1
|
Hoffman LM, Jensen CC, Beckerle MC. Phosphorylation of the small heat shock protein HspB1 regulates cytoskeletal recruitment and cell motility. Mol Biol Cell 2022; 33:ar100. [PMID: 35767320 DOI: 10.1091/mbc.e22-02-0057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small heat shock protein HspB1, also known as Hsp25/27, is a ubiquitously expressed molecular chaperone that responds to mechanical cues. Uniaxial cyclic stretch activates the p38 mitogen-activated protein kinase (MAPK) signaling cascade and increases the phosphorylation of HspB1. Similar to the mechanosensitive cytoskeletal regulator zyxin, phospho-HspB1 is recruited to features of the stretch-stimulated actin cytoskeleton. To evaluate the role of HspB1 and its phosphoregulation in modulating cell function, we utilized CRISPR/Cas9-edited HspB1-null cells and determined they were altered in behaviors such as actin cytoskeletal remodeling, cell spreading, and cell motility. In our model system, expression of WT HspB1, but not nonphosphorylatable HspB1, rescued certain characteristics of the HspB1-null cells including the enhanced cell motility of HspB1-null cells and the deficient actin reinforcement of stretch-stimulated HspB1-null cells. The recruitment of HspB1 to high-tension structures in geometrically constrained cells, such as actin comet tails emanating from focal adhesions, also required a phosphorylatable HspB1. We show that mechanical signals activate posttranslational regulation of the molecular chaperone, HspB1, and are required for normal cell behaviors including actin cytoskeletal remodeling, cell spreading, and cell migration.
Collapse
Affiliation(s)
- Laura M Hoffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Mary C Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
2
|
Geyer M, Schönfeld C, Schreiyäck C, Susanto S, Michel C, Looso M, Braun T, Borchardt T, Neumann E, Müller-Ladner U. Comparative transcriptional profiling of regenerating damaged knee joints in two animal models of the newt Notophthalmus viridescens strengthens the role of candidate genes involved in osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100273. [DOI: 10.1016/j.ocarto.2022.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022] Open
|
3
|
Kordbacheh F, Farah CS. Molecular Pathways and Druggable Targets in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:3453. [PMID: 34298667 PMCID: PMC8307423 DOI: 10.3390/cancers13143453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
Head and neck cancers are a heterogeneous group of neoplasms, affecting an ever increasing global population. Despite advances in diagnostic technology and surgical approaches to manage these conditions, survival rates have only marginally improved and this has occurred mainly in developed countries. Some improvements in survival, however, have been a result of new management and treatment approaches made possible because of our ever-increasing understanding of the molecular pathways triggered in head and neck oncogenesis, and the growing understanding of the abundant heterogeneity of this group of cancers. Some important pathways are common to other solid tumours, but their impact on reducing the burden of head and neck disease has been less than impressive. Other less known and little-explored pathways may hold the key to the development of potential druggable targets. The extensive work carried out over the last decade, mostly utilising next generation sequencing has opened up the development of many novel approaches to head and neck cancer treatment. This paper explores our current understanding of the molecular pathways of this group of tumours and outlines associated druggable targets which are deployed as therapeutic approaches in head and neck oncology with the ultimate aim of improving patient outcomes and controlling the personal and economic burden of head and neck cancer.
Collapse
Affiliation(s)
- Farzaneh Kordbacheh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | - Camile S. Farah
- The Australian Centre for Oral Oncology Research & Education, Perth, WA 6009, Australia
- Genomics for Life, Brisbane, QLD 4064, Australia
- Anatomical Pathology, Australian Clinical Labs, Subiaco, WA 6008, Australia
- Peter MacCallum Cancer Centre, Head and Neck Cancer Signalling Laboratory, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Budhram-Mahadeo VS, Solomons MR, Mahadeo-Heads EAO. Linking metabolic dysfunction with cardiovascular diseases: Brn-3b/POU4F2 transcription factor in cardiometabolic tissues in health and disease. Cell Death Dis 2021; 12:267. [PMID: 33712567 PMCID: PMC7955040 DOI: 10.1038/s41419-021-03551-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022]
Abstract
Metabolic and cardiovascular diseases are highly prevalent and chronic conditions that are closely linked by complex molecular and pathological changes. Such adverse effects often arise from changes in the expression of genes that control essential cellular functions, but the factors that drive such effects are not fully understood. Since tissue-specific transcription factors control the expression of multiple genes, which affect cell fate under different conditions, then identifying such regulators can provide valuable insight into the molecular basis of such diseases. This review explores emerging evidence that supports novel and important roles for the POU4F2/Brn-3b transcription factor (TF) in controlling cellular genes that regulate cardiometabolic function. Brn-3b is expressed in insulin-responsive metabolic tissues (e.g. skeletal muscle and adipose tissue) and is important for normal function because constitutive Brn-3b-knockout (KO) mice develop profound metabolic dysfunction (hyperglycaemia; insulin resistance). Brn-3b is highly expressed in the developing hearts, with lower levels in adult hearts. However, Brn-3b is re-expressed in adult cardiomyocytes following haemodynamic stress or injury and is necessary for adaptive cardiac responses, particularly in male hearts, because male Brn-3b KO mice develop adverse remodelling and reduced cardiac function. As a TF, Brn-3b regulates the expression of multiple target genes, including GLUT4, GSK3β, sonic hedgehog (SHH), cyclin D1 and CDK4, which have known functions in controlling metabolic processes but also participate in cardiac responses to stress or injury. Therefore, loss of Brn-3b and the resultant alterations in the expression of such genes could potentially provide the link between metabolic dysfunctions with adverse cardiovascular responses, which is seen in Brn-3b KO mutants. Since the loss of Brn-3b is associated with obesity, type II diabetes (T2DM) and altered cardiac responses to stress, this regulator may provide a new and important link for understanding how pathological changes arise in such endemic diseases.
Collapse
Affiliation(s)
- Vishwanie S Budhram-Mahadeo
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.
| | - Matthew R Solomons
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Eeshan A O Mahadeo-Heads
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.,College of Medicine and Health, University of Exeter Medical School, St Luke's Campus, Exeter, UK
| |
Collapse
|
5
|
Wei F, Zhao L, Jing Y. Mechanisms underlying dimethyl sulfoxide-induced cellular migration in human normal hepatic cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103489. [PMID: 32911099 DOI: 10.1016/j.etap.2020.103489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/03/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Numerous studies have reported that low-dose dimethyl sulfoxide (DMSO, <1.5%, v/v) can interfere with various cellular processes, such as cell proliferation, differentiation, apoptosis, and cycle. By contrast, minimal information is available about the effect of low-dose DMSO on cell migration. Here, we report the effect of DMSO (0.0005%-0.5%, v/v) on cellular migration in human normal hepatic L02 cells. We used the Cell Counting Kit-8 assay to measure cell viability, scratch wound healing assay to observe cellular migration, flow cytometry to analyze cell cycle and death pattern, reverse transcription quantitative polymerase chain reaction to evaluate mRNA expression, and Western blot to detect protein levels. After treatment with 0.0005% (v/v) DMSO, more cells entered S phase arrest, the MMP1/TIMP1 ratio increased, and HSP27 expression was elevated. After treatment with 0.1% (v/v) DMSO, more cells entered G0/G1 phase arrest, the MMP2/TIMP2 ratio increased, the p-p38 and p-Smad3 signaling pathways were activated, and neuropilin-1 expression was elevated. These results showed that cells migrate when their MMP1/TIMP1 and MMP2/TIMP2 ratios are imbalanced. Such migration is modulated by the p38/HSP27 signaling pathway and TGF-β/Smad3 dependent signaling pathway.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Long Zhao
- Department of Orthopaedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu Province 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
6
|
Fu R, Huang Z, Li H, Zhu Y, Zhang H. A Hemidesmosome-to-Cytoplasm Translocation of Small Heat Shock Proteins Provides Immediate Protection against Heat Stress. Cell Rep 2020; 33:108410. [DOI: 10.1016/j.celrep.2020.108410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
|
7
|
P2 × 7 Receptor Inhibits Astroglial Autophagy via Regulating FAK- and PHLPP1/2-Mediated AKT-S473 Phosphorylation Following Kainic Acid-Induced Seizures. Int J Mol Sci 2020; 21:ijms21186476. [PMID: 32899862 PMCID: PMC7555659 DOI: 10.3390/ijms21186476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022] Open
Abstract
Recently, we have reported that blockade/deletion of P2X7 receptor (P2X7R), an ATP-gated ion channel, exacerbates heat shock protein 25 (HSP25)-mediated astroglial autophagy (clasmatodendrosis) following kainic acid (KA) injection. In P2X7R knockout (KO) mice, prolonged astroglial HSP25 induction exerts 5′ adenosine monophosphate-activated protein kinase/unc-51 like autophagy activating kinase 1-mediated autophagic pathway independent of mammalian target of rapamycin (mTOR) activity following KA injection. Sustained HSP25 expression also enhances AKT-serine (S) 473 phosphorylation leading to astroglial autophagy via glycogen synthase kinase-3β/bax interacting factor 1 signaling pathway. However, it is unanswered how P2X7R deletion induces AKT-S473 hyperphosphorylation during autophagic process in astrocytes. In the present study, we found that AKT-S473 phosphorylation was increased by enhancing activity of focal adhesion kinase (FAK), independent of mTOR complex (mTORC) 1 and 2 activities in isolated astrocytes of P2X7R knockout (KO) mice following KA injection. In addition, HSP25 overexpression in P2X7R KO mice acted as a chaperone of AKT, which retained AKT-S473 phosphorylation by inhibiting the pleckstrin homology domain and leucine-rich repeat protein phosphatase (PHLPP) 1- and 2-binding to AKT. Therefore, our findings suggest that P2X7R may be a fine-tuner of AKT-S473 activity during astroglial autophagy by regulating FAK phosphorylation and HSP25-mediated inhibition of PHLPP1/2-AKT binding following KA treatment.
Collapse
|
8
|
Wang J, Wang G, Cheng D, Huang S, Chang A, Tan X, Wang Q, Zhao S, Wu D, Liu AT, Yang S, Xiang R, Sun P. Her2 promotes early dissemination of breast cancer by suppressing the p38-MK2-Hsp27 pathway that is targetable by Wip1 inhibition. Oncogene 2020; 39:6313-6326. [PMID: 32848211 PMCID: PMC7541706 DOI: 10.1038/s41388-020-01437-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Cancer can metastasize from early lesions without detectable tumors. Despite extensive studies on metastasis in cancer cells from patients with detectable primary tumors, mechanisms for early metastatic dissemination are poorly understood. Her2 promotes breast cancer early dissemination by inhibiting p38, but the downstream pathway in this process was unknown. Using early lesion breast cancer models, we demonstrate that the effect of p38 suppression by Her2 on early dissemination is mediated by MK2 and Hsp27. The early disseminating cells in the MMTV-Her2 breast cancer model are Her2highp-p38lowp-MK2lowp-Hsp27low, which also exist in human breast carcinoma tissues. Suppression of p38 and MK2 by Her2 reduces MK2-mediated Hsp27 phosphorylation, and unphosphorylated Hsp27 binds to β-catenin and enhances its phosphorylation by Src, leading to β-catenin activation and disseminating phenotypes in early lesion breast cancer cells. Pharmacological inhibition of MK2 promotes, while inhibition of a p38 phosphatase Wip1 suppresses, early dissemination in vivo. These findings identify Her2-mediated suppression of the p38-MK2-Hsp27 pathway as a novel mechanism for cancer early dissemination, and provide a basis for new therapies targeting early metastatic dissemination in Her2+ breast cancer.
Collapse
Affiliation(s)
- Juan Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Guanwen Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Dongmei Cheng
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Shan Huang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Antao Chang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Xiaoming Tan
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA.,Department of Respiratory Disease, South Campus, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Qiong Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Shaorong Zhao
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Dan Wu
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Andy T Liu
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA.,University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shuang Yang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.
| | - Peiqing Sun
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC, USA.
| |
Collapse
|
9
|
Collier MP, Benesch JLP. Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones 2020; 25:601-613. [PMID: 32253742 PMCID: PMC7332611 DOI: 10.1007/s12192-020-01095-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of cells to respond to stress is central to health. Stress can damage folded proteins, which are vulnerable to even minor changes in cellular conditions. To maintain proteostasis, cells have developed an intricate network in which molecular chaperones are key players. The small heat-shock proteins (sHSPs) are a widespread family of molecular chaperones, and some sHSPs are prominent in muscle, where cells and proteins must withstand high levels of applied force. sHSPs have long been thought to act as general interceptors of protein aggregation. However, evidence is accumulating that points to a more specific role for sHSPs in protecting proteins from mechanical stress. Here, we briefly introduce the sHSPs and outline the evidence for their role in responses to mechanical stress. We suggest that sHSPs interact with mechanosensitive proteins to regulate physiological extension and contraction cycles. It is likely that further study of these interactions - enabled by the development of experimental methodologies that allow protein contacts to be studied under the application of mechanical force - will expand our understanding of the activity and functions of sHSPs, and of the roles played by chaperones in general.
Collapse
Affiliation(s)
- Miranda P Collier
- Department of Biology, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Justin L P Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
10
|
Rajesh Y, Banerjee A, Pal I, Biswas A, Das S, Dey KK, Kapoor N, Ghosh AK, Mitra P, Mandal M. Delineation of crosstalk between HSP27 and MMP-2/MMP-9: A synergistic therapeutic avenue for glioblastoma management. Biochim Biophys Acta Gen Subj 2019; 1863:1196-1209. [PMID: 31028823 DOI: 10.1016/j.bbagen.2019.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Epithelial to mesenchymal transition (EMT) and extracellular matrix (ECM) remodeling, are the two elemental processes promoting glioblastoma (GBM). In the present work we propose a mechanistic modelling of GBM and in process establish a hypothesis elucidating critical crosstalk between heat shock proteins (HSPs) and matrix metalloproteinases (MMPs) with synergistic upregulation of EMT-like process and ECM remodeling. METHODS The interaction and the precise binding site between the HSP and MMP proteins was assayed computationally, in-vitro and in GBM clinical samples. RESULTS A positive crosstalk of HSP27 with MMP-2 and MMP-9 was established in both GBM patient tissues and cell-lines. This association was found to be of prime significance for ECM remodeling and promotion of EMT-like characteristics. In-silico predictions revealed 3 plausible interaction sites of HSP27 interacting with MMP-2 and MMP-9. Site-directed mutagenesis followed by in-vitro immunoprecipitation assay (IP) with 3 mutated recombinant HSP27, confirmed an interface stretch containing residues 29-40 of HSP27 to be a common interaction site for both MMP-2 and MMP-9. This was further validated with in-vitro IP of truncated (sans AA 29-40) recombinant HSP27 with MMP-2 and MMP-9. CONCLUSION The association of HSP27 with MMP-2 and MMP-9 proteins along with the identified interacting stretch has the potential to contribute towards drug development to inhibit GBM infiltration and migration. GENERAL SIGNIFICANCE Current findings provide a novel therapeutic target for GBM opening a new horizon in the field of GBM management.
Collapse
Affiliation(s)
- Y Rajesh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Anupam Banerjee
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, India
| | - Ipsita Pal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Kaushik Kumar Dey
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India; Structural Biology & Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, USA
| | - Neelkamal Kapoor
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Ananta Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.
| |
Collapse
|
11
|
Zhang B, Xie F, Aziz AUR, Shao S, Li W, Deng S, Liao X, Liu B. Heat Shock Protein 27 Phosphorylation Regulates Tumor Cell Migration under Shear Stress. Biomolecules 2019; 9:biom9020050. [PMID: 30704117 PMCID: PMC6406706 DOI: 10.3390/biom9020050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a multifunctional protein that undergoes significant changes in its expression and phosphorylation in response to shear stress stimuli, suggesting that it may be involved in mechanotransduction. However, the mechanism of HSP27 affecting tumor cell migration under shear stress is still not clear. In this study, HSP27-enhanced cyan fluorescent protein (ECFP) and HSP27-Ypet plasmids are constructed to visualize the self-polymerization of HSP27 in living cells based on fluorescence resonance energy transfer technology. The results show that shear stress induces polar distribution of HSP27 to regulate the dynamic structure at the cell leading edge. Shear stress also promotes HSP27 depolymerization to small molecules and then regulates polar actin accumulation and focal adhesion kinase (FAK) polar activation, which further promotes tumor cell migration. This study suggests that HSP27 plays an important role in the regulation of shear stress-induced HeLa cell migration, and it also provides a theoretical basis for HSP27 as a potential drug target for metastasis.
Collapse
Affiliation(s)
- Baohong Zhang
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Fei Xie
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Shuai Shao
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Wang Li
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Sha Deng
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Xiaoling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| |
Collapse
|
12
|
Schmidt A, Bekeschus S, Wende K, Vollmar B, von Woedtke T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol 2018; 26:156-162. [PMID: 27492871 DOI: 10.1111/exd.13156] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/24/2022]
Abstract
Cold plasma has been successfully applied in several fields of medicine that require, for example, pathogen inactivation, implant functionalization or alteration of cellular activity. Previous studies have provided evidence that plasma supports the healing of wounds owing to its beneficial mixtures of reactive species and modulation of inflammation in cells and tissues. To investigate the wound healing activity of an atmospheric pressure plasma jet in vivo, we examined the cold plasma's efficacy on dermal regeneration in a murine model of dermal full-thickness ear wound. Over 14 days, female mice received daily plasma treatment. Quantitative analysis by transmitted light microscopy demonstrated a significantly accelerated wound re-epithelialization at days 3-9 in comparison with untreated controls. In vitro, cold plasma altered keratinocyte and fibroblast migration, while both cell types showed significant stimulation resulting in accelerated closure of gaps in scratch assays. This plasma effect correlated with the downregulation of the gap junctional protein connexin 43 which is thought to be important in the regulation of wound healing. In addition, plasma induced profound changes in adherence junctions and cytoskeletal dynamics as shown by downregulation of E-cadherin and several integrins as well as actin reorganization. Our results theorize cold plasma to be a beneficial treatment option supplementing existing wound therapies.
Collapse
Affiliation(s)
- Anke Schmidt
- Plasma Life Science, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Kristian Wende
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | - Thomas von Woedtke
- Plasma Life Science, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany.,ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany.,Department of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
hsa-miR-9 controls the mobility behavior of glioblastoma cells via regulation of MAPK14 signaling elements. Oncotarget 2018; 7:23170-81. [PMID: 27036038 PMCID: PMC5029618 DOI: 10.18632/oncotarget.6687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/05/2015] [Indexed: 12/19/2022] Open
Abstract
Background Glioblastoma Multiforme (GBM) is the most common and lethal primary tumor of the brain. GBM is associated with one of the worst 5-year survival rates among all human cancers, despite much effort in different modes of treatment. Results Here, we demonstrate specific GBM cancer phenotypes that are governed by modifications to the MAPAKAP network. We then demonstrate a novel regulation mode by which a set of five key factors of the MAPKAP pathway are regulated by the same microRNA, hsa-miR-9. We demonstrate that hsa-miR-9 overexpression leads to MAPKAP signaling inhibition, partially by interfering with the MAPK14/MAPKAP3 complex. Further, hsa-miR-9 overexpression initiates re-arrangement of actin filaments, which leads us to hypothesize a mechanism for the observed phenotypic shift. Conclusion The work presented here exposes novel microRNA features and situates hsa-miR-9 as a therapeutic target, which governs metastasis and thus determines prognosis in GBM through MAPKAP signaling.
Collapse
|
14
|
Byun HJ, Darvin P, Kang DY, Sp N, Joung YH, Park JH, Kim SJ, Yang YM. Silibinin downregulates MMP2 expression via Jak2/STAT3 pathway and inhibits the migration and invasive potential in MDA-MB-231 cells. Oncol Rep 2017; 37:3270-3278. [PMID: 28440514 DOI: 10.3892/or.2017.5588] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/03/2017] [Indexed: 11/06/2022] Open
Abstract
Worldwide, breast cancer (BCa) is the most common cancer in women. Among its subtypes, triple-negative breast cancer (TNBC) is an aggressive form associated with diminished survival. TNBCs are characterized by their absence, or minimal expression, of the estrogen and progesterone receptors, as well as the human epidermal growth factor receptor 2 (i.e. ER-/-, PR-/-, Her2-/Low). Consequently, treatment for this subtype of BCa remains problematic. Silibinin, a derivative of the flavonoid silymarin, is reported to have anticancer activities against hepatic and non-small cell lung cancers. We hypothesized that silibinin might inhibit cell-extracellular matrix interactions via the regulation, expression, and activation of STAT3 in TNBCs, which could directly inhibit metastasis in silibinin-treated BCa cells. Using proliferation assays, we found that exposure to silibinin at a concentration of 200 µM inhibited the proliferation of breast cancer (BCa) cells; this concentration also inhibited phosphorylation of STAT3 and its principal upstream kinase, Jak2. Furthermore, we found that silibinin inhibited the nuclear translocation of STAT3, as well as its binding to the MMP2 gene promoter. The ability of silibinin to inhibit metastasis was further studied using an in vitro invasion assay. The results confirm the role of STAT3 as a critical mediator in the invasive potential of BCa cells, and STAT3 knock-down resulted in inhibition of invasion. The invasion ability of silibinin-treated BCa cells was studied in detail with the expression of MMP2. Prevention of STAT3 activation also resulted in the inhibition of MMP2 expression. Use of a small interfering RNA to knock down STAT3 (siSTAT3) allowed us to confirm the role of STAT3 in regulating MMP2 expression, as well as the mechanism of action of silibinin in inhibiting MMP2. Taken together, we found that silibinin inhibits the Jak2/STAT3/MMP2 signaling pathway, and inhibits the proliferation, migration, and invasion of triple-negative BCa cells.
Collapse
Affiliation(s)
- Hyo Joo Byun
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Republic of Korea
| | - Pramod Darvin
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Republic of Korea
| | - Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Republic of Korea
| | - Youn Hee Joung
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Republic of Korea
| | - Jong Hwan Park
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Republic of Korea
| | | | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
15
|
Leukocyte integrin α4β7 associates with heat shock protein 70. Mol Cell Biochem 2015; 409:263-9. [PMID: 26260051 DOI: 10.1007/s11010-015-2530-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/06/2015] [Indexed: 12/17/2022]
Abstract
The leukocyte integrin cell adhesion molecules α4β7 and αEβ7 mediate the homing and retention of lymphocytes to the gut, and sites of inflammation. Here we have identified heat shock protein 70 (HSP70) as a major protein that associates with the cytoplasmic domain of the integrin β7 subunit. HSPs are molecular chaperones that protect cells from stress but more recently have been reported to also regulate cell adhesion and invasion via modulation of β1, β2, and β3 integrins and integrin-associated signalling molecules. Several HSP70 isoforms including HSP70-3, HSP70-1L, HSP70-8, and HSP70-9 were specifically precipitated from T cells by a bead-conjugated β7 subunit cytoplasmic domain peptide and subsequently identified by high-resolution liquid chromatography-tandem mass spectrometry. In confirmation, the β7 subunit was co-immunoprecipitated from a T cell lysate by an anti-HSP70 antibody. Further, recombinant human HSP70-1a was precipitated by β7 cytoplasmic domain-coupled beads. The HSP70 inhibitor KNK437 decreased the expression of HSP70 without affecting the expression of the β7 integrin. It significantly inhibited α4β7-mediated adhesion of T cells to mucosal addressin cell adhesion molecule 1 (MAdCAM-1), suggesting HSP70 is critical for maintaining β7 integrin signalling function. The functional implications of the association of β7 integrins with the different isoforms of HSP70 warrants further investigation.
Collapse
|
16
|
Graham ZA, Touchberry CD, Gupte AA, Bomhoff GL, Geiger PC, Gallagher PM. Changes in α7β1 integrin signaling after eccentric exercise in heat-shocked rat soleus. Muscle Nerve 2015; 51:562-8. [PMID: 24956997 DOI: 10.1002/mus.24324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 12/16/2022]
Abstract
INTRODUCTION α7β1 integrin links the extracellular matrix to the focal adhesion (FA) in skeletal muscle and serves as a stabilizing and signal relayer. Heat shock (HS) induces expression of proteins that interact with the FA. METHODS Male Wistar rats were assigned to 1 of 3 groups: control (CON); eccentric exercise (EE); or EE+HS (HS). Soleus muscle was analyzed at 2 h and 48 h post-exercise. RESULTS The 120-kDa α7 integrin decreased in the EE and HS groups, and the 70-kDa peptide decreased in the EE group at 2 h post-exercise. Total expression of focal adhesion kinase (FAK) and RhoA were decreased in EE and HS at 2 h post-exercise. Expression of phosphorylated FAK(397) decreased in the EE group but not the HS group at 2 h post-exercise. CONCLUSIONS Long-duration EE may cause alterations in the FA in rat soleus muscle through the α7 integrin subunit and FAK.
Collapse
Affiliation(s)
- Zachary A Graham
- Applied Physiology Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, 101DJ Robinson Center, 1301 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | | | | | | | | | | |
Collapse
|
17
|
Cordonnier T, Bishop JL, Shiota M, Nip KM, Thaper D, Vahid S, Heroux D, Gleave M, Zoubeidi A. Hsp27 regulates EGF/β-catenin mediated epithelial to mesenchymal transition in prostate cancer. Int J Cancer 2014; 136:E496-507. [DOI: 10.1002/ijc.29122] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/28/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas Cordonnier
- Department of Urologic Sciences; The Vancouver Prostate Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Jennifer L. Bishop
- Department of Urologic Sciences; The Vancouver Prostate Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Masaki Shiota
- Department of Urologic Sciences; The Vancouver Prostate Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Ka Mun Nip
- Department of Urologic Sciences; The Vancouver Prostate Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Daksh Thaper
- Department of Urologic Sciences; The Vancouver Prostate Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Sepideh Vahid
- Department of Urologic Sciences; The Vancouver Prostate Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Devon Heroux
- Department of Urologic Sciences; The Vancouver Prostate Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Martin Gleave
- Department of Urologic Sciences; The Vancouver Prostate Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Amina Zoubeidi
- Department of Urologic Sciences; The Vancouver Prostate Centre; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
18
|
Transcriptional and proteomic analysis reveal recombinant galectins of Haemonchus contortus down-regulated functions of goat PBMC and modulation of several signaling cascades in vitro. J Proteomics 2014; 98:123-37. [DOI: 10.1016/j.jprot.2013.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 12/05/2013] [Accepted: 12/20/2013] [Indexed: 11/22/2022]
|
19
|
Shiota M, Bishop JL, Nip KM, Zardan A, Takeuchi A, Cordonnier T, Beraldi E, Bazov J, Fazli L, Chi K, Gleave M, Zoubeidi A. Hsp27 Regulates Epithelial Mesenchymal Transition, Metastasis, and Circulating Tumor Cells in Prostate Cancer. Cancer Res 2013; 73:3109-19. [DOI: 10.1158/0008-5472.can-12-3979] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Zoubeidi A, Gleave M. Small heat shock proteins in cancer therapy and prognosis. Int J Biochem Cell Biol 2012; 44:1646-56. [DOI: 10.1016/j.biocel.2012.04.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/27/2012] [Accepted: 04/11/2012] [Indexed: 01/05/2023]
|
21
|
García-García V, Bascones-Martínez A, García-Kass AI, Martinelli-Kläy CP, Küffer R, Álvarez-Fernández E, Lombardi T. Analysis of the expression of heat-shock protein 27 in patients with oral lichen planus. Oral Dis 2012; 19:65-72. [DOI: 10.1111/j.1601-0825.2012.01951.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Gibert B, Eckel B, Gonin V, Goldschneider D, Fombonne J, Deux B, Mehlen P, Arrigo AP, Clézardin P, Diaz-Latoud C. Targeting heat shock protein 27 (HspB1) interferes with bone metastasis and tumour formation in vivo. Br J Cancer 2012; 107:63-70. [PMID: 22627320 PMCID: PMC3389402 DOI: 10.1038/bjc.2012.188] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: The small stress heat shock protein 27 (Hsp27) has recently turned as a promising target for cancer treatment. Hsp27 upregulation is associated with tumour growth and resistance to chemo- and radio-therapeutic treatments, and several ongoing drugs inhibiting Hsp27 expression are under clinical trial. Hsp27 is now well described to counteract apoptosis and its elevated expression is associated with increased aggressiveness of several primary tumours. However, its role in the later stage of tumour progression and, more specifically, in the later and most deadly stage of tumour metastasis is still unclear. Methods/results: In the present study, we showed by qRT–PCR that Hsp27 gene is overexpressed in a large fraction of the metastatic breast cancer area in 53 patients. We further analysed the role of this protein in mice during bone metastasis invasion and establishment by using Hsp27 genetically depleted MDA-MB231/B02 human breast cancer cell line as a model. We demonstrate that Hsp27 silencing led to reduced cell migration and invasion in vitro and that in vivo it correlated with a decreased ability of breast cancer cells to metastasise and grow in the skeleton. Conclusion: Altogether, these data characterised Hsp27 as a potent therapeutic target in breast cancer bone metastasis and skeletal tumour growth.
Collapse
Affiliation(s)
- B Gibert
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR5534, Université Lyon 1, Université de Lyon, 43 Bd 11 Novembre 1918, 69622 Villeurbanne Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Carter CA. Multiplexed High Content Screening Reveals That Cigarette Smoke Condensate-Altered Cell Signaling Pathways Are Accentuated Through FAK Inhibition in Human Bronchial Cells. Int J Toxicol 2012; 31:257-66. [DOI: 10.1177/1091581812440890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms by which cigarette smoke condensate (CSC) disrupts F-actin and decreases cell motility in human bronchial (BEAS-2B) cells were assessed. The hypothesis that CSC activated focal adhesion kinase (FAK), mitogen-activated protein kinases (MAPKs), and paxillin in BEAS-2B cells was tested. When BEAS-2B cells were treated with 20 to 100 μg/mL CSC for 1 hour, FAK increased. The CSC caused F-actin disruption, while FAK inhibition alone caused actin aggregates to collapse to the cell periphery, but FAK inhibition combined with CSC caused actin aggregates to distribute throughout the cells. The CSC treatment of BEAS-2B cells showed a dose-dependent increase in the activation of the MAPKs, c-Jun, JNK, ERK, p38, and heat shock protein 27 (Hsp27) and paxillin. Focal adhesion kinase phosphorylation inhibition combined with CSC treatment increased p38 and ERK at 1 hour and 24 hours along with decreased cell number and motility compared with CSC treatment alone. CSC exerts changes in BEAS-2B cells by altering morphology and activating MAPK pathways.
Collapse
Affiliation(s)
- Charleata A. Carter
- Life Sciences, AW Spears Research Center
- Lorillard Tobacco Company, Greensboro, NC, USA
| |
Collapse
|
24
|
The role of PKC isoforms in the inhibition of NF-κB activation by vitamin K2 in human hepatocellular carcinoma cells. J Nutr Biochem 2012; 23:1668-75. [PMID: 22475810 DOI: 10.1016/j.jnutbio.2011.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/03/2011] [Accepted: 11/30/2011] [Indexed: 12/31/2022]
Abstract
Vitamin K (VK) has diverse protective effects against osteoporosis, atherosclerosis and carcinogenesis. We recently reported that menatetrenone, a VK2 analogue, suppressed nuclear factor (NF)-κB activation in human hepatoma cells. Although NF-κB is regulated by isoforms of protein kinase C (PKC), the involvement of PKCs in VK2-mediated NF-κB inhibition remains unknown. Therefore, the effects of VK2 on the activation and the kinase activity of each PKC isoform were investigated. The human hepatoma Huh7 cells were treated with PKC isoform-specific inhibitors and/or siRNAs against each PKC isoform with or without 12-O-tetradecanoylphorbol-13-acetate (TPA). VK2 inhibited the TPA-induced NF-κB activation in Huh7 cells. NF-κB activity was inhibited by the pan-PKC inhibitor Ro-31-8425, but not by the PKCα-specific inhibitor Gö6976. The knockdown of individual PKC isoforms including PKCα, δ and ɛ showed only marginal effects on the NF-κB activity. However, the knockdown of both PKCδ and PKCɛ, together with treatment with a PKCα-specific inhibitor, depressed the NF-κB activity. VK2 suppressed the PKCα kinase activity and the phosphorylation of PKCɛ after TPA treatment, but neither the activation nor the enzyme activity of PKCδ was affected. The knockdown of PKCɛ abolished the TPA-induced phosphorylation of PKD1, and the effects of PKD1 knockdown on NF-κB activation were similar to those of PKCɛ knockdown. Collectively, all of the PKCs, including α, δ and ɛ, and PKD1 are involved in the TPA-mediated activation of NF-κB. VK2 inhibited the NF-κB activation through the inhibition of PKCα and ɛ kinase activities, as well as subsequent inhibition of PKD1 activation.
Collapse
|
25
|
Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 2012; 99:191-225. [PMID: 22465036 PMCID: PMC3514635 DOI: 10.1016/j.pneurobio.2012.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 12/23/2011] [Accepted: 03/13/2012] [Indexed: 12/23/2022]
Abstract
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot-Marie-Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy.
| | | | | |
Collapse
|
26
|
MMP-2 expression by fibroblasts is suppressed by the myofibroblast phenotype. Exp Cell Res 2012; 318:1542-53. [PMID: 22449415 DOI: 10.1016/j.yexcr.2012.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/06/2012] [Accepted: 03/10/2012] [Indexed: 01/29/2023]
Abstract
During wound healing, fibroblasts transition from quiescence to a migratory state, then to a contractile myofibroblast state associated with wound closure. We found that the myofibroblast phenotype, characterized by the expression of high levels of contractile proteins, suppresses the expression of the pro-migratory gene, MMP-2. Fibroblasts cultured in a 3-D collagen lattice and allowed to develop tension showed increased contractile protein expression and decreased MMP-2 levels in comparison to a stress-released lattice. In 2-D cultures, factors that promote fibroblast contractility, including serum or TGF-β, down-regulated MMP-2. Pharmacologically inducing F-actin disassembly or reduced contractility increased MMP-2 expression, while conditions that promote F-actin assembly suppressed MMP-2 expression. In all cases, changes in MMP-2 levels were inversely related to changes in the contractile marker, smooth muscle α-actin. To determine if the mechanisms involved in contractile protein gene expression play a direct role in MMP-2 regulation, we used RNAi-mediated knock-down of the myocardin-like factors, MRTF-A and MRTF-B, which induced the down-regulation of contractile protein genes by fibroblasts under both serum-containing and serum-free conditions. In the presence of serum or TGF-β, MRTF-A/B knock-down resulted in the up-regulation of MMP-2; serum-free conditions prevented this increased expression. Together, these results indicate that, while MMP-2 expression is suppressed by F-actin formation, its up-regulation is not simply a consequence of contractile protein down-regulation.
Collapse
|
27
|
Jones TJ, Adapala RK, Geldenhuys WJ, Bursley C, AbouAlaiwi WA, Nauli SM, Thodeti CK. Primary cilia regulates the directional migration and barrier integrity of endothelial cells through the modulation of hsp27 dependent actin cytoskeletal organization. J Cell Physiol 2011; 227:70-6. [PMID: 21837772 DOI: 10.1002/jcp.22704] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cilia are mechanosensing organelles that communicate extracellular signals into intracellular responses. Altered functions of primary cilia play a key role in the development of various diseases including polycystic kidney disease. Here, we show that endothelial cells from the oak ridge polycystic kidney (Tg737(orpk/orpk) ) mouse, with impaired cilia assembly, exhibit a reduction in the actin stress fibers and focal adhesions compared to wild-type (WT). In contrast, endothelial cells from polycystin-1 deficient mice (pkd1(null/null) ), with impaired cilia function, display robust stress fibers, and focal adhesion assembly. We found that the Tg737(orpk/orpk) cells exhibit impaired directional migration and endothelial cell monolayer permeability compared to the WT and pkd1(null/null) cells. Finally, we found that the expression of heat shock protein 27 (hsp27) and the phosphorylation of focal adhesion kinase (FAK) are downregulated in the Tg737(orpk/orpk) cells and overexpression of hsp27 restored both FAK phosphorylation and cell migration. Taken together, these results demonstrate that disruption of the primary cilia structure or function compromises the endothelium through the suppression of hsp27 dependent actin organization and focal adhesion formation, which may contribute to the vascular dysfunction in ciliopathies.
Collapse
Affiliation(s)
- Thomas J Jones
- Department of Pharmaceutical Sciences, Northeastern Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio 44272, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Bang JI, Bae DW, Lee HS, Deb GK, Kim MO, Sohn SH, Han CH, Kong IK. Proteomic analysis of placentas from cloned cat embryos identifies a set of differentially expressed proteins related to oxidative damage, senescence and apoptosis. Proteomics 2011; 11:4454-67. [DOI: 10.1002/pmic.201000772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 08/25/2011] [Accepted: 08/28/2011] [Indexed: 12/16/2022]
|
29
|
Berardi S, Caivano A, Ria R, Nico B, Savino R, Terracciano R, De Tullio G, Ferrucci A, De Luisi A, Moschetta M, Mangialardi G, Catacchio I, Basile A, Guarini A, Zito A, Ditonno P, Musto P, Dammacco F, Ribatti D, Vacca A. Four proteins governing overangiogenic endothelial cell phenotype in patients with multiple myeloma are plausible therapeutic targets. Oncogene 2011; 31:2258-69. [PMID: 21963844 DOI: 10.1038/onc.2011.412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone marrow (BM) angiogenesis has an important role in the initiation and progression of multiple myeloma (MM). We looked at novel mechanisms of vessel formation in patients with MM through a comparative proteomic analysis between BM endothelial cells (ECs) of patients with active MM (MMECs) and ECs of patients with monoclonal gammopathy of undetermined significance (MGECs) and of subjects with benign anemia (normal ECs). Four proteins were found overexpressed in MMECs: filamin A, vimentin, α-crystallin B and 14-3-3ζ/δ protein, not yet linked to overangiogenic phenotype. These proteins gave a typical distribution in the BM of MM patients and in MMECs versus MGECs, plausibly according to a different functional state. Their expression was enhanced by vascular endothelial growth factor, fibroblast growth factor 2, hepatocyte growth factor and MM plasma cell conditioned medium in step with enhancement of MMEC angiogenesis. Their silencing RNA knockdown affected critical MMEC angiogenesis-related functions, such as spreading, migration and tubular morphogenesis. A gradual stabilization of 14-3-3ζ/δ protein was observed, with transition from normal ECs to MGECs and MMECs that may be a critical step for the angiogenic switch in MMECs and maintenance of the cell overangiogenic phenotype. These proteins were substantially impacted by anti-MM drugs, such as bortezomib, lenalidomide and panobinostat. Results suggest that these four proteins could be new targets for the antiangiogenic management of MM patients.
Collapse
Affiliation(s)
- S Berardi
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients. J Cancer Res Clin Oncol 2011; 137:1349-61. [PMID: 21833720 DOI: 10.1007/s00432-011-1005-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/04/2011] [Indexed: 01/14/2023]
Abstract
BACKGROUND Several reports describe the importance of the chaperone HSP27 (HSPB1) in cancer progression, and the demand for drugs that modulate HSPB1-activity is increasing rapidly. We reported earlier that RP101 (Bromovinyldeoxyuridine, BVDU, Brivudine) improves the efficacy of chemotherapy in pancreatic cancer. METHODS Chemistry: Binding of RP101 and HSPB1 was discovered by affinity chromatography. Molecular and cell biology: HSPB1 in vitro transcription/translation (TNT), Pull down using RP101-coupled magnetic beads, Immuno Co-precipitations, Structural modeling of HSP27 (HSPB1), Introduction of point mutations into linear expression templates by PCR, Heat shock, Tumor Invasion. Animal experiments: Treatment of AH13r Sarcomas in SD-rats. Clinical Studies with late-stage pancreatic cancer patients: Pilot study, Dose finding study, Phase II study (NCT00550004). RESULTS Here, we report that RP101 binds in vitro to the heat shock protein HSPB1 and inhibits interaction with its binding partners. As a result, more activated CASP9 was detected in RP101-treated cancer cells. We modeled HSPB1-structure and identified the RP101 binding site. When we tested RP101 as an anti-cancer drug in a rat model, we found that it improved chemotherapy. In clinical studies with late-stage pancreatic cancer patients, the dose of 500 mg/day was safe and efficient, but 760 mg/day turned out to be too high for lightweight patients. CONCLUSIONS The development of RP101 as a cancer drug represents a truly novel approach for prevention of chemoresistance and enhancement of chemosensitivity.
Collapse
|
31
|
Williams KL, Mearow KM. Phosphorylation status of heat shock protein 27 influences neurite growth in adult dorsal root ganglion sensory neurons in vitro. J Neurosci Res 2011; 89:1160-72. [DOI: 10.1002/jnr.22634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/19/2011] [Accepted: 01/31/2011] [Indexed: 12/15/2022]
|
32
|
Chang X, Yamashita K, Sidransky D, Kim MS. Promoter methylation of heat shock protein B2 in human esophageal squamous cell carcinoma. Int J Oncol 2011; 38:1129-35. [PMID: 21258768 DOI: 10.3892/ijo.2011.918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/03/2010] [Indexed: 11/06/2022] Open
Abstract
Hypermethylation of gene promoters and the corresponding loss of gene expression are recognized as a hallmark of human cancer, and DNA methylation has emerged as a promising biomarker for the detection of human esophageal squamous cell carcinoma (ESCC). To identify novel genes methylated in ESCC, we screened 35 candidate genes identified from an oligonucleotide microarray. Among them, the heat shock protein B2 (HSPB2) was methylated in 95.7% (67/70) of primary ESCCs, whereas no methylation was found in normal esophageal tissues from ESCC patients (0%, 0/20). RT-PCR analysis revealed that HSPB2 expression was silenced or weakly expressed in most ESCC cell lines, and re-activated by the demethylating agent 5-aza-2'-deoxy-cytidine. These results indicate that promoter methylation of HSPB2 is one of the causal factors for loss or down-regulation of HSPB2 expression. mRNA expression of HSPB2 in ESCC tissues was significantly down-regulated compared to normal tissues. Our data suggest that promoter methylation of HSPB2 deserves further attention as a novel molecular biomarker in human ESCC.
Collapse
Affiliation(s)
- Xiaofei Chang
- Department of Otolaryngology, Head and Neck Cancer Research Division, The Johns Hopkins University, School of Medicine, 1550 Orleans Street, CRB II-5M, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
33
|
Kwon SM, Kim SA, Fujii S, Maeda H, Ahn SG, Yoon JH. Transforming Growth Factor .BETA.1 Promotes Migration of Human Periodontal Ligament Cells through Heat Shock Protein 27 Phosphorylation. Biol Pharm Bull 2011; 34:486-9. [DOI: 10.1248/bpb.34.486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Seong-Min Kwon
- Department of Pathology, School of Dentistry, Chosun University
| | - Soo-A Kim
- Department of Biochemistry, College of Oriental Medicine, Dongguk University
| | - Shinsuke Fujii
- Department of Endodontology, Faculty of Dental Science, Kyushu University Hospital
| | - Hidefumi Maeda
- Department of Endodontology, Faculty of Dental Science, Kyushu University Hospital
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University
| | - Jung-Hoon Yoon
- Department of Pathology, School of Dentistry, Chosun University
| |
Collapse
|
34
|
Kwon SM, Kim SA, Yoon JH, Ahn SG. Transforming growth factor beta1-induced heat shock protein 27 activation promotes migration of mouse dental papilla-derived MDPC-23 cells. J Endod 2010; 36:1332-5. [PMID: 20647091 DOI: 10.1016/j.joen.2010.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/21/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Transforming growth factor beta1 (TGFbeta1) regulates cellular functions including cell growth, differentiation, angiogenesis, migration, and metastasis. The TGFbeta1 signal transduction pathways are mostly undefined in mouse dental papilla-derived MDPC-23 cells. In this study, we investigated TGFbeta1-induced migration focusing on heat shock protein 27 (Hsp27) activation. METHODS Cellular responses mediated by TGFbeta1 in MDPC-23 cells were measured by Western blot and MTT assays. Cell migration was determined by counting migrated cells using the chemotaxis cell migration assay. RESULTS TGFbeta1 induced cell migration and increased the phosphorylation of Hsp27 and p38 MAPK in MDPC-23 cells. However, TGFbeta1 did not affect Akt/NF-kappaB signaling to regulate the migration of MDPC-23 cells. Inhibiting p38 MAPK with SB203580 blocked TGFbeta1-induced Hsp27 activation and cell migration. CONCLUSION Hsp27 phosphorylation followed by p38 MAPK activation was required for TGFbeta1-induced migration, and Hsp27 itself contributed to MDPC-23 cell migration.
Collapse
Affiliation(s)
- Seong-Min Kwon
- Department of Pathology, School of Dentistry Chosun University, Gwangju 501-759, Korea
| | | | | | | |
Collapse
|
35
|
Ma H, Togawa A, Soda K, Zhang J, Lee S, Ma M, Yu Z, Ardito T, Czyzyk J, Diggs L, Joly D, Hatakeyama S, Kawahara E, Holzman L, Guan JL, Ishibe S. Inhibition of podocyte FAK protects against proteinuria and foot process effacement. J Am Soc Nephrol 2010; 21:1145-56. [PMID: 20522532 DOI: 10.1681/asn.2009090991] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that plays a critical role in cell motility. Movement and retraction of podocyte foot processes, which accompany podocyte injury, suggest focal adhesion disassembly. To understand better the mechanisms by which podocyte foot process effacement leads to proteinuria and kidney failure, we studied the function of FAK in podocytes. In murine models, glomerular injury led to activation of podocyte FAK, followed by proteinuria and foot process effacement. Both podocyte-specific deletion of FAK and pharmacologic inactivation of FAK abrogated the proteinuria and foot process effacement induced by glomerular injury. In vitro, podocytes isolated from conditional FAK knockout mice demonstrated reduced spreading and migration; pharmacologic inactivation of FAK had similar effects on wild-type podocytes. In conclusion, FAK activation regulates podocyte foot process effacement, suggesting that pharmacologic inhibition of this signaling cascade may have therapeutic potential in the setting of glomerular injury.
Collapse
Affiliation(s)
- Hong Ma
- Departments of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim S, Abboud HE, Pahl MV, Tayek J, Snyder S, Tamkin J, Alcorn H, Ipp E, Nast CC, Elston RC, Iyengar SK, Adler SG. Examination of association with candidate genes for diabetic nephropathy in a Mexican American population. Clin J Am Soc Nephrol 2010; 5:1072-8. [PMID: 20299368 PMCID: PMC2879299 DOI: 10.2215/cjn.06550909] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 02/10/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVES Diabetic nephropathy (DN) is a multifactorial complication characterized by persistent proteinuria in susceptible individuals with type 1 and type 2 diabetes. Disease burden in people of Mexican-American descent is particularly high, but there are only a few studies that characterize genes for DN in this ethnic group. Two genes, carnosine dipeptidase 1 (CNDP1) and engulfment and cell motility 1 (ELMO1) previously showed association with DN in other ethnic groups. CNDP1 and ELMO1 were examined along with eight other genes that are less well characterized for DN in a new study of Mexican-Americans. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS The target sample was patients of Mexican-American ancestry collected from three centers: 455 patients with DN and 437 controls with long-term diabetes but no incident nephropathy. Forty-two, 227, and 401 single nucleotide polymorphisms (SNPs) in CNDP1, ELMO1, and the other eight genes, respectively, were examined. RESULTS No region in CNDP1 or ELMO1 showed significant P values. Of the other eight candidate genes, an association of DN with a SNP pair, rs2146098 and rs6659783, was found in hemicentin 1 (HMCN1) (unadjusted P = 6.1 x 10(-5)). Association with a rare haplotype in this region was subsequently identified. CONCLUSIONS The associations in CNDP1 or ELMO1 were not replicable; however, an association of DN with HMCN1 was found. Additional work at this and other loci will enable refinement of the genetic hypotheses regarding DN in the Mexican-American population to find therapies for this debilitating disease.
Collapse
Affiliation(s)
- Sulgi Kim
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio
| | | | - Madeleine V. Pahl
- Division of Nephrology and Hypertension, University of California–Irvine, Irvine, California
| | - John Tayek
- Los Angeles Biomedical Research Institute at Harbor–UCLA Medical Center, Torrance, California
| | - Susan Snyder
- Los Angeles Biomedical Research Institute at Harbor–UCLA Medical Center, Torrance, California
| | - James Tamkin
- Providence Medical Institute, Torrance, California; and
| | - Harry Alcorn
- DaVita Clinical Research, Minneapolis, Minnesota
| | - Eli Ipp
- Los Angeles Biomedical Research Institute at Harbor–UCLA Medical Center, Torrance, California
| | - Cynthia C. Nast
- Los Angeles Biomedical Research Institute at Harbor–UCLA Medical Center, Torrance, California
| | - Robert C. Elston
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio
| | - Sudha K. Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio
| | - Sharon G. Adler
- Los Angeles Biomedical Research Institute at Harbor–UCLA Medical Center, Torrance, California
| |
Collapse
|
37
|
Fujigaki Y, Sun Y, Fujikura T, Sakao Y, Togawa A, Suzuki H, Yasuda H, Hishida A. Immunohistochemical study of heat shock protein 27 with respect to survival and regeneration of proximal tubular cells after uranyl acetate-induced acute tubular injury in rats. Ren Fail 2010; 32:119-25. [PMID: 20113277 DOI: 10.3109/08860220903367569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study examined the possible role of heat shock protein 27 (HSP27) expression in the survival and regeneration of proximal tubule (PT) cells after acute tubular injury. Rats were injected with a low (0.2 mg/kg) or high (4 mg/kg) dose of uranyl acetate (UA) to induce renal injury. Renal tissues were immunostained for HSP27, focal adhesion kinase (FAK), and bromodeoxyuridine (BrdU), and stained by the TUNEL method. Low-dose UA induced focal PT depletion in the proximal three-quarters of the S3 segment. Here, cells became sporadically positive for cytoplasmic HSP27 in association with FAK+, and almost all BrdU+ early regenerating cells were positive for HSP27 from days 2 to 3. High-dose UA induced severe PT depletion in the proximal three-quarters of S3, and a small number of PT cells became positive for HSP27 as early as day 2. BrdU+, early regenerating cells were restricted to the distal quarter of S3 from days 2 to 3, with or without HSP27 staining and with FAK. In both groups, HSP+ PT cells and BrdU+ cells peaked in number at day 5. The PT cells showed reduced HSP27 accumulation by day 7 as they differentiated, but remained immunopositive for FAK. TUNEL+ apoptotic cells were immunonegative for both HSP27 and FAK. Cytoplasmic HSP27 accumulation in PT cells seems to contribute to PT survival and transition from PT cell proliferation to differentiation. When PT cells are severely impaired, distinct cells in the distal areas of S3 could undergo cell cycle progression without HSP27 accumulation.
Collapse
Affiliation(s)
- Yoshihide Fujigaki
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
LaValle CR, George KM, Sharlow ER, Lazo JS, Wipf P, Wang QJ. Protein kinase D as a potential new target for cancer therapy. Biochim Biophys Acta Rev Cancer 2010; 1806:183-92. [PMID: 20580776 DOI: 10.1016/j.bbcan.2010.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/13/2010] [Accepted: 05/13/2010] [Indexed: 12/20/2022]
Abstract
Protein kinase D is a novel family of serine/threonine kinases and diacylglycerol receptors that belongs to the calcium/calmodulin-dependent kinase superfamily. Evidence has established that specific PKD isoforms are dysregulated in several cancer types, and PKD involvement has been documented in a variety of cellular processes important to cancer development, including cell growth, apoptosis, motility, and angiogenesis. In light of this, there has been a recent surge in the development of novel chemical inhibitors of PKD. This review focuses on the potential of PKD as a chemotherapeutic target in cancer treatment and highlights important recent advances in the development of PKD inhibitors.
Collapse
Affiliation(s)
- Courtney R LaValle
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
39
|
Jia Y, Wu SL, Isenberg JS, Dai S, Sipes JM, Field L, Zeng B, Bandle RW, Ridnour LA, Wink DA, Ramchandran R, Karger BL, Roberts DD. Thiolutin inhibits endothelial cell adhesion by perturbing Hsp27 interactions with components of the actin and intermediate filament cytoskeleton. Cell Stress Chaperones 2010; 15:165-81. [PMID: 19579057 PMCID: PMC2866983 DOI: 10.1007/s12192-009-0130-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/12/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022] Open
Abstract
Thiolutin is a dithiole synthesized by Streptomyces sp. that inhibits endothelial cell adhesion and tumor growth. We show here that thiolutin potently inhibits developmental angiogenesis in zebrafish and vascular outgrowth from tissue explants in 3D cultures. Thiolutin is a potent and selective inhibitor of endothelial cell adhesion accompanied by rapid induction of HSPB1 (Hsp27) phosphorylation. The inhibitory effects of thiolutin on endothelial cell adhesion are transient, potentially due to a compensatory increase in Hsp27 protein levels. Accordingly, heat shock induction of Hsp27 limits the anti-adhesive activity of thiolutin. Thiolutin treatment results in loss of actin stress fibers, increased cortical actin as cells retract, and decreased cellular F-actin. Mass spectrometric analysis of Hsp27 binding partners following immunoaffinity purification identified several regulatory components of the actin cytoskeleton that associate with Hsp27 in a thiolutin-sensitive manner including several components of the Arp2/3 complex. Among these, ArpC1a is a direct binding partner of Hsp27. Thiolutin treatment induces peripheral localization of phosphorylated Hsp27 and Arp2/3. Hsp27 also associates with the intermediate filament components vimentin and nestin. Thiolutin treatment specifically ablates Hsp27 interaction with nestin and collapses nestin filaments. These results provide new mechanistic insights into regulation of cell adhesion and cytoskeletal dynamics by Hsp27.
Collapse
Affiliation(s)
- Yifeng Jia
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Shiaw-Lin Wu
- Barnett Institute, Northeastern University, Boston, MA 02115 USA
| | - Jeff S. Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Hemostasis and Vascular Biology Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Shujia Dai
- Barnett Institute, Northeastern University, Boston, MA 02115 USA
| | - John M. Sipes
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Lyndsay Field
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Bixi Zeng
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Russell W. Bandle
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Lisa A. Ridnour
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - David A. Wink
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ramani Ramchandran
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Barry L. Karger
- Barnett Institute, Northeastern University, Boston, MA 02115 USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- NIH, Building 10 Room 2A33, 10 Center Dr MSC1500, Bethesda, MD 20892-1500 USA
| |
Collapse
|
40
|
Price CL, Knight SC. Methylglyoxal: possible link between hyperglycaemia and immune suppression? Trends Endocrinol Metab 2009; 20:312-7. [PMID: 19709901 DOI: 10.1016/j.tem.2009.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/31/2009] [Accepted: 03/31/2009] [Indexed: 11/25/2022]
Abstract
No matter the cause of diabetes, the result is always hyperglycaemia. This excess glucose metabolism drives several damage pathways and raises concentrations of the reactive dicarbonyl, methylglyoxal (MG). MG can modify the structure and function of target molecules by forming advanced glycation end-products (AGEs) that act through their receptor (RAGE) to perpetuate vascular and neuronal injury responsible for long-term complications of diabetes. Diabetes patients also suffer lower resistance to many common infections, although the cause(s) for this lower resistance remains elusive. Here, we review recent evidence concerning immune suppression in diabetes and discuss the effects of MG on components of the immune system. We suggest that MG could be a missing link between hyperglycaemia and immune suppression in diabetes.
Collapse
Affiliation(s)
- Claire L Price
- Antigen Presentation Research Group, Imperial College London Faculty of Medicine, Level 7W, NWLH campus, Watford Road, Harrow, Middlesex, HA1 3UJ, UK
| | | |
Collapse
|
41
|
Garcia MC, Ray DM, Lackford B, Rubino M, Olden K, Roberts JD. Arachidonic acid stimulates cell adhesion through a novel p38 MAPK-RhoA signaling pathway that involves heat shock protein 27. J Biol Chem 2009; 284:20936-45. [PMID: 19506078 DOI: 10.1074/jbc.m109.020271] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are critical components of cellular signal transduction pathways. Both hyperactivity and overexpression of these proteins have been observed in human cancers and have been implicated as important factors in metastasis. We previously showed that dietary n-6 fatty acids increase cancer cell adhesion to extracellular matrix proteins, such as type IV collagen. Here we report that in MDA-MB-435 human melanoma cells, arachidonic acid activates RhoA, and inhibition of RhoA signaling with either C3 exoenzyme or dominant negative Rho blocked arachidonic acid-induced cell adhesion. Inhibition of the Rho kinase (ROCK) with either small molecule inhibitors or ROCK II-specific small interfering RNA (siRNA) blocked the fatty acid-induced adhesion. However, unlike other systems, inhibition of ROCK did not block the activation of p38 mitogen-activated protein kinase (MAPK); instead, Rho activation depended on p38 MAPK activity and the presence of heat shock protein 27 (HSP27), which is phosphorylated downstream of p38 after arachidonic acid treatment. HSP27 associated with p115RhoGEF in fatty acid-treated cells, and this association was blocked when p38 was inhibited. Furthermore, siRNA knockdown of HSP27 blocked the fatty acid-stimulated Rho activity. Expression of dominant negative p115-RhoGEF or p115RhoGEF-specific siRNA inhibited both RhoA activation and adhesion on type IV collagen, whereas a constitutively active p115RhoGEF restored the arachidonic acid stimulation in cells in which the p38 MAPK had been inhibited. These data suggest that n-6 dietary fatty acids stimulate a set of interactions that regulates cell adhesion through RhoA and ROCK II via a p38 MAPK-dependent association of HSP27 and p115RhoGEF.
Collapse
Affiliation(s)
- Melissa C Garcia
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
42
|
Differential in-gel electrophoresis (DIGE) analysis of human bone marrow osteoprogenitor cell contact guidance. Acta Biomater 2009; 5:1137-46. [PMID: 19103513 DOI: 10.1016/j.actbio.2008.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 10/30/2008] [Accepted: 11/06/2008] [Indexed: 12/29/2022]
Abstract
We have used a recent comparative proteomics technique, differential in-gel electrophoresis (DIGE), to study osteoprogenitor cell response to contact guidance in grooves. In order to increase protein output from small sample sizes, we used bioreactor culture before protein extraction and gel electrophoresis. Mass spectroscopy was used for protein identification. A number of distinct proteins were observed to exhibit significant changes in expression. These changes in protein expression suggest that the cells respond to tailored grooved topographies, with alterations in their proteome concurrent with changes in osteoprogenitor phenotype.
Collapse
|
43
|
Garmy-Susini B, Varner JA. Roles of integrins in tumor angiogenesis and lymphangiogenesis. Lymphat Res Biol 2009; 6:155-63. [PMID: 19093788 DOI: 10.1089/lrb.2008.1011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The lifelong dedication of Dr. Judah Folkman to understand how tumors co-opt vasculature to promote tumor growth and spread resulted in the development of an astounding body of knowledge and development of new clinical therapeutics for cancer. Angiogenesis is a critical point in the development and dissemination of most human tumors. Tumor-associated lymphangiogenesis also plays an important role in mediating tumor spread to lymph nodes. The molecular regulations of these processes are complex, and many key molecular families have been implicated in the regulation of angiogenesis and lymphangiogenesis. By regulating cell-cell and cell-matrix contacts, integrins participate in blood and lymphatic vessel growth by promoting endothelial cell migration and survival. Understanding the underlying mechanisms by which integrins promote tumor-associated blood and lymphatic vessel development might provide important modalities for the therapeutic intervention of metastatic spread. This review focuses on the role of integrins in angiogenesis and lymphangiogenesis. Integrins represent potential targets for pharmacological agents and open new avenues for the control of metastatic spread in the treatment of malignancies. This article is dedicated to the memory of Dr. Judah Folkman, an amazing and caring teacher, scientist, physician, and friend.
Collapse
|
44
|
Kantawong F, Burchmore R, Gadegaard N, Oreffo ROC, Dalby MJ. Proteomic analysis of human osteoprogenitor response to disordered nanotopography. J R Soc Interface 2008; 6:1075-86. [PMID: 19068473 DOI: 10.1098/rsif.2008.0447] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous studies have shown that microgroove-initiated contact guidance can induce bone formation in osteoprogenitor cells (OPGs) and produce changes in the cell proteome. For proteomic analysis, differential in-gel electrophoresis (DIGE) can be used as a powerful diagnostic method to provide comparable data between the proteomic profiles of cells cultured in different conditions. This study focuses on the response of OPGs to a novel nanoscale pit topography with osteoinductive properties compared with planar controls. Disordered near-square nanopits with 120 nm diameter and 100 nm depth with an average 300 nm centre-to-centre spacing (300 nm spaced pits in square pattern, but with +/-50 nm disorder) were fabricated on 1x1 cm2 polycaprolactone sheets. Human OPGs were seeded onto the test materials. DIGE analysis revealed changes in the expression of a number of distinct proteins, including upregulation of actin isoforms, beta-galectin1, vimentin and procollagen-proline, 2-oxoglutarate 4-dioxygenase and prolyl 4-hydroxylase. Downregulation of enolase, caldesmon, zyxin, GRASP55, Hsp70 (BiP/GRP78), RNH1, cathepsin D and Hsp27 was also observed. The differences in cell morphology and mineralization are also reported using histochemical techniques.
Collapse
Affiliation(s)
- Fahsai Kantawong
- Division of Infection and Immunity, Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | |
Collapse
|