1
|
Grützmeier SE, Sodal HMM, Kovacevic B, Vilmann P, Karstensen JG, Klausen P. EUS-guided biopsies versus surgical specimens for establishing patient-derived pancreatic cancer organoids: a systematic review and meta-analysis. Gastrointest Endosc 2024; 100:750-755. [PMID: 38593932 DOI: 10.1016/j.gie.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND AND AIMS Patient-derived tumor organoids (PDTOs) are a promising new disease model in pancreatic cancer for use in personalized medicine. However, the overall success rate (SR) of establishing these cultures from EUS-guided biopsies is unknown. METHODS We searched relevant database publications reporting SRs of PDTO establishment from pancreatic cancer. The primary outcome was SR stratified on tissue acquisition method (EUS-guided biopsies, percutaneous biopsies, and surgical specimens). RESULTS Twenty-four studies were identified that included 1053 attempts at establishing PDTOs. Overall SR was 63% (95% confidence interval [CI], 54%-72%). Pooled SRs of PDTO establishment from EUS-guided biopsies, percutaneous biopsies, and surgical specimens were 60% (95% CI, 43%-76%), 36% (95% CI, 14%-61%), and 62% (95% CI, 48%-75%), respectively, and did not differ significantly (P = .1975). CONCLUSION The SR of PDTO establishment from EUS-guided biopsies is comparable to that from surgical specimens. Both techniques are suitable for tissue acquisition for PDTOs in clinical and research settings. (PROSPERO registration number: CRD42023425121.).
Collapse
Affiliation(s)
- Simon Ezban Grützmeier
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark.
| | - Hafsa Mahad Mahamud Sodal
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark
| | - Bojan Kovacevic
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark; Department of Surgery and Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Peter Vilmann
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - John Gásdal Karstensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Pancreatitis Centre East, Gastro Unit, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Pia Klausen
- Gastro Unit, Endoscopic Division, Copenhagen University Hospital Herlev and Gentofte, Herlev, Denmark; Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Chen J, Lu J, Wang SN, Miao CY. Application and challenge of pancreatic organoids in therapeutic research. Front Pharmacol 2024; 15:1366417. [PMID: 38855754 PMCID: PMC11157021 DOI: 10.3389/fphar.2024.1366417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
The in-vivo non-human primate animal and in-vitro cell disease models play a crucial part in the study of the mechanisms underlying the occurrence and development of pancreatic diseases, but with increasingly prominent limitations with in-depth research. Organoids derived from human pluripotent and adult stem cells resemble human in-vivo organs in their cellular composition, spatial tissue structure and physiological function, making them as an advantageous research tool. Up until now, numerous human organoids, including pancreas, have been effectively developed, demonstrating significant potential for research in organ development, disease modeling, drug screening, and regenerative medicine. However, different from intestine, liver and other organs, the pancreas is the only special organ in the human body, consisting of an exocrine gland and an endocrine gland. Thus, the development of pancreatic organoid technology faces greater challenges, and how to construct a composite pancreatic organoid with exocrine and endocrine gland is still difficult in current research. By reviewing the fundamental architecture and physiological role of the human pancreas, along with the swiftly developing domain of pancreatic organoids, we summarize the method and characteristics of human pancreatic organoids, and its application in modeling pancreatic diseases, as a platform for individualized drug screening and in regenerative medicine study. As the first comprehensive review that focus on the pharmacological study of human pancreatic organoid, the review hopes to help scholars to have a deeper understanding in the study of pancreatic organoid.
Collapse
Affiliation(s)
- Jin Chen
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military University /Naval Medical University, Shanghai, China
- Department of Pharmacology, Second Military Medical University /Naval Medical University, Shanghai, China
| | - Jin Lu
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military University /Naval Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University /Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University /Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Ye HS, Zhou D, Li H, Lv J, Huang HQ, She JJ, Nie JH, Li TT, Lu MD, Du BL, Yang SQ, Chen PX, Li S, Ye GL, Luo W, Liu J. Organoid forming potential as complementary parameter for accurate evaluation of breast cancer neoadjuvant therapeutic efficacy. Br J Cancer 2024; 130:1109-1118. [PMID: 38341511 PMCID: PMC10991527 DOI: 10.1038/s41416-024-02595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND 13-15% of breast cancer/BC patients diagnosed as pathological complete response/pCR after neoadjuvant systemic therapy/NST suffer from recurrence. This study aims to estimate the rationality of organoid forming potential/OFP for more accurate evaluation of NST efficacy. METHODS OFPs of post-NST residual disease/RD were checked and compared with clinical approaches to estimate the recurrence risk. The phenotypes of organoids were classified via HE staining and ER, PR, HER2, Ki67 and CD133 immuno-labeling. The active growing organoids were subjected to drug sensitivity tests. RESULTS Of 62 post-NST BC specimens, 24 were classified as OFP-I with long-term active organoid growth, 19 as OFP-II with stable organoid growth within 3 weeks, and 19 as OFP-III without organoid formation. Residual tumors were overall correlated with OFP grades (P < 0.001), while 3 of the 18 patients (16.67%) pathologically diagnosed as tumor-free (ypT0N0M0) showed tumor derived-organoid formation. The disease-free survival/DFS of OFP-I cases was worse than other two groups (Log-rank P < 0.05). Organoids of OFP-I/-II groups well maintained the biological features of their parental tumors and were resistant to the drugs used in NST. CONCLUSIONS The OFP would be a complementary parameter to improve the evaluation accuracy of NST efficacy of breast cancers.
Collapse
Affiliation(s)
- Hai-Shan Ye
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Hong Li
- Biomedical Laboratory, Guangzhou Jingke BioTech Group, Guangzhou, 510005, China
| | - Jin Lv
- Department of Pathology, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Hui-Qi Huang
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Jia-Jun She
- Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Jun-Hua Nie
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Ting-Ting Li
- Biomedical Laboratory, Guangzhou Jingke BioTech Group, Guangzhou, 510005, China
| | - Meng-Di Lu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Bo-Le Du
- Biomedical Laboratory, Guangzhou Jingke BioTech Group, Guangzhou, 510005, China
| | - Shu-Qing Yang
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Pei-Xian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Sheng Li
- Biomedical Laboratory, Guangzhou Jingke BioTech Group, Guangzhou, 510005, China
| | - Guo-Lin Ye
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, China.
| | - Wei Luo
- Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan, 528100, China.
| | - Jia Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Liaoning Laboratory of Cancer Genetics and Epigenetics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
4
|
Fernandes TG. Organoids as complex (bio)systems. Front Cell Dev Biol 2023; 11:1268540. [PMID: 37691827 PMCID: PMC10485618 DOI: 10.3389/fcell.2023.1268540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Organoids are three-dimensional structures derived from stem cells that mimic the organization and function of specific organs, making them valuable tools for studying complex systems in biology. This paper explores the application of complex systems theory to understand and characterize organoids as exemplars of intricate biological systems. By identifying and analyzing common design principles observed across diverse natural, technological, and social complex systems, we can gain insights into the underlying mechanisms governing organoid behavior and function. This review outlines general design principles found in complex systems and demonstrates how these principles manifest within organoids. By acknowledging organoids as representations of complex systems, we can illuminate our understanding of their normal physiological behavior and gain valuable insights into the alterations that can lead to disease. Therefore, incorporating complex systems theory into the study of organoids may foster novel perspectives in biology and pave the way for new avenues of research and therapeutic interventions to improve human health and wellbeing.
Collapse
Affiliation(s)
- Tiago G. Fernandes
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Ishikawa T, Ogawa T, Shiihara M, Usubuchi H, Omori Y, Hirose K, Itoh T, Yoshida T, Nakanome A, Okoshi A, Higashi K, Ishii R, Rokugo M, Wakamori S, Okamura Y, Kinoshita K, Katori Y, Furukawa T. Salivary gland cancer organoids are valid for preclinical genotype-oriented medical precision trials. iScience 2023; 26:106695. [PMID: 37207275 PMCID: PMC10189274 DOI: 10.1016/j.isci.2023.106695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Salivary gland cancers (SGCs) are heterogeneous tumors, and precision oncology represents a promising therapeutic approach; however, its impact on SGCs remains obscure. This study aimed to establish a translational model for testing molecular-targeted therapies by combining patient-derived organoids and genomic analyses of SGCs. We enrolled 29 patients, including 24 with SGCs and 5 with benign tumors. Resected tumors were subjected to organoid and monolayer cultures, as well as whole-exome sequencing. Organoid and monolayer cultures of SGCs were successfully established in 70.8% and 62.5% of cases, respectively. Organoids retained most histopathological and genetic profiles of their original tumors. In contrast, 40% of the monolayer-cultured cells did not harbor somatic mutations of their original tumors. The efficacy of molecular-targeted drugs tested on organoids depended on their oncogenic features. Organoids recapitulated the primary tumors and were useful for testing genotype-oriented molecular targeted therapy, which is valuable for precision medicine in patients with SGCs.
Collapse
Affiliation(s)
- Tomohiko Ishikawa
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takenori Ogawa
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Masahiro Shiihara
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hajime Usubuchi
- Department of Pathology, Sendai Kousei Hospital, Sendai 980-0873, Japan
| | - Yuko Omori
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Katsuya Hirose
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Taito Itoh
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takuya Yoshida
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ayako Nakanome
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akira Okoshi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kenjiro Higashi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Ryo Ishii
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Masahiro Rokugo
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Shun Wakamori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yasunobu Okamura
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai 980-8573, Japan
- Tohoku University Tohoku Medical Megabank Organization, Sendai 980-8573, Japan
| | - Kengo Kinoshita
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai 980-8573, Japan
- Tohoku University Tohoku Medical Megabank Organization, Sendai 980-8573, Japan
- Tohoku University Graduate School of Information Sciences, Sendai 980-8579, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Corresponding author
| |
Collapse
|
6
|
Song SL, Li B, Carvalho MR, Wang HJ, Mao DL, Wei JT, Chen W, Weng ZH, Chen YC, Deng CX, Reis RL, Oliveira JM, He YL, Yan LP, Zhang CH. Complex in vitro 3D models of digestive system tumors to advance precision medicine and drug testing: Progress, challenges, and trends. Pharmacol Ther 2022; 239:108276. [DOI: 10.1016/j.pharmthera.2022.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
|
7
|
Yu YY, Zhu YJ, Xiao ZZ, Chen YD, Chang XS, Liu YH, Tang Q, Zhang HB. The pivotal application of patient-derived organoid biobanks for personalized treatment of gastrointestinal cancers. Biomark Res 2022; 10:73. [PMID: 36207749 PMCID: PMC9547471 DOI: 10.1186/s40364-022-00421-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal cancers (GICs) occupy more than 30% of the cancer-related incidence and mortality around the world. Despite advances in the treatment strategies, the long-term overall survival has not been improved for patients with GICs. Recently, the novel patient-derived organoid (PDO) culture technology has become a powerful tool for GICs in a manner that recapitulates the morphology, pathology, genetic, phenotypic, and behavior traits of the original tumors. Excitingly, a number of evidences suggest that the versatile technology has great potential for personalized treatment, suppling the clinical application of molecularly guided personalized treatment. In the paper, we summarize the literature on the topics of establishing organoid biobanks of PDOs, and their application in the personalized treatment allowing for radiotherapy, chemotherapy, targeted therapy, and immunotherapy selection for GICs. Despite the limitations of current organoid models, high-throughput drug screening of GIC PDO combined with next-generation sequencing technology represents a novel and pivotal preclinical model for precision medicine of tumors and has a great value in promoting the transformation from basic cancer research to clinical application.
Collapse
Affiliation(s)
- Ya-Ya Yu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan-Juan Zhu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhen-Zhen Xiao
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ya-Dong Chen
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xue-Song Chang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yi-Hong Liu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Tang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China.,Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hai-Bo Zhang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China. .,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China. .,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
8
|
Shiihara M, Furukawa T. Application of Patient-Derived Cancer Organoids to Personalized Medicine. J Pers Med 2022; 12:jpm12050789. [PMID: 35629212 PMCID: PMC9146789 DOI: 10.3390/jpm12050789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Cell models are indispensable for the research and development of cancer therapies. Cancer medications have evolved with the establishment of various cell models. Patient-derived cell lines are very useful for identifying characteristic phenotypes and susceptibilities to anticancer drugs as well as molecularly targeted therapies for tumors. However, conventional 2-dimensional (2D) cell cultures have several drawbacks in terms of engraftment rate and phenotypic changes during culture. The organoid is a recently developed in vitro model with cultured cells that form a three-dimensional structure in the extracellular matrix. Organoids have the capacity to self-renew and can organize themselves to resemble the original organ or tumor in terms of both structure and function. Patient-derived cancer organoids are more suitable for the investigation of cancer biology and clinical medicine than conventional 2D cell lines or patient-derived xenografts. With recent advances in genetic analysis technology, the genetic information of various tumors has been clarified, and personalized medicine based on genetic information has become clinically available. Here, we have reviewed the recent advances in the development and application of patient-derived cancer organoids in cancer biology studies and personalized medicine. We have focused on the potential of organoids as a platform for the identification and development of novel targeted medicines for pancreatobiliary cancer, which is the most intractable cancer.
Collapse
Affiliation(s)
| | - Toru Furukawa
- Correspondence: ; Tel.: +81-22-717-8149; Fax: +81-22-717-8053
| |
Collapse
|
9
|
Development of a Simple Spheroid Production Method Using Fluoropolymers with Reduced Chemical and Physical Damage. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Establishing an in vitro–based cell culture system that can realistically simulate in vivo cell dynamics is desirable. It is thus necessary to develop a method for producing a large amount of cell aggregates (i.e., spheroids) that are uniform in size and quality. Various methods have been proposed for the preparation of spheroids; however, none of them satisfy all requirements, such as cost, size uniformity, and throughput. Herein, we successfully developed a new cell culture method by combining fluoropolymers and dot patterned extracellular matrix substrates to achieve size-controlled spheroids. First, the spheroids were spontaneously formed by culturing them two-dimensionally, after which the cells were detached with a weak liquid flow and cultured in suspension without enzyme treatment. Stable quality spheroids were easily produced, and it is expected that the introduction and running costs of the technique will be low; therefore, this method shows potential for application in the field of regenerative medicine.
Collapse
|
10
|
Patil S, Jahagirdar S, Khot M, Sengupta K. Studying the Role of Chromosomal Instability (CIN) in GI Cancers Using Patient-derived Organoids. J Mol Biol 2021; 434:167256. [PMID: 34547328 DOI: 10.1016/j.jmb.2021.167256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023]
Abstract
Chromosomal instability (CIN) is associated with the initiation and progression of gastrointestinal (GI) tract cancers. Cancers of the GI tract are typically characterized by altered chromosome numbers. While the dynamics of CIN have been extensively characterized in 2D monolayer cell cultures derived from GI tumors, the tumor microenvironment and 3D tumor architecture also contribute to the progression of CIN, which is not captured in 2D cell culture systems. To overcome these limitations, self-organizing cellular structures that retain organ-specific 3D architecture, namely organoids, have been derived from various tissues of the GI tract. Organoids derived from normal tissue and patient tumors serve as a useful paradigm to study the crosstalk between tumor cells in the context of a tissue microenvironment and its impact on chromosomal stability. Such a paradigm, therefore, has a considerable advantage over 2D cell culture systems in drug screening and personalized medicine. Here, we review the importance of patient-derived tumor organoids (PDTOs) as a model to study CIN in cancers of the GI tract.
Collapse
Affiliation(s)
- Shalaka Patil
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Pune 411008, India. https://twitter.com/@ShalakaPatil11
| | - Sanika Jahagirdar
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Pune 411008, India. https://twitter.com/@SanikaJag
| | - Maithilee Khot
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Pune 411008, India. https://twitter.com/@MaithileeKhot
| | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Pune 411008, India.
| |
Collapse
|
11
|
Huang CT, Liang YJ. Anti-tumor effect of statin on pancreatic adenocarcinoma: From concept to precision medicine. World J Clin Cases 2021; 9:4500-4505. [PMID: 34222418 PMCID: PMC8223840 DOI: 10.12998/wjcc.v9.i18.4500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
A statin is a cholesterol-lowering agent, which inhibits HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase and subsequently reduces the cholesterol precursor, and was first used commercially in 1987. The concept of cholesterol restriction leading to cancer cell dysfunction was proposed in 1992. The interruption of different signaling pathways has been proved in preclinical experiments to elucidate the anti-tumor mechanism of statins in pancreatic adenocarcinoma. Observational studies have shown that the clinical use of statins is beneficial in patients with pancreatic adenocarcinoma, including a chemoprevention effect, post-surgical resection follow-up and therapeutic prognosis of advanced cancer stage. Arrest of the cancer cell cycle by the combined use of gemcitabine and statin was observed in a cell line study. The effect of microbiota on the tumor microenvironment of pancreatic adenocarcinoma is a new therapeutic approach as statins can modulate the gut microbiota. Hence, further randomized trials of statins in pancreatic adenocarcinoma treatment will be warranted with application of precision medicine from microbiota-derived, cell cycle-based and signaling pathway-targeted research.
Collapse
Affiliation(s)
- Chung-Tsui Huang
- Department of Gastroenterology and Hepatology, Far Eastern Memorial Hospital, New Taipei 220, Taiwan
| | - Yao-Jen Liang
- Graduate Institute of Applied Science and Engineering, Department and Institute of Life Science, Fu-Jen University, New Taipei 242, Taiwan
| |
Collapse
|
12
|
Tayama H, Karasawa H, Yamamura A, Okamura Y, Katsuoka F, Suzuki H, Kajiwara T, Kobayashi M, Hatsuzawa Y, Shiihara M, Bin L, Gazi MY, Sato M, Kumada K, Ito S, Shimada M, Furukawa T, Kamei T, Ohnuma S, Unno M. The association between ERK inhibitor sensitivity and molecular characteristics in colorectal cancer. Biochem Biophys Res Commun 2021; 560:59-65. [PMID: 33989908 DOI: 10.1016/j.bbrc.2021.04.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
The mitogen-activated protein kinase (MAPK) pathway plays an important role in the colorectal cancer (CRC) progression, being supposed to be activated by the gene mutations, such as BRAF or KRAS. Although the inhibitors of extracellular signal-regulated kinase (ERK) have demonstrated efficacy in the cells with the BRAF or KRAS mutations, a clinical response is not always associated with the molecular signature. The patient-derived organoids (PDO) have emerged as a powerful in vitro model system to study cancer, and it has been widely applied for the drug screening. The present study aims to analyze the association between the molecular characteristics which analyzed by next-generation sequencing (NGS) and sensitivity to the ERK inhibitor (i.e., SCH772984) in PDO derived from CRC specimens. A drug sensitivity test for the SCH772984 was conducted using 14 CRC cell lines, and the results demonstrated that the sensitivity was in agreement with the BRAF mutation, but was not completely consistent with the KRAS status. In the drug sensitivity test for PDO, 6 out of 7 cases with either BRAF or KRAS mutations showed sensitivity to the SCH772984, while 5 out of 6 cases of both BRAF and KRAS wild-types were resistant. The results of this study suggested that the molecular status of the clinical specimens are likely to represent the sensitivity in the PDOs but is not necessarily absolutely overlapping. PDO might be able to complement the limitations of the gene panel and have the potential to provide a novel precision medicine.
Collapse
Affiliation(s)
- Hodaka Tayama
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideaki Karasawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Yamamura
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yasunobu Okamura
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai, Japan; Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Fumiki Katsuoka
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai, Japan; Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hideyuki Suzuki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taiki Kajiwara
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Minoru Kobayashi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuuri Hatsuzawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Shiihara
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Gastrointestinal Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Li Bin
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai, Japan; Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Md Yeashin Gazi
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai, Japan; Personalized Medicine Center, Tohoku University Hospital, Sendai, Japan
| | - Mizuki Sato
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai, Japan
| | - Kazuki Kumada
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai, Japan; Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigehiro Ito
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai, Japan; Personalized Medicine Center, Tohoku University Hospital, Sendai, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Furukawa
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai, Japan; Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan; Personalized Medicine Center, Tohoku University Hospital, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinobu Ohnuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|