly efficient therapeutic options.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Ekaterina S Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Evgeny N Suspitsin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Grigoriy A Yanus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Alexandr O Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| |
Collapse
|
11
|
SERPINA3: Stimulator or Inhibitor of Pathological Changes. Biomedicines 2023; 11:biomedicines11010156. [PMID: 36672665 PMCID: PMC9856089 DOI: 10.3390/biomedicines11010156] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
SERPINA3, also called α-1-antichymotrypsin (AACT, ACT), is one of the inhibitors of serine proteases, one of which is cathepsin G. As an acute-phase protein secreted into the plasma by liver cells, it plays an important role in the anti-inflammatory response and antiviral response. Elevated levels of SERPINA3 have been observed in heart failure and neurological diseases such as Alzheimer's disease or Creutzfeldt-Jakob disease. Many studies have shown increased expression levels of the SERPINA3 gene in various types of cancer, such as glioblastoma, colorectal cancer, endometrial cancer, breast cancer, or melanoma. In this case, the SERPINA3 protein is associated with an antiapoptotic function implemented by adjusting the PI3K/AKT or MAPK/ERK 1/2 signal pathways. However, the functions of the SERPINA3 protein are still only partially understood, mainly in the context of cancerogenesis, so it seems necessary to summarize the available information and describe its mechanism of action. In particular, we sought to amass the existing body of research focusing on the description of the underlying mechanisms of various diseases not related to cancer. Our goal was to present an overview of the correct function of SERPINA3 as part of the defense system, which unfortunately easily becomes the "Fifth Column" and begins to support processes of destruction.
Collapse
|
12
|
Koivuluoma S, Vorimo S, Mattila TM, Tervasmäki A, Kumpula T, Kuismin O, Winqvist R, Moilanen J, Mantere T, Pylkäs K. Truncating TINF2 p.Tyr312Ter variant and inherited breast cancer susceptibility. Fam Cancer 2023; 22:13-17. [PMID: 35590014 PMCID: PMC9829577 DOI: 10.1007/s10689-022-00295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/08/2022] [Indexed: 01/13/2023]
Abstract
TINF2 is a critical subunit of the shelterin complex, which protects and maintains the length of telomeres. Pathogenic missense and truncating TINF2 mutations are causative for dyskeratosis congenita (DC), a rare, dominantly inherited bone marrow failure syndrome characterized by mucocutaneous abnormalities and cancer predisposition. Recent reports indicate that specific TINF2 truncating mutations act as high penetrance cancer predisposition alleles outside DC context, including breast cancer in their tumor spectrum. Here, we have evaluated the role of germline mutations in TINF2 and other shelterin genes in inherited breast cancer susceptibility using exome sequencing data from 98 Northern Finnish breast cancer cases with indication of inherited disease predisposition as a discovery cohort. A single protein truncating variant, TINF2 p.Tyr312Ter, was identified in one of the cases (1/98), and four more carriers were observed in the subsequently genotyped unselected breast cancer cohort (4/1904). None of the carriers were reported to have DC. TINF2 p.Tyr312Ter resulted in stable short form of mRNA transcript, and normal telomere length has been indicated by a recent report. Although recurrent in cases (total of 5/2095), TINF2 p.Tyr312Ter is also present in Finnish population controls (8/12,517), and the observed 4-fold higher frequency in cases falls at most into the range of moderate breast cancer risk alleles (OR 3.74, 95% CI 1.22-11.45, p = 0.029). Current results indicate that not all TINF2 truncating variants are high cancer risk alleles and add further evidence that different TINF2 mutations can have very diverse effects on the disease phenotype.
Collapse
Affiliation(s)
- Susanna Koivuluoma
- grid.10858.340000 0001 0941 4873Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, 90220 Aapistie 5A, Oulu, Finland
| | - Sandra Vorimo
- grid.10858.340000 0001 0941 4873Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, 90220 Aapistie 5A, Oulu, Finland
| | - Tiina M. Mattila
- grid.10858.340000 0001 0941 4873Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, 90220 Aapistie 5A, Oulu, Finland
| | - Anna Tervasmäki
- grid.10858.340000 0001 0941 4873Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, 90220 Aapistie 5A, Oulu, Finland
| | - Timo Kumpula
- grid.10858.340000 0001 0941 4873Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, 90220 Aapistie 5A, Oulu, Finland
| | - Outi Kuismin
- grid.10858.340000 0001 0941 4873Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Robert Winqvist
- grid.10858.340000 0001 0941 4873Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, 90220 Aapistie 5A, Oulu, Finland
| | - Jukka Moilanen
- grid.10858.340000 0001 0941 4873Department of Clinical Genetics, Medical Research Center Oulu and PEDEGO Research Unit, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Tuomo Mantere
- grid.10858.340000 0001 0941 4873Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, 90220 Aapistie 5A, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, NordLab Oulu, University of Oulu, 90220, Aapistie 5A, Oulu, Finland.
| |
Collapse
|
13
|
Zhang H, Zhang GY, Su WC, Chen YT, Liu YF, Wei D, Zhang YX, Tang QY, Liu YX, Wang SZ, Li WC, Wesselius A, Zeegers MP, Zhang ZY, Gu YH, Tao WA, Yu EYW. High Throughput Isolation and Data Independent Acquisition Mass Spectrometry (DIA-MS) of Urinary Extracellular Vesicles to Improve Prostate Cancer Diagnosis. Molecules 2022; 27:8155. [PMID: 36500247 PMCID: PMC9737666 DOI: 10.3390/molecules27238155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Proteomic profiling of extracellular vesicles (EVs) represents a promising approach for early detection and therapeutic monitoring of diseases such as cancer. The focus of this study was to apply robust EV isolation and subsequent data-independent acquisition mass spectrometry (DIA-MS) for urinary EV proteomics of prostate cancer and prostate inflammation patients. Urinary EVs were isolated by functionalized magnetic beads through chemical affinity on an automatic station, and EV proteins were analyzed by integrating three library-base analyses (Direct-DIA, GPF-DIA, and Fractionated DDA-base DIA) to improve the coverage and quantitation. We assessed the levels of urinary EV-associated proteins based on 40 samples consisting of 20 cases and 20 controls, where 18 EV proteins were identified to be differentiated in prostate cancer outcome, of which three (i.e., SERPINA3, LRG1, and SCGB3A1) were shown to be consistently upregulated. We also observed 6 out of the 18 (33%) EV proteins that had been developed as drug targets, while some of them showed protein-protein interactions. Moreover, the potential mechanistic pathways of 18 significantly different EV proteins were enriched in metabolic, immune, and inflammatory activities. These results showed consistency in an independent cohort with 20 participants. Using a random forest algorithm for classification assessment, including the identified EV proteins, we found that SERPINA3, LRG1, or SCGB3A1 add predictable value in addition to age, prostate size, body mass index (BMI), and prostate-specific antigen (PSA). In summary, the current study demonstrates a translational workflow to identify EV proteins as molecular markers to improve the clinical diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
- EVLiXiR Biotech, Nanjing 210032, China
| | - Gui-Yuan Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
- EVLiXiR Biotech, Nanjing 210032, China
| | - Wei-Chao Su
- Department of Colorectal Tumor Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
- Department of Mental Health Research, Xiamen Xianyue Hospital, Xiamen 361012, China
| | - Ya-Ting Chen
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yu-Feng Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
- EVLiXiR Biotech, Nanjing 210032, China
- Bell Mountain Molecular MedTech Institute, Nanjing 210032, China
| | - Dong Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
- Bell Mountain Molecular MedTech Institute, Nanjing 210032, China
| | - Yan-Xi Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qiu-Yi Tang
- Medical School of Southeast University, Nanjing 210009, China
| | - Yu-Xiang Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shi-Zhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wen-Chao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Anke Wesselius
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, 6229ER Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Maurice P Zeegers
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, 6229ER Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Zi-Yu Zhang
- Department of Pathology, Jiangxi Maternal & Child Health Hospital, Nanchang 330006, China
| | - Yan-Hong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - W Andy Tao
- Departments of Chemistry and Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Evan Yi-Wen Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, 6229ER Maastricht, The Netherlands
| |
Collapse
|
14
|
Soman A, Asha Nair S. Unfolding the cascade of SERPINA3: Inflammation to cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188760. [PMID: 35843512 DOI: 10.1016/j.bbcan.2022.188760] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
SERine Protease INhibitor clade A member 3 (SERPINA3), a member of the SERine-Protease INhibitor (SERPIN) superfamily, principally works as a protease inhibitor in maintaining cellular homeostasis. It is a matricellular acute-phase glycoprotein that appears to be the sole nuclear-binding secretory serpin. Several studies have emerged in recent years demonstrating its link to cancer and disease biology. SERPINA3 seems to have cancer- and compartment-specific biological functions, acting either as a tumour promoter or suppressor in different cancers. However, the localization, mechanism of action and the effectors of SERPINA3 in physiological and pathological scenarios remain obscure. Our review aims to consolidate the current evidence of SERPINA3 in various cancers, highlighting its association with the cancer hallmarks and ratifying its status as an emerging cancer biomarker. The elucidation of SERPINA3-mediated cancer progression and its targeting might shed light on the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Anjana Soman
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram, India
| | - S Asha Nair
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
15
|
Chen L, Dong Y, Pan Y, Zhang Y, Liu P, Wang J, Chen C, Lu J, Yu Y, Deng R. Identification and development of an independent immune-related genes prognostic model for breast cancer. BMC Cancer 2021; 21:329. [PMID: 33785008 PMCID: PMC8011146 DOI: 10.1186/s12885-021-08041-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background Breast cancer is one of the main malignant tumors that threaten the lives of women, which has received more and more clinical attention worldwide. There are increasing evidences showing that the immune micro-environment of breast cancer (BC) seriously affects the clinical outcome. This study aims to explore the role of tumor immune genes in the prognosis of BC patients and construct an immune-related genes prognostic index. Methods The list of 2498 immune genes was obtained from ImmPort database. In addition, gene expression data and clinical characteristics data of BC patients were also obtained from the TCGA database. The prognostic correlation of the differential genes was analyzed through Survival package. Cox regression analysis was performed to analyze the prognostic effect of immune genes. According to the regression coefficients of prognostic immune genes in regression analysis, an immune risk scores model was established. Gene set enrichment analysis (GSEA) was performed to probe the biological correlation of immune gene scores. P < 0.05 was considered to be statistically significant. Results In total, 556 immune genes were differentially expressed between normal tissues and BC tissues (p < 0. 05). According to the univariate cox regression analysis, a total of 66 immune genes were statistically significant for survival risk, of which 30 were associated with overall survival (P < 0.05). Finally, a 15 immune genes risk scores model was established. All patients were divided into high- and low-groups. KM survival analysis revealed that high immune risk scores represented worse survival (p < 0.001). ROC curve indicated that the immune genes risk scores model had a good reliability in predicting prognosis (5-year OS, AUC = 0.752). The established risk model showed splendid AUC value in the validation dataset (3-year over survival (OS) AUC = 0.685, 5-year OS AUC = 0.717, P = 0.00048). Moreover, the immune risk signature was proved to be an independent prognostic factor for BC patients. Finally, it was found that 15 immune genes and risk scores had significant clinical correlations, and were involved in a variety of carcinogenic pathways. Conclusion In conclusion, our study provides a new perspective for the expression of immune genes in BC. The constructed model has potential value for the prognostic prediction of BC patients and may provide some references for the clinical precision immunotherapy of patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08041-x.
Collapse
Affiliation(s)
- Lin Chen
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yuxiang Dong
- First Clinical Medical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yitong Pan
- Nanjing Medical University, Nanjing, 211116, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuhan Zhang
- First Clinical Medical College of Nanjing Medical University, Nanjing, 210029, China
| | - Ping Liu
- Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Junyi Wang
- Nanjing Medical University, Nanjing, 211116, China
| | - Chen Chen
- Nanjing Medical University, Nanjing, 211116, China
| | - Jianing Lu
- First Clinical Medical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yun Yu
- Nanjing Medical University, Nanjing, 211116, China. .,Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211116, China.
| | - Rong Deng
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|