1
|
Zheng W, Peng Z, Peng S, Yu Z, Cao Z. Multinuclei Occurred Under Cryopreservation and Enhanced the Pathogenicity of Melampsora larici-populina. Front Microbiol 2021; 12:650902. [PMID: 34248868 PMCID: PMC8270653 DOI: 10.3389/fmicb.2021.650902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
Melampsora larici-populina is a macrocyclic rust, and the haploid stage with two nuclei and the diploid of mononuclear sequentially occur annually. During the preservation of dry urediniospores at −80°C, we found that one isolate, ΔTs06, was different from the usual wild-type isolate Ts06 at −20°C because it has mixed polykaryotic urediniospores. However, the other spores, including the 0, I, III, and IV stages of a life cycle, were the same as Ts06. After five generations of successive inoculation and harvest of urediniospores from the compatible host Populus purdomii, the isolate ΔTs06 steadily maintained more than 20% multiple nucleus spores. To test the pathogenesis variation of ΔTs06, an assay of host poplars was applied to evaluate the differences between ΔTs06 and Ts06. After ΔTs06 and Ts06 inoculation, leaves of P. purdomii were used to detect the expression of small secreted proteins (SSPs) and fungal biomasses using quantitative real-time PCR (qRT-PCR) and trypan blue staining. ΔTs06 displayed stronger expression of five SSPs and had a shorter latent period, a higher density of uredinia, and higher DNA mass. A transcriptomic comparison between ΔTs06 and Ts06 revealed that 3,224 were differentially expressed genes (DEGs), 55 of which were related to reactive oxygen species metabolism, the Mitogen-activated protein kinase (MAPK) signaling pathway, and the meiosis pathway. Ten genes in the mitotic and meiotic pathways and another two genes associated with the “response to DNA damage stimulus” all had an upward expression, which were detected by qRT-PCR in ΔTs06 during cryopreservation. Gas chromatography–mass spectrometry (GC-MS) confirmed that the amounts of hexadecanoic acid and octadecadienoic acid were much more in ΔTs06 than in Ts06. In addition, using spectrophotometry, hydrogen peroxide (H2O2) was also present in greater quantities in ΔTs06 compared with those found in Ts06. Increased fatty acids metabolism could prevent damage to urediniospores in super-low temperatures, but oxidant species that involved H2O2 may destroy tube proteins of mitosis and meiosis, which could cause abnormal nuclear division and lead to multinucleation, which has a different genotype. Therefore, the multinuclear isolate is different from the wild-type isolate in terms of phenotype and genotype; this multinucleation phenomenon in urediniospores improves the pathogenesis and environmental fitness of M. larici-populina.
Collapse
Affiliation(s)
- Wei Zheng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zijia Peng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Shaobing Peng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhongdong Yu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhimin Cao
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Rajapakse D, Chen M, Curtis TM, Xu H. PKCζ-dependent upregulation of p27kip1 contributes to oxidative stress induced retinal pigment epithelial cell multinucleation. Aging (Albany NY) 2018; 9:2052-2068. [PMID: 29016360 PMCID: PMC5680555 DOI: 10.18632/aging.101299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/28/2017] [Indexed: 01/24/2023]
Abstract
Retinal pigment epithelial (RPE) cells increase in size and multinucleate during aging. We have shown using human and mouse cell lines that oxidised photoreceptor outer segments (oxPOS)-induced cytokinesis failure is related to RPE cell multinucleation, although the underlying mechanism remains unknown. This study investigated the role of the PKC pathway in oxPOS-induced RPE multinucleation using ARPE19 cells. oxPOS treatment promoted PKC activity and upregulated the mRNA expression of PKC α, δ, ζ, ι and μ. Inhibition of PKCα with Gö6976 resulted in a 33% reduction of multinucleate ARPE19 cells, whereas inhibition of PKCζ with Gö6983 led to a 50% reduction in multinucleate ARPE19 cells. Furthermore, oxPOS treatment induced a PKCζ-dependent upregulation of the Cdk inhibitor p27kip1, its inhibition using A2CE reduced oxPOS-induced ARPE19 multinucleation. Our results suggest that oxPOS-induced ARPE19 cytokinesis failure is, at least in part, due to the upregulation of p27kip1 through activating the PKC, particularly PKCζ pathway. Targeting the PKCζ-p27kip1 signalling axis may be a novel approach to restore RPE repair capacity during aging.
Collapse
Affiliation(s)
- Dinusha Rajapakse
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT97 BL, UK
| | - Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT97 BL, UK
| | - Tim M Curtis
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT97 BL, UK
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT97 BL, UK
| |
Collapse
|
3
|
Cruz OHDL, Marchat LA, Guillén N, Weber C, Rosas IL, Díaz-Chávez J, Herrera L, Rojo-Domínguez A, Orozco E, López-Camarillo C. Multinucleation and Polykaryon Formation is Promoted by the EhPC4 Transcription Factor in Entamoeba histolytica. Sci Rep 2016; 6:19611. [PMID: 26792358 PMCID: PMC4726151 DOI: 10.1038/srep19611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 12/14/2015] [Indexed: 02/01/2023] Open
Abstract
Entamoeba histolytica is the intestinal parasite responsible for human amoebiasis that is a leading cause of death in developing countries. In this protozoan, heterogeneity in DNA content, polyploidy and genome plasticity have been associated to alterations in mechanisms controlling DNA replication and cell division. Studying the function of the transcription factor EhPC4, we unexpectedly found that it is functionally related to DNA replication, and multinucleation. Site-directed mutagenesis on the FRFPKG motif revealed that the K127 residue is required for efficient EhPC4 DNA-binding activity. Remarkably, overexpression of EhPC4 significantly increased cell proliferation, DNA replication and DNA content of trophozoites. A dramatically increase in cell size resulting in the formation of giant multinucleated trophozoites (polykaryon) was also found. Multinucleation event was associated to cytokinesis failure leading to abortion of ongoing cell division. Consistently, genome-wide profiling of EhPC4 overexpressing trophozoites revealed the up-regulation of genes involved in carbohydrates and nucleic acids metabolism, chromosome segregation and cytokinesis. Forced overexpression of one of these genes, EhNUDC (nuclear movement protein), led to alterations in cytokinesis and partially recapitulated the multinucleation phenotype. These data indicate for the first time that EhPC4 is associated with events related to polyploidy and genome stability in E. histolytica.
Collapse
Affiliation(s)
| | - Laurence A. Marchat
- National Polytechnic Institute, National School of Medicine and Homeopathy, Institutional Program of Molecular Biomedicine, Biotechnology Program, Mexico City, Mexico
| | - Nancy Guillén
- Institut Pasteur, Cellular Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | - Christian Weber
- Institut Pasteur, Cellular Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | - Itzel López Rosas
- Universidad Autonoma de la Ciudad de Mexico, Genomics Sciences Program, Mexico City, Mexico
| | - José Díaz-Chávez
- National Institute of Cancerology, Carcinogenesis Laboratory, Mexico City, Mexico
| | - Luis Herrera
- National Institute of Cancerology, Carcinogenesis Laboratory, Mexico City, Mexico
| | - Arturo Rojo-Domínguez
- Metropolitan Autonomous University, Natural Sciences Department, Mexico City, Mexico
| | - Esther Orozco
- Center for Research and Advanced Studies of the National Polytechnic Institute, Department of Infectomics and Molecular Pathogenesis, Mexico City, Mexico
| | - César López-Camarillo
- Universidad Autonoma de la Ciudad de Mexico, Genomics Sciences Program, Mexico City, Mexico
| |
Collapse
|
4
|
Wen H, Cui Q, Meng H, Lai F, Wang S, Zhang X, Chen X, Cui H, Yin D. A high-resolution method to assess cell multinucleation with cytoplasm-localized fluorescent probes. Analyst 2016; 141:4010-3. [DOI: 10.1039/c6an00613b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell multinucleation is closely related to chromosomal instability.
Collapse
Affiliation(s)
- Hui Wen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Qinghua Cui
- College of Pharmacy
- Shandong University of Traditional Chinese Medicine
- Jinan
- China
| | - Hui Meng
- College of Pharmacy
- Shandong University of Traditional Chinese Medicine
- Jinan
- China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Shufang Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Xiang Zhang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Huaqing Cui
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| | - Dali Yin
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
- China
| |
Collapse
|
5
|
Yu Y, Duan J, Geng W, Li Q, Jiang L, Li Y, Yu Y, Sun Z. Aberrant cytokinesis and cell fusion result in multinucleation in HepG2 cells exposed to silica nanoparticles. Chem Res Toxicol 2015; 28:490-500. [PMID: 25625797 DOI: 10.1021/tx500473h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The multinucleation effect of silica nanoparticles (SiNPs) had been determined in our previous studies, but the relative mechanisms of multinucleation and how the multinucleated cells are generated were still not clear. This extensional study was conducted to investigate the mechanisms underlying the formation of multinucleated cells after SiNPs exposure. We first investigated cellular multinucleation, then performed time-lapse confocal imaging to certify whether the multinucleated cells resulted from cell fusion or abnormal cell division. Our results confirmed for the first time that there are three patterns contributing to the SiNPs-induced multinucleation in HepG2 cells: cell fusion, karyokinesis without cytokinesis, and cytokinesis followed by fusion. The chromosomal passenger complex (CPC) deficiency and cell cycle arrest in G1/S and G2/M checkpoints may be responsible for the cell aberrant cytokinesis. The activated MAPK/ERK1/2 signaling and decreased mitosis related proteins might be the underlying mechanism of cell cycle arrest and thus multinucleation. In summary, we confirmed the hypothesis that aberrant cytokinesis and cell fusion resulted in multinucleation in HepG2 cells after SiNPs exposure. Since cell fusion and multinucleation were involved in genetic instability and tumor development, this study suggests the potential ability of SiNPs to induce cellular genetic instability. These findings raise concerns with regard to human health hazards and environmental risks with SiNPs exposure.
Collapse
Affiliation(s)
- Yongbo Yu
- School of Public Health, Capital Medical University , Beijing 100069, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hornik TC, Neniskyte U, Brown GC. Inflammation induces multinucleation of Microglia via PKC inhibition of cytokinesis, generating highly phagocytic multinucleated giant cells. J Neurochem 2013; 128:650-61. [PMID: 24117490 DOI: 10.1111/jnc.12477] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/18/2013] [Accepted: 09/29/2013] [Indexed: 12/15/2022]
Abstract
Microglia are brain macrophages, which can undergo multinucleation to give rise to multinucleated giant cells that accumulate with ageing and some brain pathologies. However, the origin, regulation and function of multinucleate microglia remain unclear. We found that inflammatory stimuli, including lipopolysaccharide, amyloid β, α-synuclein, tumour necrosis factor-α and interferon γ, but not interleukin-4, induced multinucleation of cultured microglia: primary rat cortical microglia and the murine microglial cell line BV-2. Inflammation-induced multinucleation was prevented by a protein kinase C (PKC) inhibitor Gö6976 (100 nM) and replicated by a PKC activator phorbol myristate acetate (160 nM). Multinucleation was reversible and not because of cell fusion or phagocytosis, but rather failure of cytokinesis. Time-lapse imaging revealed that some dividing cells failed to abscise, even after formation of long cytoplasmic bridges, followed by retraction of bridge and reversal of cleavage furrow to form multinucleate cells. Multinucleate microglia were larger and 2-4 fold more likely to phagocytose large beads and both dead and live PC12 cells. We conclude that multinucleate microglia are reversibly generated by inflammation via PKC inhibition of cytokinesis, and may have specialized functions/dysfunctions including the phagocytosis of other cells. Inflammation resulted in the accumulation of multiple nuclei per cell in cultured microglia. This multinucleation was reversible and due to a PKC-dependent block of the last step of cell division. Multinucleate microglia were larger and had a greater capacity to phagocytose other cells, suggesting they might remove neurons in the brain.
Collapse
Affiliation(s)
- Tamara C Hornik
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
7
|
Wang W, Li Y, Liu X, Jin M, Du H, Liu Y, Huang P, Zhou X, Yuan L, Sun Z. Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line. Int J Nanomedicine 2013; 8:3533-41. [PMID: 24092974 PMCID: PMC3787934 DOI: 10.2147/ijn.s46732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Silica nanoparticles (SNPs) are one of the most important nanomaterials, and have been widely used in a variety of fields. Therefore, their effects on human health and the environment have been addressed in a number of studies. In this work, the effects of amorphous SNPs were investigated with regard to multinucleation in L-02 human hepatic cells. Our results show that L-02 cells had an abnormally high incidence of multinucleation upon exposure to silica, that increased in a dose-dependent manner. Propidium iodide staining showed that multinucleated cells were arrested in G2/M phase of the cell cycle. Increased multinucleation in L-02 cells was associated with increased generation of cellular reactive oxygen species and mitochondrial damage on flow cytometry and confocal microscopy, which might have led to failure of cytokinesis in these cells. Further, SNPs inhibited cell growth and induced apoptosis in exposed cells. Taken together, our findings demonstrate that multinucleation in L-02 human hepatic cells might be a failure to undergo cytokinesis or cell fusion in response to SNPs, and the increase in cellular reactive oxygen species could be responsible for the apoptosis seen in both mononuclear cells and multinucleated cells.
Collapse
Affiliation(s)
- Wen Wang
- School of Public Health, Capital Medical University, Beijing ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing ; School of Public Health, Jilin University, Changchun, Jilin
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Xia Y, Li M, Peng T, Zhang W, Xiong J, Hu Q, Song Z, Zheng Q. In vitro cytotoxicity of fluorescent silica nanoparticles hybridized with aggregation-induced emission luminogens for living cell imaging. Int J Mol Sci 2013; 14:1080-92. [PMID: 23296280 PMCID: PMC3565308 DOI: 10.3390/ijms14011080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/28/2012] [Accepted: 12/28/2012] [Indexed: 11/17/2022] Open
Abstract
Fluorescent silica nanoparticles (FSNPs) can provide high-intensity and photostable fluorescent signals as a probe for biomedical analysis. In this study, FSNPs hybridized with aggregation-induced emission (AIE) luminogens (namely FSNP-SD) were successfully fabricated by a surfactant-free sol-gel method. The FSNP-SD were spherical, monodisperse and uniform in size, with an average diameter of approximately 100 nm, and emitted strong fluorescence at the peak of 490 nm. The FSNP-SD selectively stained the cytoplasmic regions and were distributed in the cytoplasm. Moreover, they can stay inside cells, enabling the tacking of cells over a long period of time. The intracellular vesicles and multinucleated cells were increase gradually with the rise of FSNP-SD concentration. Both cell viability and survival only lost less than 20% when the cells were exposed to the high concentration of 100 μg/mL FSNP-SD. Additionally, the cell apoptosis and intracellular ROS assay indicated that FSNP-SD had no significant toxic effects at the maximum working concentration of 80 μg/mL. This study demonstrated that the FSNP-SD are promising biocompatible fluorescent probes for living cell imaging.
Collapse
Affiliation(s)
- Yun Xia
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; E-Mail:
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; E-Mails: (M.L.); (T.P.); (W.Z.); (J.X.); (Q.H.); (Z.S.)
| | - Tao Peng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; E-Mails: (M.L.); (T.P.); (W.Z.); (J.X.); (Q.H.); (Z.S.)
| | - Weijie Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; E-Mails: (M.L.); (T.P.); (W.Z.); (J.X.); (Q.H.); (Z.S.)
| | - Jun Xiong
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; E-Mails: (M.L.); (T.P.); (W.Z.); (J.X.); (Q.H.); (Z.S.)
| | - Qinggang Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; E-Mails: (M.L.); (T.P.); (W.Z.); (J.X.); (Q.H.); (Z.S.)
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; E-Mails: (M.L.); (T.P.); (W.Z.); (J.X.); (Q.H.); (Z.S.)
| | - Qichang Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; E-Mails: (M.L.); (T.P.); (W.Z.); (J.X.); (Q.H.); (Z.S.)
| |
Collapse
|
9
|
Yoshida K, Ono M, Bito H, Mikami T, Sawada H. Plasmodium induced by SU6656, an Src family kinase inhibitor, is accompanied by a contractile ring defect. Cell Biochem Funct 2011; 30:33-40. [PMID: 22034098 DOI: 10.1002/cbf.1814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 02/01/2011] [Accepted: 09/06/2011] [Indexed: 01/22/2023]
Abstract
We have shown that SU6656, a potent Src family kinase inhibitor, has the ability to induce multinucleation at a high frequency in diverse cells: rat skin fibroblasts, bone marrow adherent cells, 5F9A mesenchymal stem cell-like clones, 2C5 tracheal epithelial cells and MDCK epithelial cells from dog kidney. To gain insight into the mechanism of multinucleation, we observed the process by time-lapse and confocal microscopy. These multinuclei generally seem to exist independently in one cell without any connections with each other. By time-lapse microscopy, multinucleated cells were found to be formed through the mechanism of plasmodium: karyokinesis without cytokinesis. The observation of EGFP-actin transfected cells by time-lapse confocal laser scanning microscopy suggested that plasmodium occurred with deficient contractile ring formation. Although we examined the differentiation of these cells, the multinucleated cells could not be categorized into any type of cell in vivo known to exhibit multinuclei.
Collapse
Affiliation(s)
- Keiichiro Yoshida
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| | | | | | | | | |
Collapse
|
10
|
Li Y, Sun L, Jin M, Du Z, Liu X, Guo C, Li Y, Huang P, Sun Z. Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells. Toxicol In Vitro 2011; 25:1343-52. [DOI: 10.1016/j.tiv.2011.05.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 04/21/2011] [Accepted: 05/01/2011] [Indexed: 10/18/2022]
|
11
|
Chirieleison SM, Bissell TA, Scelfo CC, Anderson JE, Li Y, Koebler DJ, Deasy BM. Automated live cell imaging systems reveal dynamic cell behavior. Biotechnol Prog 2011; 27:913-24. [PMID: 21692197 DOI: 10.1002/btpr.629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 03/11/2011] [Indexed: 11/11/2022]
Abstract
Automated time-lapsed microscopy provides unique research opportunities to visualize cells and subcellular components in experiments with time-dependent parameters. As accessibility to these systems is increasing, we review here their use in cell science with a focus on stem cell research. Although the use of time-lapsed imaging to answer biological questions dates back nearly 150 years, only recently have the use of an environmentally controlled chamber and robotic stage controllers allowed for high-throughput continuous imaging over long periods at the cell and subcellular levels. Numerous automated imaging systems are now available from both companies that specialize in live cell imaging and from major microscope manufacturers. We discuss the key components of robots used for time-lapsed live microscopic imaging, and the unique data that can be obtained from image analysis. We show how automated features enhance experimentation by providing examples of uniquely quantified proliferation and migration live cell imaging data. In addition to providing an efficient system that drastically reduces man-hours and consumes fewer laboratory resources, this technology greatly enhances cell science by providing a unique dataset of temporal changes in cell activity.
Collapse
|
12
|
Weihua Z, Lin Q, Ramoth AJ, Fan D, Fidler IJ. Formation of solid tumors by a single multinucleated cancer cell. Cancer 2011; 117:4092-9. [PMID: 21365635 DOI: 10.1002/cncr.26021] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/16/2011] [Accepted: 01/26/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND Large multinucleated cells (MNCs) commonly exist in tumorigenic cancer cell lines that are used widely in research. However, the contributions of MNCs to tumorigenesis are unknown. METHODS In this study, MNCs were characterized in the murine fibrosarcoma cell line UV-2237 in vitro and in vivo at the single-cell level. RESULTS The authors observed that MNCs originated from a rare subpopulation of mononuclear cells and were positive for a senescent marker, β-galactosidase. In addition, MNCs were responsible for the majority of clonogenic activity when cultured in hard agar; they were more resistant to chemotherapeutic agents than mononuclear cells; they could undergo asymmetric division (producing mononuclear cells) and self-renewal in vitro and in vivo; and, most important; a single MNC produced orthotopic, subcutaneous tumors (composed mainly of mononuclear cells) that gave rise to spontaneous lung metastases in nude mice. CONCLUSIONS The current results indicated that the growth of MNCs may be arrested under stress and that MNCs are highly resistant to chemotherapy and can generate clonal, orthotopic, metastatic tumors.
Collapse
Affiliation(s)
- Zhang Weihua
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, Texas, USA.
| | | | | | | | | |
Collapse
|
13
|
Abstract
BACKGROUND INFORMATION Cell fusion is known to underlie key developmental processes in humans and is postulated to contribute to tissue maintenance and even carcinogenesis. The mechanistic details of cell fusion, especially between different cell types, have been difficult to characterize because of the dynamic nature of the process and inadequate means to track fusion products over time. Here we introduce an inducible system for detecting and tracking live cell fusion products in vitro and potentially in vivo. This system is based on BiFC (bimolecular fluorescence complementation) analysis. In this approach, two proteins that can interact with each other are joined to fragments of a fluorescent protein and are expressed in separate cells. The interaction of said proteins after cell fusion produces a fluorescent signal, enabling the identification and tracking of fusion products over time. RESULTS Long-term tracking of fused p53-deficient cells revealed that hybrid cells were capable of proliferation. In some cases, proliferation was preceded by nuclear fusion and division was asymmetric (69%+/-2% of proliferating hybrids), suggesting chromosomal instability. In addition, asymmetric division following proliferation could give rise to progeny indistinguishable from unfused counterparts. CONCLUSIONS These results support the possibility that the chromosomal instability characteristic of tumour cells may be incurred as a consequence of cell fusion and suggest that the role of cell fusion in carcinogenesis may have been masked to this point for lack of an inducible method to track cell fusion. In sum, the BiFC-based approach described here allows for comprehensive studies of the mechanism and biological impact of cell fusion in nature.
Collapse
|