1
|
Maravelez Acosta VA, Crisóstomo Vázquez MDP, Eligio García L, Franco Sandoval LO, Castro Pérez D, Patiño López G, Medina Contreras O, Jiménez Cardoso E. Tumor-Suppressive Cross-Linking of Anti- T. cruzi Antibodies in Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:8307. [PMID: 39125875 PMCID: PMC11313589 DOI: 10.3390/ijms25158307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Parasites have been associated with possible anticancer activity, including Trypanosoma cruzi, which has been linked to inhibiting the growth of solid tumors. To better understand this antitumor effect, we investigated the association of anti-T. cruzi antibodies with B cells of the acute lymphoblastic leukemia (ALL) SUPB15 cell line. The antibodies were generated in rabbits. IgGs were purified by affinity chromatography. Two procedures (flow cytometry (CF) and Western blot(WB)) were employed to recognize anti-T. cruzi antibodies on SUPB15 cells. We also used CF to determine whether the anti-T. cruzi antibodies could suppress SUPB15 cells. The anti-T. cruzi antibodies recognized 35.5% of the surface antigens of SUPB15. The complement-dependent cytotoxicity (CDC) results demonstrate the cross-suppression of anti-T. cruzi antibodies on up to 8.4% of SUPB15 cells. For the WB analysis, a band at 100 kDa with high intensity was sequenced using mass spectrometry, identifying the protein as nucleolin. This protein may play a role in the antitumor effect on T. cruzi. The anti-T. cruzi antibodies represent promising polyclonal antibodies that have the effect of tumor-suppressive cross-linking on cancer cells, which should be further investigated.
Collapse
Affiliation(s)
- Víctor Alberto Maravelez Acosta
- Laboratorio de Investigación en Parasitología, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico; (V.A.M.A.); (M.d.P.C.V.); (L.E.G.); (L.O.F.S.); (D.C.P.)
| | - María del Pilar Crisóstomo Vázquez
- Laboratorio de Investigación en Parasitología, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico; (V.A.M.A.); (M.d.P.C.V.); (L.E.G.); (L.O.F.S.); (D.C.P.)
| | - Leticia Eligio García
- Laboratorio de Investigación en Parasitología, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico; (V.A.M.A.); (M.d.P.C.V.); (L.E.G.); (L.O.F.S.); (D.C.P.)
| | - Luz Ofelia Franco Sandoval
- Laboratorio de Investigación en Parasitología, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico; (V.A.M.A.); (M.d.P.C.V.); (L.E.G.); (L.O.F.S.); (D.C.P.)
| | - Denia Castro Pérez
- Laboratorio de Investigación en Parasitología, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico; (V.A.M.A.); (M.d.P.C.V.); (L.E.G.); (L.O.F.S.); (D.C.P.)
| | - Genaro Patiño López
- Unidad de Investigación en Inmunología y Proteomica, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico;
| | - Oscar Medina Contreras
- Unidad de Investigación Epidemiologica en Endocrinologia y Nutricion, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico;
| | - Enedina Jiménez Cardoso
- Laboratorio de Investigación en Parasitología, Hospital Infantil de México Federico Gómez (HIMFG), Dr. Márquez 162. Col Doctores, Cuauhtémoc, México City 06720, Mexico; (V.A.M.A.); (M.d.P.C.V.); (L.E.G.); (L.O.F.S.); (D.C.P.)
| |
Collapse
|
2
|
Soprano LL, Ferrero MR, Jacobs T, Couto AS, Duschak VG. Hallmarks of the relationship between host and Trypanosoma cruzi sulfated glycoconjugates along the course of Chagas disease. Front Cell Infect Microbiol 2023; 13:1028496. [PMID: 37256110 PMCID: PMC10225527 DOI: 10.3389/fcimb.2023.1028496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
American Trypanosomiasis or Chagas disease (ChD), a major problem that is still endemic in large areas of Latin America, is caused by Trypanosoma cruzi. This agent holds a major antigen, cruzipain (Cz). Its C-terminal domain (C-T) is retained in the glycoprotein mature form and bears several post-translational modifications. Glycoproteins containing sulfated N-linked oligosaccharides have been mostly implicated in numerous specific procedures of molecular recognition. The presence of sulfated oligosaccharides was demonstrated in Cz, also in a minor abundant antigen with serine-carboxypeptidase (SCP) activity, as well as in parasite sulfatides. Sulfate-bearing glycoproteins in Trypanosomatids are targets of specific immune responses. T. cruzi chronically infected subjects mount specific humoral immune responses to sulfated Cz. Unexpectedly, in the absence of infection, mice immunized with C-T, but not with sulfate-depleted C-T, showed ultrastructural heart anomalous pathological effects. Moreover, the synthetic anionic sugar conjugate GlcNAc6SO3-BSA showed to mimic the N-glycan-linked sulfated epitope (sulfotope) humoral responses that natural Cz elicits. Furthermore, it has been reported that sulfotopes participate via the binding of sialic acid Ig-like-specific lectins (Siglecs) to sulfosialylated glycoproteins in the immunomodulation by host-parasite interaction as well as in the parasite infection process. Strikingly, recent evidence involved Cz-sulfotope-specific antibodies in the immunopathogenesis and infection processes during the experimental ChD. Remarkably, sera from chronically T. cruzi-infected individuals with mild disease displayed higher levels of IgG2 antibodies specific for sulfated glycoproteins and sulfatides than those with more severe forms of the disease, evidencing that T. cruzi sulfotopes are antigenic independently of the sulfated glycoconjugate type. Ongoing assays indicate that antibodies specific for sulfotopes might be considered biomarkers of human cardiac ChD progression, playing a role as predictors of stability from the early mild stages of chronic ChD.
Collapse
Affiliation(s)
- Luciana L. Soprano
- Area of Protein Biochemistry and Parasite Glycobiology, Research Department National Institute of Parasitology (INP)”Dr. Mario Fatala Chaben”, National Administration of Health Institutes (ANLIS)-Malbrán, National Health Department, National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Maximiliano R. Ferrero
- Max-Planck Heart and Lung Laboratory, Research Institute in Biomedicine in Buenos Aires (IBioBA), Argentine-Department of Internal Medicine II, University Medical Center Giessen and Marburg, Giessen, Germany
| | - Thomas Jacobs
- Immunology Department, Bernhard Notch Institute of Tropical Medicine, Hamburg, Germany
| | - Alicia S. Couto
- Faculty in Exact and Natural Sciences (FCEN), Chemical Organic Department-National Council of Scientific and Technical Research (CONICET), Center of CarboHydrates (CHIHIDECAR), University of Buenos Aires, Buenos Aires, Argentina
| | - Vilma G. Duschak
- Area of Protein Biochemistry and Parasite Glycobiology, Research Department National Institute of Parasitology (INP)”Dr. Mario Fatala Chaben”, National Administration of Health Institutes (ANLIS)-Malbrán, National Health Department, National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Prenzler S, Rudrawar S, Waespy M, Kelm S, Anoopkumar-Dukie S, Haselhorst T. The role of sialic acid-binding immunoglobulin-like-lectin-1 (siglec-1) in immunology and infectious disease. Int Rev Immunol 2023; 42:113-138. [PMID: 34494938 DOI: 10.1080/08830185.2021.1931171] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Siglec-1, also known as Sialoadhesin (Sn) and CD169 is highly conserved among vertebrates and with 17 immunoglobulin-like domains is Siglec-1 the largest member of the Siglec family. Expression of Siglec-1 is found primarily on dendritic cells (DCs), macrophages and interferon induced monocyte. The structure of Siglec-1 is unique among siglecs and its function as a receptor is also different compared to other receptors in this class as it contains the most extracellular domains out of all the siglecs. However, the ability of Siglec-1 to internalize antigens and to pass them on to lymphocytes by allowing dendritic cells and macrophages to act as antigen presenting cells, is the main reason that has granted Siglec-1's key role in multiple human disease states including atherosclerosis, coronary artery disease, autoimmune diseases, cell-cell signaling, immunology, and more importantly bacterial and viral infections. Enveloped viruses for example have been shown to manipulate Siglec-1 to increase their virulence by binding to sialic acids present on the virus glycoproteins allowing them to spread or evade immune response. Siglec-1 mediates dissemination of HIV-1 in activated tissues enhancing viral spread via infection of DC/T-cell synapses. Overall, the ability of Siglec-1 to bind a variety of target cells within the immune system such as erythrocytes, B-cells, CD8+ granulocytes and NK cells, highlights that Siglec-1 is a unique player in these essential processes.
Collapse
Affiliation(s)
- Shane Prenzler
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Santosh Rudrawar
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
4
|
Rodríguez-Bejarano OH, Avendaño C, Patarroyo MA. Mechanisms Associated with Trypanosoma cruzi Host Target Cell Adhesion, Recognition and Internalization. Life (Basel) 2021; 11:534. [PMID: 34207491 PMCID: PMC8227291 DOI: 10.3390/life11060534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is caused by the kinetoplastid parasite Trypanosoma cruzi, which is mainly transmitted by hematophagous insect bites. The parasite's lifecycle has an obligate intracellular phase (amastigotes), while metacyclic and bloodstream-trypomastigotes are its infective forms. Mammalian host cell recognition of the parasite involves the interaction of numerous parasite and host cell plasma membrane molecules and domains (known as lipid rafts), thereby ensuring internalization by activating endocytosis mechanisms triggered by various signaling cascades in both host cells and the parasite. This increases cytoplasmatic Ca2+ and cAMP levels; cytoskeleton remodeling and endosome and lysosome intracellular system association are triggered, leading to parasitophorous vacuole formation. Its membrane becomes modified by containing the parasite's infectious form within it. Once it has become internalized, the parasite seeks parasitophorous vacuole lysis for continuing its intracellular lifecycle, fragmenting such a vacuole's membrane. This review covers the cellular and molecular mechanisms involved in T. cruzi adhesion to, recognition of and internalization in host target cells.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9#51-11, Bogotá 110231, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| |
Collapse
|
5
|
Functions and therapeutic targets of Siglec-mediated infections, inflammations and cancers. J Formos Med Assoc 2021; 120:5-24. [DOI: 10.1016/j.jfma.2019.10.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
|
6
|
West EE, Kunz N, Kemper C. Complement and human T cell metabolism: Location, location, location. Immunol Rev 2020; 295:68-81. [PMID: 32166778 PMCID: PMC7261501 DOI: 10.1111/imr.12852] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
The complement system represents one of the evolutionary oldest arms of our immune system and is commonly recognized as a liver-derived and serum-active system critical for providing protection against invading pathogens. Recent unexpected findings, however, have defined novel and rather "uncommon" locations and activities of complement. Specifically, the discovery of an intracellularly active complement system-the complosome-and its key role in the regulation of cell metabolic pathways that underly normal human T cell responses have taught us that there is still much to be discovered about this system. Here, we summarize the current knowledge about the emerging functions of the complosome in T cell metabolism. We further place complosome activities among the non-canonical roles of other intracellular innate danger sensing systems and argue that a "location-centric" view of complement evolution could logically justify its close connection with the regulation of basic cell physiology.
Collapse
Affiliation(s)
- Erin E. West
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Natalia Kunz
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Campetella O, Buscaglia CA, Mucci J, Leguizamón MS. Parasite-host glycan interactions during Trypanosoma cruzi infection: trans-Sialidase rides the show. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165692. [PMID: 31972227 DOI: 10.1016/j.bbadis.2020.165692] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/07/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Many important pathogen-host interactions rely on highly specific carbohydrate binding events. In the case of the protozoan Trypanosoma cruzi, the causative agent of Chagas disease, glycointeractions involving sialic acid (SA) residues are pivotal for parasite infectivity, escape from immune surveillance and pathogenesis. Though unable to synthesize SA de novo, T. cruzi displays a unique trans-Sialidase (TS) enzyme, which is able to cleave terminal SA residues from host donor glycoconjugates and transfer them onto parasite surface mucins, thus generating protective/adhesive structures. In addition, this parasite sheds TS into the bloodstream, as a way of modifying the surface SA signature, and thereby the signaling/functional properties of mammalian host target cells on its own advantage. Here, we discuss the pathogenic aspects of T. cruzi TS: its molecular adaptations, the multiplicity of interactions in which it is involved during infections, and the array of novel and appealing targets for intervention in Chagas disease provided by TS-remodeled sialoglycophenotypes.
Collapse
Affiliation(s)
- Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan Mucci
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Susana Leguizamón
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Abstract
The classical complement system is engrained in the mind of scientists and clinicians as a blood-operative key arm of innate immunity, critically required for the protection against invading pathogens. Recent work, however, has defined a novel and unexpected role for an intracellular complement system-the complosome-in the regulation of key metabolic events that underlie peripheral human T cell survival as well as the induction and cessation of their effector functions. This review summarizes the current knowledge about the emerging vital role of the complosome in T cell metabolism and discusses how viewing the evolution of the complement system from an "unconventional" vantage point could logically account for the development of its metabolic activities.
Collapse
|
9
|
West EE, Afzali B, Kemper C. Unexpected Roles for Intracellular Complement in the Regulation of Th1 Responses. Adv Immunol 2018; 138:35-70. [PMID: 29731006 DOI: 10.1016/bs.ai.2018.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The complement system is generally recognized as an evolutionarily ancient and critical part of innate immunity required for the removal of pathogens that have breached the protective host barriers. It was originally defined as a liver-derived serum surveillance system that induces the opsonization and killing of invading microbes and amplifies the general inflammatory reactions. However, studies spanning the last four decades have established complement also as a vital bridge between innate and adaptive immunity. Furthermore, recent work on complement, and in particular its impact on human T helper 1 (Th1) responses, has led to the unexpected findings that the complement system also functions within cells and that it participates in the regulation of basic processes of the cell, including metabolism. These recent new insights into the unanticipated noncanonical activities of this ancient system suggest that the functions of complement extend well beyond mere host protection and into cellular physiology.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Behdad Afzali
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States; Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Claudia Kemper
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States; Division of Transplant Immunology and Mucosal Biology, King's College London, London, United Kingdom; Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
10
|
Petrou G, Crouzier T. Mucins as multifunctional building blocks of biomaterials. Biomater Sci 2018; 6:2282-2297. [DOI: 10.1039/c8bm00471d] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mucins glycoproteins are emerging as a multifunctional building block for biomaterials with diverse applications in chemistry and biomedicine.
Collapse
Affiliation(s)
- Georgia Petrou
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- Department of Chemistry
- Kungliga Tekniska Hogskolan
- Stockholm
| | - Thomas Crouzier
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- Department of Chemistry
- Kungliga Tekniska Hogskolan
- Stockholm
| |
Collapse
|
11
|
Pech-Canul ÁDLC, Monteón V, Solís-Oviedo RL. A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. J Parasitol Res 2017; 2017:3751403. [PMID: 28656101 PMCID: PMC5474541 DOI: 10.1155/2017/3751403] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/31/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi is the causal agent of Chagas' disease which affects millions of people around the world mostly in Central and South America. T. cruzi expresses a wide variety of proteins on its surface membrane which has an important role in the biology of these parasites. Surface molecules of the parasites are the result of the environment to which the parasites are exposed during their life cycle. Hence, T. cruzi displays several modifications when they move from one host to another. Due to the complexity of this parasite's cell surface, this review presents some membrane proteins organized as large families, as they are the most abundant and/or relevant throughout the T. cruzi membrane.
Collapse
Affiliation(s)
- Ángel de la Cruz Pech-Canul
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
| | - Victor Monteón
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| | - Rosa-Lidia Solís-Oviedo
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| |
Collapse
|
12
|
Mikulak J, Di Vito C, Zaghi E, Mavilio D. Host Immune Responses in HIV-1 Infection: The Emerging Pathogenic Role of Siglecs and Their Clinical Correlates. Front Immunol 2017; 8:314. [PMID: 28386256 PMCID: PMC5362603 DOI: 10.3389/fimmu.2017.00314] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
A better understanding of the mechanisms employed by HIV-1 to escape immune responses still represents one of the major tasks required for the development of novel therapeutic approaches targeting a disease still lacking a definitive cure. Host innate immune responses against HIV-1 are key in the early phases of the infection as they could prevent the development and the establishment of two hallmarks of the infection: chronic inflammation and viral reservoirs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) belong to a family of transmembrane proteins able to dampen host immune responses and set appropriate immune activation thresholds upon ligation with their natural ligands, the sialylated carbohydrates. This immune-modulatory function is also targeted by many pathogens that have evolved to express sialic acids on their surface in order to escape host immune responses. HIV-1 envelope glycoprotein 120 (gp120) is extensively covered by carbohydrates playing active roles in life cycle of the virus. Indeed, besides forming a protecting shield from antibody recognition, this coat of N-linked glycans interferes with the folding of viral glycoproteins and enhances virus infectivity. In particular, the sialic acid residues present on gp120 can bind Siglec-7 on natural killer and monocytes/macrophages and Siglec-1 on monocytes/macrophages and dendritic cells. The interactions between these two members of the Siglec family and the sialylated glycans present on HIV-1 envelope either induce or increase HIV-1 entry in conventional and unconventional target cells, thus contributing to viral dissemination and disease progression. In this review, we address the impact of Siglecs in the pathogenesis of HIV-1 infection and discuss how they could be employed as clinic and therapeutic targets.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Istituto di Ricerca Genetica e Biomedica, UOS di Milano, Consiglio Nazionale delle Ricerche (UOS/IRGB/CNR), Rozzano, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
13
|
Roy S, Mandal C. Leishmania donovani Utilize Sialic Acids for Binding and Phagocytosis in the Macrophages through Selective Utilization of Siglecs and Impair the Innate Immune Arm. PLoS Negl Trop Dis 2016; 10:e0004904. [PMID: 27494323 PMCID: PMC4975436 DOI: 10.1371/journal.pntd.0004904] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 07/14/2016] [Indexed: 12/15/2022] Open
Abstract
Background Leishmania donovani, belonging to a unicellular protozoan parasite, display the differential level of linkage-specific sialic acids on their surface. Sialic acids binding immunoglobulin-like lectins (siglecs) are a class of membrane-bound receptors present in the haematopoetic cell lineages interact with the linkage-specific sialic acids. Here we aimed to explore the utilization of sialic acids by Leishmania donovani for siglec-mediated binding, phagocytosis, modulation of innate immune response and signaling pathways for establishment of successful infection in the host. Methodology/Principle Findings We have found enhanced binding of high sialic acids containing virulent strains (AG83+Sias) with siglec-1 and siglec-5 present on macrophages compared to sialidase treated AG83+Sias (AG83-Sias) and low sialic acids-containing avirulent strain (UR6) by flow cytometry. This specific receptor-ligand interaction between sialic acids and siglecs were further confirmed by confocal microscopy. Sialic acids-siglec-1-mediated interaction of AG83+Sias with macrophages induced enhanced phagocytosis. Additionally, sialic acids-siglec-5 interaction demonstrated reduced ROS, NO generation and Th2 dominant cytokine response upon infection with AG83+Sias in contrast to AG83-Sias and UR6. Sialic acids-siglecs binding also facilitated multiplication of intracellular amastigotes. Moreover, AG83+Sias induced sialic acids-siglec-5-mediated upregulation of host phosphatase SHP-1. Such sialic acids-siglec interaction was responsible for further downregulation of MAPKs (p38, ERK and JNK) and PI3K/Akt pathways followed by the reduced translocation of p65 subunit of NF-κβ to the nucleus from cytosol in the downstream signaling pathways. This sequence of events was reversed in AG83-Sias and UR6-infected macrophages. Besides, siglec-knockdown macrophages also showed the reversal of AG83+Sias infection-induced effector functions and downstream signaling events. Conclusions/Significances Taken together, this study demonstrated that virulent parasite (AG83+Sias) establish a unique sialic acids-mediated binding and subsequent phagocytosis in the host cell through the selective exploitation of siglec-1. Additionally, sialic acids-siglec-5 interaction altered the downstream signaling pathways which contributed impairment of immune effector functions of macrophages. To the best of our knowledge, this is a comprehensive report describing sialic acids-siglec interactions and their role in facilitating uptake of the virulent parasite within the host. Sialic acids are nine carbon sugars present on terminal cell surface glycoproteins and glycolipids. Siglec is a membrane receptor that belongs to an immunoglobulin super family present in almost all the haematopoetic cell lineages. There are 14 different types of siglecs present on human immune cells that take an active part in balancing the magnitude of immunological reactions. In general, these siglecs bind with sialic acids and negatively regulate the immune response. Leishmania contains sialic acids on its surface. Virulent parasites utilize this sugar to bind with macrophages through siglec-1 and siglec-5 compared to low sialic acids containing avirulent parasites. Such sialic acids-siglec-mediated interactions exhibited a suppressed host immune response which helped them to establish successful infection compared to desialylated virulent and avirulent parasites, as well as, siglec-depleted macrophages. Interestingly, interaction between sialic acids and siglec-1 induced enhanced phagocytosis, while sialic acids-siglec-5 interaction upregulated the phosphatase SHP-1. This interaction with the virulent strain exhibited deactivation of various downstream signaling pathways and ultimately controlled translocation of a functional component of transcription factor NF-κβ for regulation of cytokines and other effector molecules in infected macrophages. Thus, the interaction between the parasite and the host cells through sialic acids-siglec binding is clearly a newly identified mechanism by which parasites can establish successful infection by subverting the host’s innate immune response.
Collapse
Affiliation(s)
- Saptarshi Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
14
|
Immune Evasion Strategies of Trypanosoma cruzi. J Immunol Res 2015; 2015:178947. [PMID: 26240832 PMCID: PMC4512591 DOI: 10.1155/2015/178947] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 01/03/2023] Open
Abstract
Microbes have evolved a diverse range of strategies to subvert the host immune system. The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, provides a good example of such adaptations. This parasite targets a broad spectrum of host tissues including both peripheral and central lymphoid tissues. Rapid colonization of the host gives rise to a systemic acute response which the parasite must overcome. The parasite in fact undermines both innate and adaptive immunity. It interferes with the antigen presenting function of dendritic cells via an action on host sialic acid-binding Ig-like lectin receptors. These receptors also induce suppression of CD4(+) T cells responses, and we presented evidence that the sialylation of parasite-derived mucins is required for the inhibitory effects on CD4 T cells. In this review we highlight the major mechanisms used by Trypanosoma cruzi to overcome host immunity and discuss the role of parasite colonization of the central thymic lymphoid tissue in chronic disease.
Collapse
|
15
|
Involvement of sulfates from cruzipain, a major antigen of Trypanosoma cruzi, in the interaction with immunomodulatory molecule Siglec-E. Med Microbiol Immunol 2015; 205:21-35. [PMID: 26047932 DOI: 10.1007/s00430-015-0421-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
Abstract
In order to investigate the involvement of sulfated groups in the Trypanosoma cruzi host-parasite relationship, we studied the interaction between the major cysteine proteinase of T. cruzi, cruzipain (Cz), a sulfate-containing sialylated molecule and the sialic acid-binding immunoglobulin like lectin-E (Siglec-E). To this aim, ELISA, indirect immunofluorescence assays and flow cytometry, using mouse Siglec-E-Fc fusion molecules and glycoproteins of parasites, were performed. Competition assays verified that the lectins, Maackia amurensis II (Mal II) and Siglec-E-Fc, compete for the same binding sites. Taking into account that Mal II binding remains unaltered by sulfation, we established this lectin as sialylation degree control. Proteins of an enriched microsomal fraction showed the highest binding to Siglec-E as compared with those from the other parasite subcellular fractions. ELISA assays and the affinity purification of Cz by a Siglec-E column confirmed the interaction between both molecules. The significant decrease in binding of Siglec-E-Fc to Cz and to its C-terminal domain (C-T) after desulfation of these molecules suggests that sulfates contribute to the interaction between Siglec-E-Fc and these glycoproteins. Competitive ELISA assays confirmed the involvement of sulfated epitopes in the affinity between Siglec-E and Cz, probably modified by natural protein environment. Interestingly, data from flow cytometry of untreated and chlorate-treated parasites suggested that sulfates are not primary receptors, but enhance the binding of Siglec-E to trypomastigotic forms. Altogether, our findings support the notion that sulfate-containing sialylated glycoproteins interact with Siglec-E, an ortholog protein of human Siglec-9, and might modulate the immune response of the host, favoring parasitemia and persistence of the parasite.
Collapse
|
16
|
Haynes CLF, Ameloot P, Remaut H, Callewaert N, Sterckx YGJ, Magez S. Production, purification and crystallization of a trans-sialidase from Trypanosoma vivax. Acta Crystallogr F Struct Biol Commun 2015; 71:577-85. [PMID: 25945712 PMCID: PMC4427168 DOI: 10.1107/s2053230x15002496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/05/2015] [Indexed: 11/10/2022] Open
Abstract
Sialidases and trans-sialidases play important roles in the life cycles of various microorganisms. These enzymes can serve nutritional purposes, act as virulence factors or mediate cellular interactions (cell evasion and invasion). In the case of the protozoan parasite Trypanosoma vivax, trans-sialidase activity has been suggested to be involved in infection-associated anaemia, which is the major pathology in the disease nagana. The physiological role of trypanosomal trans-sialidases in host-parasite interaction as well as their structures remain obscure. Here, the production, purification and crystallization of a recombinant version of T. vivax trans-sialidase 1 (rTvTS1) are described. The obtained rTvTS1 crystals diffracted to a resolution of 2.5 Å and belonged to the orthorhombic space group P212121, with unit-cell parameters a = 57.3, b = 78.4, c = 209.0 Å.
Collapse
Affiliation(s)
- Carole L. F. Haynes
- Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
- Department for Molecular Biomedical Research (DMBR), UGent, Ghent, Belgium
| | - Paul Ameloot
- Department for Molecular Biomedical Research (DMBR), UGent, Ghent, Belgium
| | - Han Remaut
- Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural and Molecular Microbiology (SMM), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Nico Callewaert
- Department for Molecular Biomedical Research (DMBR), UGent, Ghent, Belgium
| | - Yann G.-J. Sterckx
- Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Stefan Magez
- Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
17
|
Liu Y, Liu J, Pang X, Liu T, Ning Z, Cheng G. The roles of direct recognition by animal lectins in antiviral immunity and viral pathogenesis. Molecules 2015; 20:2272-95. [PMID: 25642837 PMCID: PMC6272511 DOI: 10.3390/molecules20022272] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/21/2015] [Indexed: 11/24/2022] Open
Abstract
Lectins are a group of proteins with carbohydrate recognition activity. Lectins are categorized into many families based on their different cellular locations as well as their specificities for a variety of carbohydrate structures due to the features of their carbohydrate recognition domain (CRD) modules. Many studies have indicated that the direct recognition of particular oligosaccharides on viral components by lectins is important for interactions between hosts and viruses. Herein, we aim to globally review the roles of this recognition by animal lectins in antiviral immune responses and viral pathogenesis. The different classes of mammalian lectins can either recognize carbohydrates to activate host immunity for viral elimination or can exploit those carbohydrates as susceptibility factors to facilitate viral entry, replication or assembly. Additionally, some arthropod C-type lectins were recently identified as key susceptibility factors that directly interact with multiple viruses and then facilitate infection. Summarization of the pleiotropic roles of direct viral recognition by animal lectins will benefit our understanding of host-virus interactions and could provide insight into the role of lectins in antiviral drug and vaccine development.
Collapse
Affiliation(s)
- Yang Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Jianying Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Xiaojing Pang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Tao Liu
- Center for Reproductive Medicine, Tai'an Central Hospital, Tai'an 271000, China.
| | - Zhijie Ning
- Ji'nan Infectious Diseases Hospital, Ji'nan 250021, China.
| | - Gong Cheng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Francischetti IMB, Ma D, Andersen JF, Ribeiro JMC. Evidence for a lectin specific for sulfated glycans in the salivary gland of the malaria vector, Anopheles gambiae. PLoS One 2014; 9:e107295. [PMID: 25207644 PMCID: PMC4160252 DOI: 10.1371/journal.pone.0107295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023] Open
Abstract
Salivary gland homogenate (SGH) from the female mosquitoes Anopheles gambiae, An. stephensi, An. freeborni, An. dirus and An. albimanus were found to exhibit hemagglutinating (lectin) activity. Lectin activity was not found for male An. gambiae, or female Ae aegypti, Culex quinquefasciatus, Phlebotomus duboscqi, and Lutzomyia longipalpis. With respect to species-specificity, An. gambiae SGH agglutinates red blood cells (RBC) from humans, horse, sheep, goat, pig, and cow; it is less active for rats RBC, and not detectable for guinea-pigs or chicken RBC. Notably, lectin activity was inhibited by low concentrations of dextran sulfate 50–500 K, fucoidan, heparin, laminin, heparin sulfate proteoglycan, sialyl-containing glycans (e.g. 3′-sialyl Lewis X, and 6′-sialyl lactose), and gangliosides (e.g. GM3, GD1, GD1b, GTB1, GM1, GQ1B), but not by simple sugars. These results imply that molecule(s) in the salivary gland target sulfated glycans. SGH from An. gambiae was also found to promote agglutination of HL-60 cells which are rich in sialyl Lewis X, a glycan that decorates PSGL-1, the neutrophils receptor that interacts with endothelial cell P-selectin. Accordingly, SGH interferes with HL-60 cells adhesion to immobilized P-selectin. Because An. gambiae SGH expresses galectins, one member of this family (herein named Agalectin) was expressed in E. coli. Recombinant Agalectin behaves as a non-covalent homodimer. It does not display lectin activity, and does not interact with 500 candidates tested in a Glycan microarray. Gel-filtration chromatography of the SGH of An. gambiae identified a fraction with hemagglutinating activity, which was analyzed by 1D PAGE followed by in-gel tryptic digestion, and nano-LC MS/MS. This approach identified several genes which emerge as candidates for a lectin targeting sulfated glycans, the first with this selectivity to be reported in the SGH of a blood-sucking arthropod. The role of salivary molecules (sialogenins) with lectin activity is discussed in the context of inflammation, and parasite-vector-host interactions.
Collapse
Affiliation(s)
- Ivo M. B. Francischetti
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Dongying Ma
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John F. Andersen
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Escalona Z, Álvarez B, Uenishi H, Toki D, Yuste M, Revilla C, Gómez del Moral M, Alonso F, Ezquerra A, Domínguez J. Molecular characterization and expression of porcine Siglec-5. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:206-216. [PMID: 24382335 DOI: 10.1016/j.dci.2013.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
In this study we describe the characterization of the porcine orthologue of Siglec-5. A cDNa clone was obtained from a porcine cDNa library derived from swine small intestine which encodes a 555 a-a type 1 transmembrane protein with sequence homology to human Siglec-5. This protein consists of four Ig-like domains, a transmembrane region, and a cytoplasmic tail with two tyrosine-based signalling motifs. When expressed as a recombinant protein fused to the Fc region of human IgG1, porcine Siglec-5 was able to bind porcine red blood cells in a sialic acid-dependent manner. Monoclonal antibodies (mAb) were developed against porcine Siglec-5 and used to analyse its expression in bone marrow and blood cells, and lymphoid tissues. Porcine Siglec-5 expression was mainly restricted to myelomonocytic cells and their precursors, being detected also, although at low levels, on plasmacytoid dendritic cells and B lymphocytes. In lymphoid tissues, ellipsoids of the spleen and subcapsular and medullar sinuses of lymph nodes were positive for Siglec-5. These mAbs were able to precipitate, from granulocyte lysates, a protein of approximately 85 kDa under non-reducing conditions, indicating that porcine Siglec-5 is expressed as a monomer in the plasma membrane.
Collapse
Affiliation(s)
- Z Escalona
- Dpto. de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de la Coruña Km 7.5, 28040 Madrid, Spain
| | - B Álvarez
- Dpto. de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de la Coruña Km 7.5, 28040 Madrid, Spain
| | - H Uenishi
- National Institute of Agrobiological Sciences (NIAS), 2 Ikenodai, Tsukuba, Ibaraki 305-8602, Japan
| | - D Toki
- National Institute of Agrobiological Sciences (NIAS), 2 Ikenodai, Tsukuba, Ibaraki 305-8602, Japan
| | - M Yuste
- Dpto. de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de la Coruña Km 7.5, 28040 Madrid, Spain
| | - C Revilla
- Dpto. de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de la Coruña Km 7.5, 28040 Madrid, Spain
| | - M Gómez del Moral
- Dpto. de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - F Alonso
- Dpto. de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de la Coruña Km 7.5, 28040 Madrid, Spain
| | - A Ezquerra
- Dpto. de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de la Coruña Km 7.5, 28040 Madrid, Spain
| | - J Domínguez
- Dpto. de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de la Coruña Km 7.5, 28040 Madrid, Spain.
| |
Collapse
|
20
|
Rubin E, Tanguy A, Perrigault M, Pales Espinosa E, Allam B. Characterization of the transcriptome and temperature-induced differential gene expression in QPX, the thraustochytrid parasite of hard clams. BMC Genomics 2014; 15:245. [PMID: 24678810 PMCID: PMC3986615 DOI: 10.1186/1471-2164-15-245] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/06/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The hard clam or northern quahog, Mercenaria mercenaria, is one of the most valuable seafood products in the United States representing the first marine resource in some Northeastern states. Severe episodes of hard clam mortality have been consistently associated with infections caused by a thraustochytrid parasite called Quahog Parasite Unknown (QPX). QPX is considered as a cold/temperate water organism since the disease occurs only in the coastal waters of the northwestern Atlantic Ocean from Maritime Canada to Virginia. High disease development at cold temperatures was also confirmed in laboratory studies and is thought to be caused predominantly by immunosuppression of the clam host even though the effect of temperature on QPX virulence has not been fully investigated. In this study, the QPX transcriptome was sequenced using Roche 454 technology to better characterize this microbe and initiate research on the molecular basis of QPX virulence towards hard clams. RESULTS Close to 18,000 transcriptomic sequences were generated and functionally annotated. Results revealed a wide array of QPX putative virulence factors including a variety of peptidases, antioxidant enzymes, and proteins involved in extracellular mucus production and other secretory proteins potentially involved in interactions with the clam host. Furthermore, a 15 K oligonucleotide array was constructed and used to investigate the effect of temperature on QPX fitness and virulence factors. Results identified a set of QPX molecular chaperones that could explain its adaptation to cold temperatures. Finally, several virulence-related factors were up-regulated at low temperature providing molecular targets for further investigations of increased QPX pathogenicity in cold water conditions. CONCLUSIONS This is one of the first studies to characterize the transcriptome of a parasitic labyrinthulid, offering new insights into the molecular bases of the pathogenicity of members of this group. Results from the oligoarray study demonstrated the ability of QPX to cope with a wide range of environmental temperatures, including those considered to be suboptimal for clam immunity (low temperature) providing a mechanistic scenario for disease distribution in the field and for high disease prevalence and intensity at low temperature. These results will serve as basis for studies aimed at a better characterization of specific putative virulence factors.
Collapse
Affiliation(s)
- Ewelina Rubin
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | - Arnaud Tanguy
- UPMC Université Paris 6, UMR 7144, Equipe Génétique et Adaptation en Milieu Extrême, Station Biologique de Roscoff, 29682 Roscoff, France
| | - Mickael Perrigault
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
21
|
Oliveira IA, Freire-de-Lima L, Penha LL, Dias WB, Todeschini AR. Trypanosoma cruzi Trans-sialidase: structural features and biological implications. Subcell Biochem 2014; 74:181-201. [PMID: 24264246 DOI: 10.1007/978-94-007-7305-9_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Trypanosoma cruzi trans-sialidase (TcTS) has intrigued researchers all over the world since it was shown that T. cruzi incorporates sialic acid through a mechanism independent of sialyltransferases. The enzyme has being involved in a vast myriad of functions in the biology of the parasite and in the pathology of Chagas' disease. At the structural level experiments trapping the intermediate with fluorosugars followed by peptide mapping, X-ray crystallography, molecular modeling and magnetic nuclear resonance have opened up a three-dimensional understanding of the way this enzyme works. Herein we review the multiple biological roles of TcTS and the structural studies that are slowly revealing the secrets underlining an efficient sugar transfer activity rather than simple hydrolysis by TcTS.
Collapse
Affiliation(s)
- Isadora A Oliveira
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Centro de Ciências da Saúde-Bloco D-3, 21941-902, Cidade Universitária, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
22
|
Morrot A. The Role of Sialic Acid-Binding Receptors (Siglecs) in the Immunomodulatory Effects of Trypanosoma cruzi Sialoglycoproteins on the Protective Immunity of the Host. SCIENTIFICA 2013; 2013:965856. [PMID: 24455435 PMCID: PMC3885277 DOI: 10.1155/2013/965856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and is an important endemic infection in Latin America. Lately, it has also become a health concern in the United States and Europe. Most of the immunomodulatory mechanisms associated with this parasitic infection have been attributed to mucin-like molecules on the T. cruzi surface. Mucins are high molecular weight glycoproteins that are involved in regulating diverse cellular activities in both normal and pathological conditions. In Trypanosoma cruzi infection, the parasite-derived mucins are the main acceptors of sialic acid and it has been suggested that they play a role in various host-parasite interactions during the course of Chagas disease. Recently, we have presented evidence that sialylation of the mucins is required for the inhibitory effects on CD4(+) T cells. In what follows we propose that signaling via sialic acid-binding Ig-like lectin receptors for these highly sialylated structures on host cells contributes to the arrest of cell cycle progression in the G1 phase and may allow the parasite to modulate the immune system of the host.
Collapse
Affiliation(s)
- Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro, CCS, Sala D1-035, Avenida Carlos Chagas Filho 373, Cidade Universitária, Ilha do Fundão, 21.941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
23
|
Varchetta S, Lusso P, Hudspeth K, Mikulak J, Mele D, Paolucci S, Cimbro R, Malnati M, Riva A, Maserati R, Mondelli MU, Mavilio D. Sialic acid-binding Ig-like lectin-7 interacts with HIV-1 gp120 and facilitates infection of CD4pos T cells and macrophages. Retrovirology 2013; 10:154. [PMID: 24330394 PMCID: PMC3878752 DOI: 10.1186/1742-4690-10-154] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/10/2013] [Indexed: 12/16/2022] Open
Abstract
Background Sialic acid-binding Ig-like lectin-7 (Siglec-7) expression is strongly reduced on natural killer (NK) cells from HIV-1 infected viremic patients. To investigate the mechanism(s) underlying this phenomenon, we hypothesized that Siglec-7 could contribute to the infection of CD4pos target cells following its interaction with HIV-1 envelope (Env) glycoprotein 120 (gp120). Results The ability of Siglec-7 to bind gp120 Env in a sialic acid-dependent manner facilitates the infection of both T cells and monocyte-derived macrophages (MDMs). Indeed, pre-incubation of HIV-1 with soluble Siglec-7 (sSiglec-7) increases the infection rate of CD4pos T cells, which do not constitutively express Siglec-7. Conversely, selective blockade of Siglec-7 markedly reduces the degree of HIV-1 infection in Siglec-7pos MDMs. Finally, the sSiglec-7 amount is increased in the serum of AIDS patients with high levels of HIV-1 viremia and inversely correlates with CD4pos T cell counts. Conclusions Our results show that Siglec-7 binds HIV-1 and contributes to enhance the susceptibility to infection of CD4pos T cells and MDMs. This phenomenon plays a role in HIV-1 pathogenesis and in disease progression, as suggested by the inverse correlation between high serum level of sSiglec-7 and the low CD4pos T cell count observed in AIDS patients in the presence of chronic viral replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
24
|
Nunes MP, Fortes B, Silva-Filho JL, Terra-Granado E, Santos L, Conde L, de Araújo Oliveira I, Freire-de-Lima L, Martins MV, Pinheiro AAS, Takyia CM, Freire-de-Lima CG, Todeschini AR, DosReis GA, Morrot A. Inhibitory effects of Trypanosoma cruzi sialoglycoproteins on CD4+ T cells are associated with increased susceptibility to infection. PLoS One 2013; 8:e77568. [PMID: 24204874 PMCID: PMC3810146 DOI: 10.1371/journal.pone.0077568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/03/2013] [Indexed: 01/16/2023] Open
Abstract
Background The Trypanosoma cruzi infection is associated with severe T cell unresponsiveness to antigens and mitogens characterized by decreased IL-2 synthesis. Trypanosoma cruzi mucin (Tc Muc) has been implicated in this phenomenom. These molecules contain a unique type of glycosylation consisting of several sialylated O-glycans linked to the protein backbone via N-acetylglucosamine residues. Methodology/Principal Findings In this study, we evaluated the ability of Tc Muc to modulate the activation of CD4+ T cells. Our data show that cross-linking of CD3 on naïve CD4+ T cells in the presence of Tc Muc resulted in the inhibition of both cytokine secretion and proliferation. We further show that the sialylated O-Linked Glycan residues from tc mucin potentiate the suppression of T cell response by inducing G1-phase cell cycle arrest associated with upregulation of mitogen inhibitor p27kip1. These inhibitory effects cannot be reversed by the addition of exogenous IL-2, rendering CD4+ T cells anergic when activated by TCR triggering. Additionally, in vivo administration of Tc Muc during T. cruzi infection enhanced parasitemia and aggravated heart damage. Analysis of recall responses during infection showed lower frequencies of IFN-γ producing CD4+ T cells in the spleen of Tc Muc treated mice, compared to untreated controls. Conclusions/Significance Our results indicate that Tc Muc mediates inhibitory efects on CD4+ T expansion and cytokine production, by blocking cell cycle progression in the G1 phase. We propose that the sialyl motif of Tc Muc is able to interact with sialic acid-binding Ig-like lectins (Siglecs) on CD4+ T cells, which may allow the parasite to modulate the immune system.
Collapse
Affiliation(s)
| | - Bárbara Fortes
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Silva-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Isadora de Araújo Oliveira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Acacia Sá Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takyia
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriane Regina Todeschini
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - George Alexandre DosReis
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (MPN); (AM)
| |
Collapse
|
25
|
Parasitic infections: a role for C-type lectins receptors. BIOMED RESEARCH INTERNATIONAL 2013; 2013:456352. [PMID: 23509724 PMCID: PMC3581113 DOI: 10.1155/2013/456352] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/12/2012] [Indexed: 02/04/2023]
Abstract
Antigen-presenting cells (APCs) sense the microenvironment through several types of receptors that recognize pathogen-associated molecular patterns. In particular, C-type lectins receptors (CLRs), which are expressed by distinct subsets of dendritic cells (DCs) and macrophages (MØs), recognize and internalize specific carbohydrate antigens in a Ca2+-dependent manner. The targeting of these receptors is becoming an efficient strategy for parasite recognition. However, relatively little is known about how CLRs are involved in both pathogen recognition and the internalization of parasites. The role of CLRs in parasite infections is an area of considerable interest because this research will impact our understanding of the initiation of innate immune responses, which influences the outcome of specific immune responses. This paper attempts to summarize our understanding of the effects of parasites' interactions with CLRs.
Collapse
|
26
|
Freire-de-Lima L, Oliveira IA, Neves JL, Penha LL, Alisson-Silva F, Dias WB, Todeschini AR. Sialic acid: a sweet swing between mammalian host and Trypanosoma cruzi. Front Immunol 2012; 3:356. [PMID: 23230438 PMCID: PMC3515882 DOI: 10.3389/fimmu.2012.00356] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/08/2012] [Indexed: 02/02/2023] Open
Abstract
Commonly found at the outermost ends of complex carbohydrates in extracellular medium or on outer cell membranes, sialic acids play important roles in a myriad of biological processes. Mammals synthesize sialic acid through a complex pathway, but Trypanosoma cruzi, the agent of Chagas’ disease, evolved to obtain sialic acid from its host through a trans-sialidase (TcTS) reaction. Studies of the parasite cell surface architecture and biochemistry indicate that a unique system comprising sialoglycoproteins and sialyl-binding proteins assists the parasite in several functions including parasite survival, infectivity, and host–cell recognition. Additionally, TcTS activity is capable of extensively remodeling host cell glycomolecules, playing a role as virulence factor. This review presents the state of the art of parasite sialobiology, highlighting how the interplay between host and parasite sialic acid helps the pathogen to evade host defense mechanisms and ensure lifetime host parasitism.
Collapse
Affiliation(s)
- Leonardo Freire-de-Lima
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Varchetta S, Brunetta E, Roberto A, Mikulak J, Hudspeth KL, Mondelli MU, Mavilio D. Engagement of Siglec-7 receptor induces a pro-inflammatory response selectively in monocytes. PLoS One 2012; 7:e45821. [PMID: 23029261 PMCID: PMC3461047 DOI: 10.1371/journal.pone.0045821] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/24/2012] [Indexed: 11/24/2022] Open
Abstract
Sialic acid binding immunoglobulin-like lectin-7 (Siglec-7) is a trans-membrane receptor carrying immunoreceptor tyrosine based inhibitory motifs (ITIMs) and delivering inhibitory signals upon ligation with sialylated glycans. This inhibitory function can be also targeted by several pathogens that have evolved to express sialic acids on their surface to escape host immune responses. Here, we demonstrate that cross-linking of Siglec-7 by a specific monoclonal antibody (mAb) induces a remarkably high production of IL-6, IL-1α, CCL4/MIP-1β, IL-8 and TNF-α. Among the three immune cell subsets known to constitutively express Siglec-7, the production of these pro-inflammatory cytokines and chemokines selectively occurs in monocytes and not in Natural Killer or T lymphocytes. This Siglec-7-mediated activating function is associated with the phosphorylation of the extracellular signal-regulated kinase (ERK) pathway. The present study also shows that sialic acid-free Zymosan yeast particles are able to bind Siglec-7 on monocytes and that this interaction mimics the ability of the anti Siglec-7 mAb to induce the production of pro-inflammatory mediators. Indeed, blocking or silencing Siglec-7 in primary monocytes greatly reduced the production of inflammatory cytokines and chemokines in response to Zymosan, thus confirming that Siglec-7 participates in generating a monocyte-mediated inflammatory outcome following pathogen recognition. The presence of an activating form of Siglec-7 in monocytes provides the host with a new and alternative mechanism to encounter pathogens not expressing sialylated glycans.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/chemistry
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Candida albicans/immunology
- Candida albicans/physiology
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Cytokines/metabolism
- Escherichia coli/immunology
- Escherichia coli/physiology
- Extracellular Signal-Regulated MAP Kinases
- Gene Expression
- Gene Expression Regulation/immunology
- Host-Pathogen Interactions
- Humans
- Inflammation Mediators/metabolism
- Lectins/chemistry
- Lectins/genetics
- Lectins/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/microbiology
- MAP Kinase Signaling System
- Phosphorylation
- Primary Cell Culture
- Protein Binding
- Protein Processing, Post-Translational
- Sialic Acid Binding Immunoglobulin-like Lectins
- Zymosan/chemistry
- Zymosan/immunology
- Zymosan/metabolism
Collapse
Affiliation(s)
- Stefania Varchetta
- Department of Infectious Diseases, Research Laboratories, IRCCS, Fondazione San Matteo and University of Pavia, Pavia, Italy
| | - Enrico Brunetta
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Alessandra Roberto
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Kelly L. Hudspeth
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Mario U. Mondelli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS, Istituto Clinico Humanitas, Rozzano, Milano, Italy
- * E-mail:
| |
Collapse
|
28
|
Congenital and oral transmission of American trypanosomiasis: an overview of physiopathogenic aspects. Parasitology 2012; 140:147-59. [PMID: 23010131 DOI: 10.1017/s0031182012001394] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chagas disease or American trypanosomiasis is a pathology affecting about 8-11 million people in Mexico, Central America, and South America, more than 300 000 persons in the United States as well as an indeterminate number of people in other non-endemic countries such as USA, Spain, Canada and Switzerland. The aetiological agent is Trypanosoma cruzi, a protozoan transmitted by multiple routes; among them, congenital route emerges as one of the most important mechanisms of spreading Chagas disease worldwide even in non-endemic countries and the oral route as the responsible of multiple outbreaks of acute Chagas disease in regions where the vectorial route has been interrupted. The aim of this review is to illustrate the recent research and advances in host-pathogen interaction making a model of how the virulence factors of the parasite would interact with the physiology and immune system components of the placental barrier and gastrointestinal tract in order to establish a response against T. cruzi infection. This review also presents the epidemiological, clinical and diagnostic features of congenital and oral Chagas disease in order to update the reader about the emerging scenarios of Chagas disease transmission.
Collapse
|
29
|
Dumonteil E, Bottazzi ME, Zhan B, Heffernan MJ, Jones K, Valenzuela JG, Kamhawi S, Ortega J, de Leon Rosales SP, Lee BY, Bacon KM, Fleischer B, Slingsby BT, Cravioto MB, Tapia-Conyer R, Hotez PJ. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. Expert Rev Vaccines 2012; 11:1043-55. [PMID: 23151163 PMCID: PMC3819810 DOI: 10.1586/erv.12.85] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chagas disease is a leading cause of heart disease affecting approximately 10 million people in Latin America and elsewhere worldwide. The two major drugs available for the treatment of Chagas disease have limited efficacy in Trypanosoma cruzi-infected adults with indeterminate (patients who have seroconverted but do not yet show signs or symptoms) and determinate (patients who have both seroconverted and have clinical disease) status; they require prolonged treatment courses and are poorly tolerated and expensive. As an alternative to chemotherapy, an injectable therapeutic Chagas disease vaccine is under development to prevent or delay Chagasic cardiomyopathy in patients with indeterminate or determinate status. The bivalent vaccine will be comprised of two recombinant T. cruzi antigens, Tc24 and TSA-1, formulated on alum together with the Toll-like receptor 4 agonist, E6020. Proof-of-concept for the efficacy of these antigens was obtained in preclinical testing at the Autonomous University of Yucatan. Here the authors discuss the potential for a therapeutic Chagas vaccine as well as the progress made towards such a vaccine, and the authors articulate a roadmap for the development of the vaccine as planned by the nonprofit Sabin Vaccine Institute Product Development Partnership and Texas Children's Hospital Center for Vaccine Development in collaboration with an international consortium of academic and industrial partners in Mexico, Germany, Japan, and the USA.
Collapse
Affiliation(s)
- Eric Dumonteil
- Laboratorio de Parasitología Centro De Investigaciones Regional, “Dr. Hideo Noguchi” Autonomous University of Yucatan (UADY), Merida, Mexico
| | - Maria Elena Bottazzi
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics (Section of Pediatric Tropical Medicine) and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Bin Zhan
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics (Section of Pediatric Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael J Heffernan
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics (Section of Pediatric Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn Jones
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics (Section of Pediatric Tropical Medicine) and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jaime Ortega
- Departamento de Biotecnología y Bioingeniería, Centro de Investigacion y de Estudios Avanzados - Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | | | - Bruce Y Lee
- Public Health Computational and Operations Research (PHICOR), University of Pittsburgh, Pittsburgh PA, USA
| | - Kristina M Bacon
- Public Health Computational and Operations Research (PHICOR), University of Pittsburgh, Pittsburgh PA, USA
| | | | | | | | | | - Peter J Hotez
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics (Section of Pediatric Tropical Medicine) and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
30
|
Schauer R, Kamerling JP. The Chemistry and Biology of Trypanosomal trans-Sialidases: Virulence Factors in Chagas Disease and Sleeping Sickness. Chembiochem 2011; 12:2246-64. [DOI: 10.1002/cbic.201100421] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Indexed: 11/10/2022]
|
31
|
Ghoshal A, Mandal C. A perspective on the emergence of sialic acids as potent determinants affecting leishmania biology. Mol Biol Int 2011; 2011:532106. [PMID: 22091406 PMCID: PMC3200265 DOI: 10.4061/2011/532106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/19/2011] [Accepted: 05/12/2011] [Indexed: 01/03/2023] Open
Abstract
Leishmaniasis caused by Leishmania sp. has a wide range of manifestations from cutaneous to the deadly visceral form. They shuttle between the invertebrate and vertebrate hosts as promastigotes and amastigotes having adaptations for subverting host immune responses. Parasite-specific glycoconjugates have served as important determinants influencing parasite recognition, internalization, differentiation, multiplication, and virulence. Despite the steady progress in the field of parasite glycobiology, sialobiology has been a less traversed domain of research in leishmaniasis. The present paper focuses on identification, characterization, and differential distribution of sialoglycotope having the linkage-specific 9-O-acetylated sialic acid in promastigotes of different Leishmania sp. causing different clinical ramifications emphasizing possible role of these sialoglycotopes in infectivity, virulence, nitric oxide resistance, and host modulation in Leishmania spp. asserting them to be important molecules influencing parasite biology.
Collapse
Affiliation(s)
- Angana Ghoshal
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
32
|
Giorgi ME, de Lederkremer RM. Trans-sialidase and mucins of Trypanosoma cruzi: an important interplay for the parasite. Carbohydr Res 2011; 346:1389-93. [PMID: 21645882 DOI: 10.1016/j.carres.2011.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 12/12/2022]
Abstract
A dense glycocalix covers the surface of Trypanosoma cruzi, the agent of Chagas disease. Sialic acid in the surface of the parasite plays an important role in the infectious process, however, T. cruzi is unable to synthesize sialic acid or the usual donor CMP-sialic acid. Instead, T. cruzi expresses a unique enzyme, the trans-sialidase (TcTS) involved in the transfer of sialic acid from host glycoconjugates to mucins of the parasite. The mucins are the major glycoproteins in the insect stage epimastigotes and in the infective trypomastigotes. Both, the mucins and the TcTS are anchored to the plasma membrane by a glycosylphosphatidylinositol anchor. Thus, TcTS may be shed into the bloodstream of the mammal host by the action of a parasite phosphatidylinositol-phospholipase C, affecting the immune system. The composition and structure of the sugars in the parasite mucins is characteristic of each differentiation stage, also, interstrain variations were described for epimastigote mucins. This review focus on the characteristics of the interplay between the trans-sialidase and the mucins of T. cruzi and summarizes the known carbohydrate structures of the mucins.
Collapse
Affiliation(s)
- M Eugenia Giorgi
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
| | | |
Collapse
|
33
|
Review on Trypanosoma cruzi: Host Cell Interaction. Int J Cell Biol 2010; 2010. [PMID: 20811486 PMCID: PMC2926652 DOI: 10.1155/2010/295394] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/11/2010] [Accepted: 06/04/2010] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas' disease, which affects a large number of individuals in Central and South America, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are metacyclic and bloodstream trypomastigote and amastigote. Metacyclic trypomastigotes are released with the feces of the insect while amastigotes and bloodstream trypomastigotes are released from the infected host cells of the vertebrate host after a complex intracellular life cycle. The recognition between parasite and mammalian host cell involves numerous molecules present in both cell types. Here, we present a brief review of the interaction between Trypanosoma cruzi and its host cells, mainly emphasizing the mechanisms and molecules that participate in the T. cruzi invasion process of the mammalian cells.
Collapse
|
34
|
Epting CL, Coates BM, Engman DM. Molecular mechanisms of host cell invasion by Trypanosoma cruzi. Exp Parasitol 2010; 126:283-91. [PMID: 20599990 DOI: 10.1016/j.exppara.2010.06.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 05/28/2010] [Accepted: 06/14/2010] [Indexed: 12/28/2022]
Abstract
The protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular protozoan pathogen. Overlapping mechanisms ensure successful infection, yet the relationship between these cellular events and clinical disease remains obscure. This review explores the process of cell invasion from the perspective of cell surface interactions, intracellular signaling, modulation of the host cytoskeleton and endosomal compartment, and the intracellular innate immune response to infection.
Collapse
Affiliation(s)
- Conrad L Epting
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|