1
|
Di Nunno V, Franceschi E, Idbaih A. Achievements of international rare cancers networks and consortia in the neuro-oncology field. Curr Opin Oncol 2024; 36:554-559. [PMID: 39246177 DOI: 10.1097/cco.0000000000001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
PURPOSE OF REVIEW In this review, we investigated the role of European oncological networks on management and care of patients with central nervous system (CNS) malignancies. RECENT FINDINGS Within this universe of tumors, malignancies of the central nervous system (CNS) malignancies represent a challenge because of several reasons such as biological complexity, the need of dedicated experienced physicians (surgeons, pathologists, radiologists and neuro-oncologists) and tertiary healthcare providers. Limits to the development of effective and innovative care are represented by the rarity of these tumors and their extreme heterogeneity in terms of clinical presentation, course of the disease, genetic assessments and site of presentation. The oncological networks are societies or associations, which make possible to connect patients, scientists, doctors and researchers together allowing to obtain several improvements. SUMMARY Oncological networks can cooperate to increase accrual rate and speed in clinical trials, share data about CNS malignancy management and improve knowledge toward this class of tumors within patients and health operators promoting equity and high standard of care.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| |
Collapse
|
2
|
Tydings CW, Singh B, Smith AW, Ledwitch KV, Brown BP, Lovly CM, Walker AS, Meiler J. Analysis of EGFR binding hotspots for design of new EGFR inhibitory biologics. Protein Sci 2024; 33:e5141. [PMID: 39275996 PMCID: PMC11400634 DOI: 10.1002/pro.5141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/16/2024]
Abstract
The epidermal growth factor (EGF) receptor (EGFR) is activated by the binding of one of seven EGF-like ligands to its ectodomain. Ligand binding results in EGFR dimerization and stabilization of the active receptor conformation subsequently leading to activation of downstream signaling. Aberrant activation of EGFR contributes to cancer progression through EGFR overexpression/amplification, modulation of its positive and negative regulators, and/or activating mutations within EGFR. EGFR targeted therapeutic antibodies prevent dimerization and interaction with endogenous ligands by binding the ectodomain of EGFR. However, these antibodies have had limited success in the clinic, partially due to EGFR ectodomain resistance mutations, and are only applicable to a subset of patients with EGFR-driven cancers. These limitations suggest that alternative EGFR targeted biologics need to be explored for EGFR-driven cancer therapy. To this end, we analyze the EGFR interfaces of known inhibitory biologics with determined structures in the context of endogenous ligands, using the Rosetta macromolecular modeling software to highlight the most important interactions on a per-residue basis. We use this analysis to identify the structural determinants of EGFR targeted biologics. We suggest that commonly observed binding motifs serve as the basis for rational design of new EGFR targeted biologics, such as peptides, antibodies, and nanobodies.
Collapse
Affiliation(s)
- Claiborne W Tydings
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Bhuminder Singh
- Department of Medicine - Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adam W Smith
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn V Ledwitch
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Benjamin P Brown
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Christine M Lovly
- Department of Medicine - Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC, Germany
| |
Collapse
|
3
|
Li G, Xiong Z, Li Y, Yan C, Cheng Y, Wang Y, Li J, Dai Z, Zhang D, Du W, Men C, Shi C. Hypoxic microenvironment-induced exosomes confer temozolomide resistance in glioma through transfer of pyruvate kinase M2. Discov Oncol 2024; 15:110. [PMID: 38598023 PMCID: PMC11006647 DOI: 10.1007/s12672-024-00963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
OBJECTIVE Glioma, a malignant primary brain tumor, is notorious for its high incidence rate. However, the clinical application of temozolomide (TMZ) as a treatment option for glioma is often limited due to resistance, which has been linked to hypoxic glioma cell-released exosomes. In light of this, the present study aimed to investigate the role of exosomal pyruvate kinase M2 (PKM2) in glioma cells that exhibit resistance to TMZ. METHODS Sensitive and TMZ-resistant glioma cells were subjected to either a normoxic or hypoxic environment, and the growth patterns and enzymatic activity of glycolysis enzymes were subsequently measured. From these cells, exosomal PKM2 was isolated and the subsequent effect on TMZ resistance was examined and characterized, with a particular focus on understanding the relevant mechanisms. Furthermore, the intercellular communication between hypoxic resistant cells and tumor-associated macrophages (TAMs) via exosomal PKM2 was also assessed. RESULTS The adverse impact of hypoxic microenvironments on TMZ resistance in glioma cells was identified and characterized. Among the three glycolysis enzymes that were examined, PKM2 was found to be a critical mediator in hypoxia-triggered TMZ resistance. Upregulation of PKM2 was found to exacerbate the hypoxia-mediated TMZ resistance. Exosomal PKM2 were identified and isolated from hypoxic TMZ-resistant glioma cells, and were found to be responsible for transmitting TMZ resistance to sensitive glioma cells. The exosomal PKM2 also contributed towards mitigating TMZ-induced apoptosis in sensitive glioma cells, while also causing intracellular ROS accumulation. Additionally, hypoxic resistant cells also released exosomal PKM2, which facilitated TMZ resistance in tumor-associated macrophages. CONCLUSION In the hypoxic microenvironment, glioma cells become resistant to TMZ due to the delivery of PKM2 by exosomes. Targeted modulation of exosomal PKM2 may be a promising strategy for overcoming TMZ resistance in glioma.
Collapse
Affiliation(s)
- Guofu Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Ziyu Xiong
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cong Yan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingying Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yuwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zifeng Dai
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongdong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenzhong Du
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunyang Men
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Changbin Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Lai Y, Lu X, Liao Y, Ouyang P, Wang H, Zhang X, Huang G, Qi S, Li Y. Crosstalk between glioblastoma and tumor microenvironment drives proneural-mesenchymal transition through ligand-receptor interactions. Genes Dis 2024; 11:874-889. [PMID: 37692522 PMCID: PMC10491977 DOI: 10.1016/j.gendis.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Glioblastoma (GBM) is the most common intrinsic and aggressive primary brain tumor in adults, with a median survival of approximately 15 months. GBM heterogeneity is considered responsible for the treatment resistance and unfavorable prognosis. Proneural-mesenchymal transition (PMT) represents GBM malignant progression and recurrence, which might be a breakthrough to understand GBM heterogeneity and overcome treatment resistance. PMT is a complicated process influenced by crosstalk between GBM and tumor microenvironment, depending on intricate ligand-receptor interactions. In this review, we summarize the autocrine and paracrine pathways in the GBM microenvironment and related ligand-receptor interactions inducing PMT. We also discuss the current therapies targeting the PMT-related autocrine and paracrine pathways. Together, this review offers a comprehensive understanding of the failure of GBM-targeted therapy and ideas for future tendencies of GBM treatment.
Collapse
Affiliation(s)
- Yancheng Lai
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaole Lu
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yankai Liao
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Ouyang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Wang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xian Zhang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guanglong Huang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yaomin Li
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
5
|
Christyani G, Carswell M, Qin S, Kim W. An Overview of Advances in Rare Cancer Diagnosis and Treatment. Int J Mol Sci 2024; 25:1201. [PMID: 38256274 PMCID: PMC10815984 DOI: 10.3390/ijms25021201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer stands as the leading global cause of mortality, with rare cancer comprising 230 distinct subtypes characterized by infrequent incidence. Despite the inherent challenges in addressing the diagnosis and treatment of rare cancers due to their low occurrence rates, several biomedical breakthroughs have led to significant advancement in both areas. This review provides a comprehensive overview of state-of-the-art diagnostic techniques that encompass new-generation sequencing and multi-omics, coupled with the integration of artificial intelligence and machine learning, that have revolutionized rare cancer diagnosis. In addition, this review highlights the latest innovations in rare cancer therapeutic options, comprising immunotherapy, targeted therapy, transplantation, and drug combination therapy, that have undergone clinical trials and significantly contribute to the tumor remission and overall survival of rare cancer patients. In this review, we summarize recent breakthroughs and insights in the understanding of rare cancer pathophysiology, diagnosis, and therapeutic modalities, as well as the challenges faced in the development of rare cancer diagnosis data interpretation and drug development.
Collapse
Affiliation(s)
| | | | - Sisi Qin
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (G.C.); (M.C.)
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (G.C.); (M.C.)
| |
Collapse
|
6
|
Zhou Y, Takahashi JI, Sakurai H. New Directions for Advanced Targeting Strategies of EGFR Signaling in Cancer. Biol Pharm Bull 2024; 47:895-903. [PMID: 38692865 DOI: 10.1248/bpb.b23-00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Epidermal growth factor (EGF)-EGF receptor (EGFR) signaling studies paved the way for a basic understanding of growth factor and oncogene signaling pathways and the development of tyrosine kinase inhibitors (TKIs). Due to resistance mutations and the activation of alternative pathways when cancer cells escape TKIs, highly diverse cell populations form in recurrent tumors through mechanisms that have not yet been fully elucidated. In this review, we summarize recent advances in EGFR basic research on signaling networks and intracellular trafficking that may clarify the novel mechanisms of inhibitor resistance, discuss recent clinical developments in EGFR-targeted cancer therapy, and offer novel strategies for cancer drug development.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Jun-Ichiro Takahashi
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
7
|
Jaffry M, Choudhry H, Aftab OM, Dastjerdi MH. Antibody-Drug Conjugates and Ocular Toxicity. J Ocul Pharmacol Ther 2023; 39:675-691. [PMID: 37615544 DOI: 10.1089/jop.2023.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a growing class of chemotherapeutic agents for the purpose of treating cancers that often have relapsed or failed first- and second-line treatments. ADCs are composed of extremely potent cytotoxins with a variety of side effects, one of the most significant being ocular toxicity. The available literature describes these toxicities as varying in severity and in incidence, although with disparate methods of evaluation and management. Some of the most common toxicities include microcyst-like epithelial keratopathy and dry eye. We discuss proposed mechanisms of ocular toxicity and describe the reports that mention these toxicities. We focus on ADCs with the most published literature and the most significant effects on ocular tissue. We propose areas for further investigation and possible ideas of future management. We provide a comprehensive look at the reports of ADCs in current literature to better inform clinicians on an expanding drug class.
Collapse
Affiliation(s)
- Mustafa Jaffry
- Department of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Hassaam Choudhry
- Department of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Owais M Aftab
- Department of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Mohammad H Dastjerdi
- Department of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
8
|
Ge M, Zhu Y, Wei M, Piao H, He M. Improving the efficacy of anti-EGFR drugs in GBM: Where we are going? Biochim Biophys Acta Rev Cancer 2023; 1878:188996. [PMID: 37805108 DOI: 10.1016/j.bbcan.2023.188996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The therapies targeting mutations of driver genes in cancer have advanced into clinical trials for a variety of tumors. In glioblastoma (GBM), epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene, and targeting EGFR has been widely investigated as a promising direction. However, the results of EGFR pathway inhibitors have not been satisfactory. Limited blood-brain barrier (BBB) permeability, drug resistance, and pathway compensation mechanisms contribute to the failure of anti-EGFR therapies. This review summarizes recent research advances in EGFR-targeted therapy for GBM and provides insight into the reasons for the unsatisfactory results of EGFR-targeted therapy. By combining the results of preclinical studies with those of clinical trials, we discuss that improved drug penetration across the BBB, the use of multi-target combinations, and the development of peptidomimetic drugs under the premise of precision medicine may be promising strategies to overcome drug resistance in GBM.
Collapse
Affiliation(s)
- Manxi Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Yan Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, China.
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| |
Collapse
|
9
|
Pu Y, Zhou G, Zhao K, Chen Y, Shen S. Immunotherapy for Recurrent Glioma-From Bench to Bedside. Cancers (Basel) 2023; 15:3421. [PMID: 37444531 DOI: 10.3390/cancers15133421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is the most aggressive malignant tumor of the central nervous system, and most patients suffer from a recurrence. Unfortunately, recurrent glioma often becomes resistant to established chemotherapy and radiotherapy treatments. Immunotherapy, a rapidly developing anti-tumor therapy, has shown a potential value in treating recurrent glioma. Multiple immune strategies have been explored. The most-used ones are immune checkpoint blockade (ICB) antibodies, which are barely effective in monotherapy. However, when combined with other immunotherapy, especially with anti-angiogenesis antibodies, ICB has shown encouraging efficacy and enhanced anti-tumor immune response. Oncolytic viruses and CAR-T therapies have shown promising results in recurrent glioma through multiple mechanisms. Vaccination strategies and immune-cell-based immunotherapies are promising in some subgroups of patients, and multiple new tumor antigenic targets have been discovered. In this review, we discuss current applicable immunotherapies and related mechanisms for recurrent glioma, focusing on multiple preclinical models and clinical trials in the last 5 years. Through reviewing the current combination of immune strategies, we would like to provide substantive thoughts for further novel therapeutic regimes treating recurrent glioma.
Collapse
Affiliation(s)
- Yi Pu
- Laboratory of Mitochondria and Metabolism, Department of Burn and Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guanyu Zhou
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kejia Zhao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shensi Shen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Mair MJ, Bartsch R, Le Rhun E, Berghoff AS, Brastianos PK, Cortes J, Gan HK, Lin NU, Lassman AB, Wen PY, Weller M, van den Bent M, Preusser M. Understanding the activity of antibody-drug conjugates in primary and secondary brain tumours. Nat Rev Clin Oncol 2023; 20:372-389. [PMID: 37085569 DOI: 10.1038/s41571-023-00756-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/23/2023]
Abstract
Antibody-drug conjugates (ADCs), a class of targeted cancer therapeutics combining monoclonal antibodies with a cytotoxic payload via a chemical linker, have already been approved for the treatment of several cancer types, with extensive clinical development of novel constructs ongoing. Primary and secondary brain tumours are associated with high mortality and morbidity, necessitating novel treatment approaches. Pharmacotherapy of brain tumours can be limited by restricted drug delivery across the blood-brain or blood-tumour barrier, although data from phase II studies of the HER2-targeted ADC trastuzumab deruxtecan indicate clinically relevant intracranial activity in patients with brain metastases from HER2+ breast cancer. However, depatuxizumab mafodotin, an ADC targeting wild-type EGFR and EGFR variant III, did not provide a definitive overall survival benefit in patients with newly diagnosed or recurrent EGFR-amplified glioblastoma in phase II and III trials, despite objective radiological responses in some patients. In this Review, we summarize the available data on the central nervous system activity of ADCs from trials involving patients with primary and secondary brain tumours and discuss their clinical implications. Furthermore, we explore pharmacological determinants of intracranial activity and discuss the optimal design of clinical trials to facilitate development of ADCs for the treatment of gliomas and brain metastases.
Collapse
Affiliation(s)
- Maximilian J Mair
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Emilie Le Rhun
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria
| | - Priscilla K Brastianos
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quirónsalud Group, Madrid and Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
- Medical Scientia Innovation Research (MEDSIR), Barcelona, Spain
| | - Hui K Gan
- Cancer Therapies and Biology Group, Centre of Research Excellence in Brain Tumours, Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Heidelberg, VIC, Australia
- La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, USA
| | - Patrick Y Wen
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Martin van den Bent
- The Brain Tumour Center, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Maecker H, Jonnalagadda V, Bhakta S, Jammalamadaka V, Junutula JR. Exploration of the antibody-drug conjugate clinical landscape. MAbs 2023; 15:2229101. [PMID: 37639687 PMCID: PMC10464553 DOI: 10.1080/19420862.2023.2229101] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023] Open
Abstract
The antibody-drug conjugate (ADC) field has undergone a renaissance, with substantial recent developmental investment and subsequent drug approvals over the past 6 y. In November 2022, ElahereTM became the latest ADC to be approved by the US Food and Drug Administration (FDA). To date, over 260 ADCs have been tested in the clinic against various oncology indications. Here, we review the clinical landscape of ADCs that are currently FDA approved (11), agents currently in clinical trials but not yet approved (164), and candidates discontinued following clinical testing (92). These clinically tested ADCs are further analyzed by their targeting tumor antigen(s), linker, payload choices, and highest clinical stage achieved, highlighting limitations associated with the discontinued drug candidates. Lastly, we discuss biologic engineering modifications preclinically demonstrated to improve the therapeutic index that if incorporated may increase the proportion of molecules that successfully transition to regulatory approval.
Collapse
|
12
|
Lin B, Ziebro J, Smithberger E, Skinner KR, Zhao E, Cloughesy TF, Binder ZA, O’Rourke DM, Nathanson DA, Furnari FB, Miller CR. EGFR, the Lazarus target for precision oncology in glioblastoma. Neuro Oncol 2022; 24:2035-2062. [PMID: 36125064 PMCID: PMC9713527 DOI: 10.1093/neuonc/noac204] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Lazarus effect is a rare condition that happens when someone seemingly dead shows signs of life. The epidermal growth factor receptor (EGFR) represents a target in the fatal neoplasm glioblastoma (GBM) that through a series of negative clinical trials has prompted a vocal subset of the neuro-oncology community to declare this target dead. However, an argument can be made that the core tenets of precision oncology were overlooked in the initial clinical enthusiasm over EGFR as a therapeutic target in GBM. Namely, the wrong drugs were tested on the wrong patients at the wrong time. Furthermore, new insights into the biology of EGFR in GBM vis-à-vis other EGFR-driven neoplasms, such as non-small cell lung cancer, and development of novel GBM-specific EGFR therapeutics resurrects this target for future studies. Here, we will examine the distinct EGFR biology in GBM, how it exacerbates the challenge of treating a CNS neoplasm, how these unique challenges have influenced past and present EGFR-targeted therapeutic design and clinical trials, and what adjustments are needed to therapeutically exploit EGFR in this devastating disease.
Collapse
Affiliation(s)
- Benjamin Lin
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Julia Ziebro
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erin Smithberger
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Pathobiology and Translational Sciences Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kasey R Skinner
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Neurosciences Curriculum, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Zhao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Zev A Binder
- Department of Neurosurgery and Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donald M O’Rourke
- Department of Neurosurgery and Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Frank B Furnari
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, San Diego, California, USA
- Ludwig Cancer Research, San Diego, California, USA
| | - C Ryan Miller
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Śledzińska P, Bebyn M, Furtak J, Koper A, Koper K. Current and promising treatment strategies in glioma. Rev Neurosci 2022:revneuro-2022-0060. [PMID: 36062548 DOI: 10.1515/revneuro-2022-0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/30/2022] [Indexed: 12/14/2022]
Abstract
Gliomas are the most common primary central nervous system tumors; despite recent advances in diagnosis and treatment, glioma patients generally have a poor prognosis. Hence there is a clear need for improved therapeutic options. In recent years, significant effort has been made to investigate immunotherapy and precision oncology approaches. The review covers well-established strategies such as surgery, temozolomide, PCV, and mTOR inhibitors. Furthermore, it summarizes promising therapies: tumor treating fields, immune therapies, tyrosine kinases inhibitors, IDH(Isocitrate dehydrogenase)-targeted approaches, and others. While there are many promising treatment strategies, none fundamentally changed the management of glioma patients. However, we are still awaiting the outcome of ongoing trials, which have the potential to revolutionize the treatment of glioma.
Collapse
Affiliation(s)
- Paulina Śledzińska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
| | - Marek Bebyn
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
| | - Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland.,Department of Neurooncology and Radiosurgery, The F. Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
| | - Agnieszka Koper
- Department of Oncology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, 85-067 Bydgoszcz, Poland.,Department of Oncology, Franciszek Lukaszczyk Oncology Centre, 85-796 Bydgoszcz, Poland
| | - Krzysztof Koper
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, 85-796 Bydgoszcz, Poland.,Department of Clinical Oncology, and Nursing, Departament of Oncological Surgery, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, 85-067 Bydgoszcz, Poland
| |
Collapse
|