1
|
Ren QS, Sun Q, Cheng SQ, Du LM, Guo PX. Hepatocellular carcinoma: An analysis of the expression status of stress granules and their prognostic value. World J Gastrointest Oncol 2024; 16:2559-2579. [DOI: 10.4251/wjgo.v16.i6.2559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a global popular malignant tumor, which is difficult to cure, and the current treatment is limited.
AIM To analyze the impacts of stress granule (SG) genes on overall survival (OS), survival time, and prognosis in HCC.
METHODS The combined The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC), GSE25097, and GSE36376 datasets were utilized to obtain genetic and clinical information. Optimal hub gene numbers and corresponding coefficients were determined using the Least absolute shrinkage and selection operator model approach, and genes for constructing risk scores and corresponding correlation coefficients were calculated according to multivariate Cox regression, respectively. The prognostic model’s receiver operating characteristic (ROC) curve was produced and plotted utilizing the time ROC software package. Nomogram models were constructed to predict the outcomes at 1, 3, and 5-year OS prognostications with good prediction accuracy.
RESULTS We identified seven SG genes (DDX1, DKC1, BICC1, HNRNPUL1, CNOT6, DYRK3, CCDC124) having a prognostic significance and developed a risk score model. The findings of Kaplan-Meier analysis indicated that the group with a high risk exhibited significantly reduced OS in comparison with those of the low-risk group (P < 0.001). The nomogram model’s findings indicate a significant enhancement in the accuracy of OS prediction for individuals with HCC in the TCGA-HCC cohort. Gene Ontology and Gene Set Enrichment Analysis suggested that these SGs might be involved in the cell cycle, RNA editing, and other biological processes.
CONCLUSION Based on the impact of SG genes on HCC prognosis, in the future, it will be used as a biomarker as well as a unique therapeutic target for the identification and treatment of HCC.
Collapse
Affiliation(s)
- Qing-Shuai Ren
- Department of Cardiovascular Surgery, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - Qiu Sun
- Department of Hepatobiliary, Kailuan General Hospital, Tangshan 063000, Hebei Province, China
| | - Shu-Qin Cheng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300000, China
| | - Li-Ming Du
- Department of Traditional Chinese Medicine, Kailuan General Hospital, Tangshan 063000, Hebei Province, China
| | - Ping-Xuan Guo
- Department of Anesthesiology, Kailuan General Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| |
Collapse
|
2
|
Ren QS, Sun Q, Cheng SQ, Du LM, Guo PX. Hepatocellular carcinoma: An analysis of the expression status of stress granules and their prognostic value. World J Gastrointest Oncol 2024; 16:2571-2591. [PMID: 38994142 PMCID: PMC11236250 DOI: 10.4251/wjgo.v16.i6.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a global popular malignant tumor, which is difficult to cure, and the current treatment is limited. AIM To analyze the impacts of stress granule (SG) genes on overall survival (OS), survival time, and prognosis in HCC. METHODS The combined The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC), GSE25097, and GSE36376 datasets were utilized to obtain genetic and clinical information. Optimal hub gene numbers and corresponding coefficients were determined using the Least absolute shrinkage and selection operator model approach, and genes for constructing risk scores and corresponding correlation coefficients were calculated according to multivariate Cox regression, respectively. The prognostic model's receiver operating characteristic (ROC) curve was produced and plotted utilizing the time ROC software package. Nomogram models were constructed to predict the outcomes at 1, 3, and 5-year OS prognostications with good prediction accuracy. RESULTS We identified seven SG genes (DDX1, DKC1, BICC1, HNRNPUL1, CNOT6, DYRK3, CCDC124) having a prognostic significance and developed a risk score model. The findings of Kaplan-Meier analysis indicated that the group with a high risk exhibited significantly reduced OS in comparison with those of the low-risk group (P < 0.001). The nomogram model's findings indicate a significant enhancement in the accuracy of OS prediction for individuals with HCC in the TCGA-HCC cohort. Gene Ontology and Gene Set Enrichment Analysis suggested that these SGs might be involved in the cell cycle, RNA editing, and other biological processes. CONCLUSION Based on the impact of SG genes on HCC prognosis, in the future, it will be used as a biomarker as well as a unique therapeutic target for the identification and treatment of HCC.
Collapse
Affiliation(s)
- Qing-Shuai Ren
- Department of Cardiovascular Surgery, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - Qiu Sun
- Department of Hepatobiliary, Kailuan General Hospital, Tangshan 063000, Hebei Province, China
| | - Shu-Qin Cheng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300000, China
| | - Li-Ming Du
- Department of Traditional Chinese Medicine, Kailuan General Hospital, Tangshan 063000, Hebei Province, China
| | - Ping-Xuan Guo
- Department of Anesthesiology, Kailuan General Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| |
Collapse
|
3
|
Lan Q, Li J, Zhang H, Zhou Z, Fang Y, Yang B. Mechanistic complement of autosomal dominant polycystic kidney disease: the role of aquaporins. J Mol Med (Berl) 2024; 102:773-785. [PMID: 38668786 DOI: 10.1007/s00109-024-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Autosomal dominant polycystic kidney disease is a genetic kidney disease caused by mutations in the genes PKD1 or PKD2. Its course is characterized by the formation of progressively enlarged cysts in the renal tubules bilaterally. The basic genetic explanation for autosomal dominant polycystic kidney disease is the double-hit theory, and many of its mechanistic issues can be explained by the cilia doctrine. However, the precise molecular mechanisms underpinning this condition's occurrence are still not completely understood. Experimental evidence suggests that aquaporins, a class of transmembrane channel proteins, including aquaporin-1, aquaporin-2, aquaporin-3, and aquaporin-11, are involved in the mechanism of autosomal dominant polycystic kidney disease. Aquaporins are either a potential new target for the treatment of autosomal dominant polycystic kidney disease, and further study into the physiopathological role of aquaporins in autosomal dominant polycystic kidney disease will assist to clarify the disease's pathophysiology and increase the pool of potential treatment options. We primarily cover pertinent findings on aquaporins in autosomal dominant polycystic kidney disease in this review.
Collapse
Affiliation(s)
- Qiumei Lan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jie Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Hanqing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zijun Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yaxuan Fang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Bo Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
- Department of Nephrology, The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No.88, Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
4
|
Meng F, Hua S, Chen X, Meng N, Lan T. Lymph node metastasis related gene BICC1 promotes tumor progression by promoting EMT and immune infiltration in pancreatic cancer. BMC Med Genomics 2023; 16:263. [PMID: 37880742 PMCID: PMC10601354 DOI: 10.1186/s12920-023-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most aggressive abdominal malignancies with a poor prognosis and it is urgent to find effective biomarkers for prediction. Although BICC1 expression is related to the survival, no evidence for its role in PC development has been found. METHODS We used RNA-seq data to screen for molecular markers highly associated with lymph node metastasis. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) public databases were used to analyze the expression and prognosis of Differential Expressed Genes (DEGs) in PC. R studio was used for visualization and functional analysis. RESULTS BicC Family RNA Binding Protein 1 (BICC1) was a lymph node metastasis-related DEGs in PC patients. Our study found that BICC1 mRNA levels in the tumor tissue were significantly higher and associated with poorer prognosis. Enrichment analysis found that BICC1 was enriched primarily in the Epithelial Mesenchymal Transition (EMT) pathway. Using the ESTIMATE and CIBERSORT algorithms, we found that BICC1 was related to immune cell infiltration. As a regulator of multiple immune checkpoints, BICC1 was also involved in PC's immune response. CONCLUSIONS BICC1 has the potential to be a new marker in association with lymph node metastasis as well as immune infiltration of PC. In addition to being a prognostic indicator, it may also be a potential therapeutic target.
Collapse
Affiliation(s)
- Feilong Meng
- Minimally invasive Center of Hepatobiliary and Pancreatic surgery, The Second Hospital of Harbin, Harbin, Heilongjiang, China
| | - Shuai Hua
- Hepatobiliary and Pancreatic Surgery, The Second Hospital of Harbin, Harbin, Heilongjiang, China
| | - Xuedong Chen
- Hepatobiliary and Pancreatic Surgery, The Second Hospital of Harbin, Harbin, Heilongjiang, China
| | - Nanfeng Meng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ting Lan
- Department of Rehabilitation, The Second Hospital of Harbin, Ward A, Harbin, Heilongjiang, China.
| |
Collapse
|
5
|
Dasargyri A, González Rodríguez D, Rehrauer H, Reichmann E, Biedermann T, Moehrlen U. scRNA-Seq of Cultured Human Amniotic Fluid from Fetuses with Spina Bifida Reveals the Origin and Heterogeneity of the Cellular Content. Cells 2023; 12:1577. [PMID: 37371048 DOI: 10.3390/cells12121577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Amniotic fluid has been proposed as an easily available source of cells for numerous applications in regenerative medicine and tissue engineering. The use of amniotic fluid cells in biomedical applications necessitates their unequivocal characterization; however, the exact cellular composition of amniotic fluid and the precise tissue origins of these cells remain largely unclear. Using cells cultured from the human amniotic fluid of fetuses with spina bifida aperta and of a healthy fetus, we performed single-cell RNA sequencing to characterize the tissue origin and marker expression of cultured amniotic fluid cells at the single-cell level. Our analysis revealed nine different cell types of stromal, epithelial and immune cell phenotypes, and from various fetal tissue origins, demonstrating the heterogeneity of the cultured amniotic fluid cell population at a single-cell resolution. It also identified cell types of neural origin in amniotic fluid from fetuses with spina bifida aperta. Our data provide a comprehensive list of markers for the characterization of the various progenitor and terminally differentiated cell types in cultured amniotic fluid. This study highlights the relevance of single-cell analysis approaches for the characterization of amniotic fluid cells in order to harness their full potential in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Daymé González Rodríguez
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Zurich Center for Fetal Diagnosis and Therapy, University of Zurich, 8006 Zurich, Switzerland
- Pediatric Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
6
|
Abstract
RNA-binding proteins (RBPs) are of fundamental importance for post-transcriptional gene regulation and protein synthesis. They are required for pre-mRNA processing and for RNA transport, degradation and translation into protein, and can regulate every step in the life cycle of their RNA targets. In addition, RBP function can be modulated by RNA binding. RBPs also participate in the formation of ribonucleoprotein complexes that build up macromolecular machineries such as the ribosome and spliceosome. Although most research has focused on mRNA-binding proteins, non-coding RNAs are also regulated and sequestered by RBPs. Functional defects and changes in the expression levels of RBPs have been implicated in numerous diseases, including neurological disorders, muscular atrophy and cancers. RBPs also contribute to a wide spectrum of kidney disorders. For example, human antigen R has been reported to have a renoprotective function in acute kidney injury (AKI) but might also contribute to the development of glomerulosclerosis, tubulointerstitial fibrosis and diabetic kidney disease (DKD), loss of bicaudal C is associated with cystic kidney diseases and Y-box binding protein 1 has been implicated in the pathogenesis of AKI, DKD and glomerular disorders. Increasing data suggest that the modulation of RBPs and their interactions with RNA targets could be promising therapeutic strategies for kidney diseases.
Collapse
|
7
|
Zhao R, Peng C, Song C, Zhao Q, Rong J, Wang H, Ding W, Wang F, Xie Y. BICC1 as a novel prognostic biomarker in gastric cancer correlating with immune infiltrates. Int Immunopharmacol 2020; 87:106828. [PMID: 32736193 DOI: 10.1016/j.intimp.2020.106828] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
AIM BicC family RNA-binding protein 1 (BICC1) codes an RNA-binding protein that regulates gene expression and modulates cell proliferation and apoptosis. We aim at investigating the role of BICC1 in gastric carcinogenesis. METHODS BICC1 mRNA expression in gastric cancer (GC) was examined using the Tumor Immune Estimation Resource (TIMER), The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Correlations between BICC1 expression and clinicopathological parameters were analyzed. The Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan-Meier plotter databases were used to examine the clinical prognostic significance of BICC1 in GC. Signaling pathways related to BICC1 expression were identified by gene set enrichment analysis (GSEA). TIMER and CIBERSORT were used to analyze the correlations among BICC1, BICC1-coexpressed genes and tumor-infiltrating immune cells. RESULTS BICC1 was highly expressed in GC and significantly correlated with grade (P = 0.002), TNM stage (P = 0.033), invasion depth (P = 0.001) and vital status (P = 0.009) of GC patients. High BICC1 expression correlated with poor overall survival. The GSEA results showed that cell adhesion-, tumor- and immune- related pathways were significantly enriched in samples with high BICC1 expression. BICC1 and its coexpressed genes were positively related to tumor-infiltrating immune cells and were strongly correlated with tumor-infiltrating macrophages (all r ≥ 0.582, P < 0.0001). The CIBERSORT database revealed that BICC1 correlated with M2 macrophages (P < 0.0001), regulatory T cells (P < 0.0001), resting mast cells (P < 0.0001), activated memory CD4+ T cells (P = 0.002), resting NK cells (P = 0.002), activated dendritic cells (P = 0.002), and follicular helper T cells (P = 0.016). The results from TIMER database confirmed that BICC1 is closely associated with the markers of M2 macrophages and tumor-associated macrophages (all r ≥ 0.5, P < 0.0001). CONCLUSION BICC1 may be a potential prognostic biomarker in GC and correlates with immune infiltrates.
Collapse
Affiliation(s)
- Rulin Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang 330000, Jiangxi, China
| | - Chao Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang 330000, Jiangxi, China
| | - Conghua Song
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang 330000, Jiangxi, China
| | - Qiaoyun Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang 330000, Jiangxi, China
| | - Jianfang Rong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang 330000, Jiangxi, China
| | - Huan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang 330000, Jiangxi, China
| | - Wenjie Ding
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang 330000, Jiangxi, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1, Min de Street, Nanchang 330000, Jiangxi, China
| | - Fangfei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang 330000, Jiangxi, China
| | - Yong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang 330000, Jiangxi, China.
| |
Collapse
|
8
|
Ying X, Tu J, Wang W, Li X, Xu C, Ji J. FGFR2-BICC1: A Subtype Of FGFR2 Oncogenic Fusion Variant In Cholangiocarcinoma And The Response To Sorafenib. Onco Targets Ther 2019; 12:9303-9307. [PMID: 31807010 PMCID: PMC6842751 DOI: 10.2147/ott.s218796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR) family includes four highly conserved receptor tyrosine kinases. Particularly, FGFR2 has been identified as a potential target for tyrosine kinase inhibitor (TKI) treatment. Except for immunohistochemistry and fluorescence in situ hybridization, next-generation sequencing (NGS) technology represents a novel tool for FGFR2 detection that covers a wide range of fusion genes. In the present work, we present a case of cholangiocarcinoma who had FGFR2-BICC1 rearrangement detected by NGS. A 76-year-old female diagnosed with cholangiocarcinoma underwent four cycles of chemotherapy. The NGS assay showed that the tumor had a FGFR2-BICC1 rearrangement. The patient had a favorable tumor response to sorafenib. Herein, we report the first case with cholangiocarcinoma harboring FGFR2-BICC1 who is sensitive to sorafenib therapy.
Collapse
Affiliation(s)
- Xihui Ying
- Department of Radiology, Lishui Central Hospital/Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui, Zhejiang 323000, People's Republic of China
| | - Jianfei Tu
- Department of Radiology, Lishui Central Hospital/Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui, Zhejiang 323000, People's Republic of China
| | - Wenxian Wang
- Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Xingliang Li
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang 314000, People's Republic of China
| | - Chunwei Xu
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, People's Republic of China
| | - Jiansong Ji
- Department of Radiology, Lishui Central Hospital/Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui, Zhejiang 323000, People's Republic of China
| |
Collapse
|
9
|
Xie Y, Wang L, Sun H, Wang Y, Yang Z, Zhang G, Yang W. Immunomodulatory, antioxidant and intestinal morphology-regulating activities of alfalfa polysaccharides in mice. Int J Biol Macromol 2019; 133:1107-1114. [PMID: 31022488 DOI: 10.1016/j.ijbiomac.2019.04.144] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/11/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
The effects of alfalfa polysaccharides (APS) on immunomodulatory and antioxidant functions, as well as intestinal morphology were investigated in vivo in this study. Sixty-four mice were randomly divided into four groups and administered 0, 200, 400 or 800 mg/kg/d body weight APS via gavage for 28 days. The blood parameters and metabolites, viscera indices, antioxidant enzyme activities and intestinal morphology were measured. The results showed that the oral administration of APS improved the immune functions of mice, significantly enhanced the white blood cells and lymphocyte counts, and led to improvements in spleen and thymus indices. APS exhibited significant antioxidant activity by enhancing total antioxidant capacity, superoxide dismutase and glutathione peroxidase activities in heart, kidney and liver, and decreasing the malondialdehyde levels of heart and liver. Moreover, administration of APS potently enhanced the small intestinal villous height and the villus-to-crypt ratio, and decreased the crypt depth of duodenum in mice. Therefore, we can conclude that APS possesses pronounced immunomodulatory activities, and plays an important role in the prevention of oxidative stresses and in the improvement of intestinal morphology in the immunological system in vivo. APS thus shows potential for the development as an effective natural immunomodulatory and antioxidant agent.
Collapse
Affiliation(s)
- Yuhuai Xie
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Hua Sun
- Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Yuxi Wang
- Lethbridge Research Center, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - Zaibin Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Guiguo Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, PR China.
| |
Collapse
|
10
|
Chen S, Jiang H, Xu Z, Zhao J, Wang M, Lu Y, Li J, Sun F, Yuan Y. Serum BICC1 levels are significantly different in various mood disorders. Neuropsychiatr Dis Treat 2019; 15:259-265. [PMID: 30697050 PMCID: PMC6339641 DOI: 10.2147/ndt.s190048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Mood disorders are recurrent chronic disorders with fluctuating mood states and energy, and misdiagnosis is common when based solely on clinical interviews because of overlapping symptoms. Because misdiagnosis may lead to inappropriate treatment and poor prognosis, finding an easily implemented objective tool for the discrimination of different mood disorders is very necessary and urgent. However, there has been no accepted objective tool until now. Recently, BICC1 has been identified as a candidate gene relating to major depressive disorder (MDD). Therefore, the aim of this study is to evaluate the ability of serum BICC1 to discriminate between various mood disorders, including MDD and the manic and depressive phases of bipolar disorder, namely bipolar mania (BM) and bipolar depression (BD). PATIENTS AND METHODS Serum BICC1 levels in drug-free patients with MDD (n=30), BM (n=30), and BD (n=13), and well-matched healthy controls (HC, n=30) were measured with ELISA kits. Pearson correlation analyses were used to analyze the correlations between serum BICC1 levels and clinical information. Receiver operating characteristic (ROC) curve analysis was used to analyze the differential discriminative potential of BICC1 for different mood disorders. RESULTS One-way ANOVA indicated that serum BICC1 levels were significantly increased in all patient groups compared with the HC group and significantly different between each pair of patient groups. Correlation analyses found no relationship between serum BICC1 levels and any clinical variables in any study group. ROC curve analysis showed that serum BICC1 could discriminate among all three mood disorders from each other accurately with fair-to-excellent discriminatory capacity (area under the ROC curve from 0.787 to 1.0). CONCLUSION The findings of this preliminary study indicated significant differences in serum BICC1 levels in patients with different mood disorders. This study provides preliminary evidence that serum BICC1 may be regarded as a promising, objective, easy-to-use tool for diagnosing different mood disorders.
Collapse
Affiliation(s)
- Suzhen Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China, .,Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing 210009, PR China,
| | - Haitang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China, .,Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing 210009, PR China,
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China, .,Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing 210009, PR China,
| | - Jingjing Zhao
- Department of Psychiatry, Brain Hospital, Nanjing Medical University, Nanjing 210029, PR China
| | - Ming Wang
- Department of Psychiatry, The Third People's Hospital of Changshu, Suzhou 215500, PR China
| | - Yan Lu
- Department of Psychiatry, The Fourth People's Hospital of Zhangjiagang, Suzhou 215600, PR China
| | - Jianhua Li
- Department of Psychiatry, The Third People's Hospital of Huzhou, Huzhou 313000, PR China
| | - Fei Sun
- Department of Psychiatry, The Second People's Hospital of Jingjiang, Taizhou 214500, PR China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China, .,Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing 210009, PR China,
| |
Collapse
|
11
|
Leal-Esteban LC, Rothé B, Fortier S, Isenschmid M, Constam DB. Role of Bicaudal C1 in renal gluconeogenesis and its novel interaction with the CTLH complex. PLoS Genet 2018; 14:e1007487. [PMID: 29995892 PMCID: PMC6056059 DOI: 10.1371/journal.pgen.1007487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/23/2018] [Accepted: 06/13/2018] [Indexed: 01/06/2023] Open
Abstract
Altered glucose and lipid metabolism fuel cystic growth in polycystic kidneys, but the cause of these perturbations is unclear. Renal cysts also associate with mutations in Bicaudal C1 (Bicc1) or in its self-polymerizing sterile alpha motif (SAM). Here, we found that Bicc1 maintains normoglycemia and the expression of the gluconeogenic enzymes FBP1 and PEPCK in kidneys. A proteomic screen revealed that Bicc1 interacts with the C-Terminal to Lis-Homology domain (CTLH) complex. Since the orthologous Gid complex in S. cerevisae targets FBP1 and PEPCK for degradation, we mapped the topology among CTLH subunits and found that SAM-mediated binding controls Bicc1 protein levels, whereas Bicc1 inhibited the accumulation of several CTLH subunits. Under the conditions analyzed, Bicc1 increased FBP1 protein levels independently of the CTLH complex. Besides linking Bicc1 to cell metabolism, our findings reveal new layers of complexity in the regulation of renal gluconeogenesis compared to lower eukaryotes. Polycystic kidney diseases (PKD) are incurable inherited chronic disorders marked by fluid-filled cysts that frequently cause renal failure. A glycolytic metabolism reminiscent of cancerous cells accelerates cystic growth, but the mechanism underlying such metabolic re-wiring is poorly understood. PKD-like cystic kidneys also develop in mice that lack the RNA-binding protein Bicaudal-C (Bicc1), and mutations in a single copy of human BICC1 associate with renal cystic dysplasia. Here, we report that Bicc1 regulates renal gluconeogenesis. A screen for interacting factors revealed that Bicc1 binds the C-Terminal to Lis-Homology domain (CTLH) complex, which in lower eukaryotes mediates degradation of gluconeogenic enzymes. By contrast, Bicc1 and the mammalian CTLH complex regulated each other, and Bicc1 stimulated the accumulation of the rate-limiting gluconeogenic enzyme even in cells depleted of CTLH subunits. Our finding that Bicc1 is required for normoglycemia implies that renal gluconeogenesis may be important to inhibit cyst formation.
Collapse
Affiliation(s)
- Lucia Carolina Leal-Esteban
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Simon Fortier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Manuela Isenschmid
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Daniel B. Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Modeling Renal Disease "On the Fly". BIOMED RESEARCH INTERNATIONAL 2018; 2018:5697436. [PMID: 29955604 PMCID: PMC6000847 DOI: 10.1155/2018/5697436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Detoxification is a fundamental function for all living organisms that need to excrete catabolites and toxins to maintain homeostasis. Kidneys are major organs of detoxification that maintain water and electrolyte balance to preserve physiological functions of vertebrates. In insects, the renal function is carried out by Malpighian tubules and nephrocytes. Due to differences in their circulation, the renal systems of mammalians and insects differ in their functional modalities, yet carry out similar biochemical and physiological functions and share extensive genetic and molecular similarities. Evolutionary conservation can be leveraged to model specific aspects of the complex mammalian kidney function in the genetic powerhouse Drosophila melanogaster to study how genes interact in diseased states. Here, we compare the human and Drosophila renal systems and present selected fly disease models.
Collapse
|
13
|
O’Sullivan F, Keenan J, Aherne S, O’Neill F, Clarke C, Henry M, Meleady P, Breen L, Barron N, Clynes M, Horgan K, Doolan P, Murphy R. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine. World J Gastroenterol 2017; 23:7369-7386. [PMID: 29151691 PMCID: PMC5685843 DOI: 10.3748/wjg.v23.i41.7369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/07/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. METHODS Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward's clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. RESULTS Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid and cholesterol metabolic processes, small molecule transport and a range of responses to external stimuli, while similar analysis of the DE protein list identified gene expression/transcription, epigenetic mechanisms, DNA replication, differentiation and translation ontology categories. The DE protein and gene lists were found to share 15 biological processes including for example epithelial cell differentiation [P value ≤ 1.81613E-08 (protein list); P ≤ 0.000434311 (gene list)] and actin filament bundle assembly [P value ≤ 0.001582797 (protein list); P ≤ 0.002733714 (gene list)]. Analysis was conducted on the three data streams acquired in parallel to identify targets undergoing potential miRNA translational repression identified 34 proteins, whose respective mRNAs were detected but no change in expression was observed. Of these 34 proteins, 27 proteins downregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 19 unique anti-correlated/upregulated microRNAs and 7 proteins upregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 15 unique anti-correlated/downregulated microRNAs. CONCLUSION This first study providing "tri-omics" analysis of the principal intestinal cell line models Caco-2 and HT-29 has identified 34 proteins potentially undergoing miRNA translational repression.
Collapse
Affiliation(s)
- Finbarr O’Sullivan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Joanne Keenan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Sinead Aherne
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Fiona O’Neill
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Colin Clarke
- National Institute for Bioprocessing Research & Training, Blackrock, Dublin A94 X099, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Laura Breen
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Niall Barron
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | | | - Padraig Doolan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | | |
Collapse
|
14
|
Delestré L, Bakey Z, Prado C, Hoffmann S, Bihoreau MT, Lelongt B, Gauguier D. ANKS3 Co-Localises with ANKS6 in Mouse Renal Cilia and Is Associated with Vasopressin Signaling and Apoptosis In Vivo in Mice. PLoS One 2015; 10:e0136781. [PMID: 26327442 PMCID: PMC4556665 DOI: 10.1371/journal.pone.0136781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023] Open
Abstract
Mutations in Ankyrin repeat and sterile alpha motif domain containing 6 (ANKS6) play a causative role in renal cyst formation in the PKD/Mhm(cy/+) rat model of polycystic kidney disease and in nephronophthisis in humans. A network of protein partners of ANKS6 is emerging and their functional characterization provides important clues to understand the role of ANKS6 in renal biology and in mechanisms involved in the formation of renal cysts. Following experimental confirmation of interaction between ANKS6and ANKS3 using a Yeast two hybrid system, we demonstrated that binding between the two proteins occurs through their sterile alpha motif (SAM) and that the amino acid 823 in rat ANSK6 is key for this interaction. We further showed their interaction by co-immunoprecipitation and showed in vivo in mice that ANKS3 is present in renal cilia. Downregulated expression of Anks3 in vivo in mice by Locked Nucleic Acid (LNA) modified antisense oligonucleotides was associated with increased transcription of vasopressin-induced genes, suggesting changes in renal water permeability, and altered transcription of genes encoding proteins involved in cilium structure, apoptosis and cell proliferation. These data provide experimental evidence of ANKS3-ANKS6 direct interaction through their SAM domain and co-localisation in mouse renal cilia, and shed light on molecular mechanisms indirectly mediated by ANKS6 in the mouse kidney, that may be affected by altered ANKS3-ANKS6 interaction. Our results contribute to improved knowledge of the structure and function of the network of proteins interacting with ANKS6, which may represent therapeutic targets in cystic diseases.
Collapse
Affiliation(s)
- Laure Delestré
- Sorbonne Universities, University Pierre and Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM, UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Zeineb Bakey
- Sorbonne Universities, University Pierre and Marie Curie, UMR_S1155, Paris, France
- INSERM, UMR_S1155 Hôpital Tenon, Paris, France
| | - Cécilia Prado
- Sorbonne Universities, University Pierre and Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM, UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Sigrid Hoffmann
- Medical Research Centre, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Brigitte Lelongt
- Sorbonne Universities, University Pierre and Marie Curie, UMR_S1155, Paris, France
- INSERM, UMR_S1155 Hôpital Tenon, Paris, France
| | - Dominique Gauguier
- Sorbonne Universities, University Pierre and Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM, UMR_S1138, Cordeliers Research Centre, Paris, France
- Institute of Cardiometabolism & Nutrition, Pitié-Salpêtrière Hospital, University Pierre and Marie-Curie, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Abstract
Loss of the RNA-binding protein Bicaudal-C (Bicc1) provokes renal and pancreatic cysts as well as ectopic Wnt/β-catenin signaling during visceral left-right patterning. Renal cysts are linked to defective silencing of Bicc1 target mRNAs, including adenylate cyclase 6 (AC6). RNA binding of Bicc1 is mediated by N-terminal KH domains, whereas a C-terminal sterile alpha motif (SAM) self-polymerizes in vitro and localizes Bicc1 in cytoplasmic foci in vivo. To assess a role for multimerization in silencing, we conducted structure modeling and then mutated the SAM domain residues which in this model were predicted to polymerize Bicc1 in a left-handed helix. We show that a SAM-SAM interface concentrates Bicc1 in cytoplasmic clusters to specifically localize and silence bound mRNA. In addition, defective polymerization decreases Bicc1 stability and thus indirectly attenuates inhibition of Dishevelled 2 in the Wnt/β-catenin pathway. Importantly, aberrant C-terminal extension of the SAM domain in bpk mutant Bicc1 phenocopied these defects. We conclude that polymerization is a novel disease-relevant mechanism both to stabilize Bicc1 and to present associated mRNAs in specific silencing platforms.
Collapse
|
16
|
Anks3 interacts with nephronophthisis proteins and is required for normal renal development. Kidney Int 2015; 87:1191-200. [DOI: 10.1038/ki.2015.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/10/2014] [Accepted: 12/05/2014] [Indexed: 12/19/2022]
|
17
|
Berggren O, Alexsson A, Morris DL, Tandre K, Weber G, Vyse TJ, Syvanen AC, Ronnblom L, Eloranta ML. IFN- production by plasmacytoid dendritic cell associations with polymorphisms in gene loci related to autoimmune and inflammatory diseases. Hum Mol Genet 2015; 24:3571-81. [DOI: 10.1093/hmg/ddv095] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/12/2015] [Indexed: 12/12/2022] Open
|
18
|
Lu ZX, Huang Q, Park JW, Shen S, Lin L, Tokheim CJ, Henry MD, Xing Y. Transcriptome-wide landscape of pre-mRNA alternative splicing associated with metastatic colonization. Mol Cancer Res 2015; 13:305-18. [PMID: 25274489 PMCID: PMC4336826 DOI: 10.1158/1541-7786.mcr-14-0366] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Metastatic colonization is an ominous feature of cancer progression. Recent studies have established the importance of pre-mRNA alternative splicing (AS) in cancer biology. However, little is known about the transcriptome-wide landscape of AS associated with metastatic colonization. Both in vitro and in vivo models of metastatic colonization were utilized to study AS regulation associated with cancer metastasis. Transcriptome profiling of prostate cancer cells and derivatives crossing in vitro or in vivo barriers of metastasis revealed splicing factors with significant gene expression changes associated with metastatic colonization. These include splicing factors known to be differentially regulated in epithelial-mesenchymal transition (ESRP1, ESRP2, and RBFOX2), a cellular process critical for cancer metastasis, as well as novel findings (NOVA1 and MBNL3). Finally, RNA-seq indicated a large network of AS events regulated by multiple splicing factors with altered gene expression or protein activity. These AS events are enriched for pathways important for cell motility and signaling, and affect key regulators of the invasive phenotype such as CD44 and GRHL1. IMPLICATIONS Transcriptome-wide remodeling of AS is an integral regulatory process underlying metastatic colonization, and AS events affect the metastatic behavior of cancer cells.
Collapse
Affiliation(s)
- Zhi-xiang Lu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Qin Huang
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa. Department of Pathology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Juw Won Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Shihao Shen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Lan Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Collin J Tokheim
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa. Department of Pathology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
19
|
Wang W, Li F, Sun Y, Lei L, Zhou H, Lei T, Xia Y, Verkman AS, Yang B. Aquaporin-1 retards renal cyst development in polycystic kidney disease by inhibition of Wnt signaling. FASEB J 2015; 29:1551-63. [PMID: 25573755 DOI: 10.1096/fj.14-260828] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/15/2014] [Indexed: 01/04/2023]
Abstract
Water channel aquaporin-1 (AQP1) is expressed at epithelial cell plasma membranes in renal proximal tubules and thin descending limb of Henle. Recently, AQP1 was reported to interact with β-catenin. Here we investigated the relationship between AQP1 and Wnt signaling in in vitro and in vivo models of autosomal dominant polycystic kidney disease (PKD). AQP1 overexpression decreased β-catenin and cyclinD1 expression, suggesting down-regulation of Wnt signaling, and coimmunoprecipitation showed AQP1 interaction with β-catenin, glycogen synthase kinase 3β, LRP6, and Axin1. AQP1 inhibited cyst development and promoted branching in matrix-grown MDCK cells. In embryonic kidney cultures, AQP1 deletion increased cyst development by up to ∼ 40%. Kidney size and cyst number were significantly greater in AQP1-null PKD mice than in AQP1-expressing PKD mice, with the difference mainly attributed to a greater number of proximal tubule cysts. Biochemical analysis revealed decreased β-catenin phosphorylation and increased β-catenin expression in AQP1-null PKD mice, suggesting enhanced Wnt signaling. These results implicate AQP1 as a novel determinant in renal cyst development that may involve inhibition of Wnt signaling by an AQP1-macromolecular signaling complex.
Collapse
Affiliation(s)
- Weiling Wang
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Fei Li
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Yi Sun
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Lei Lei
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Hong Zhou
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Tianluo Lei
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Yin Xia
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - A S Verkman
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Baoxue Yang
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| |
Collapse
|
20
|
Lian P, Li A, Li Y, Liu H, Liang D, Hu B, Lin D, Jiang T, Moeckel G, Qin D, Wu G. Loss of polycystin-1 inhibits Bicc1 expression during mouse development. PLoS One 2014; 9:e88816. [PMID: 24594709 PMCID: PMC3940423 DOI: 10.1371/journal.pone.0088816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/16/2014] [Indexed: 12/21/2022] Open
Abstract
Bicc1 is a mouse homologue of Drosophila Bicaudal-C (dBic-C), which encodes an RNA-binding protein. Orthologs of dBic-C have been identified in many species, from C. elegans to humans. Bicc1-mutant mice exhibit a cystic phenotype in the kidney that is very similar to human polycystic kidney disease. Even though many studies have explored the gene characteristics and its functions in multiple species, the developmental profile of the Bicc1 gene product (Bicc1) in mammal has not yet been completely characterized. To this end, we generated a polyclonal antibody against Bicc1 and examined its spatial and temporal expression patterns during mouse embryogenesis and organogenesis. Our results demonstrated that Bicc1 starts to be expressed in the neural tube as early as embryonic day (E) 8.5 and is widely expressed in epithelial derivatives including the gut and hepatic cells at E10.5, and the pulmonary bronchi at E11.5. In mouse kidney development, Bicc1 appears in the early ureteric bud and mesonephric tubules at E11.5 and is also expressed in the metanephros at the same stage. During postnatal kidney development, Bicc1 expression gradually expands from the cortical to the medullary and papillary regions, and it is highly expressed in the proximal tubules. In addition, we discovered that loss of the Pkd1 gene product, polycystin-1 (PC1), whose mutation causes human autosomal dominant polycystic kidney disease (ADPKD), downregulates Bicc1 expression in vitro and in vivo. Our findings demonstrate that Bicc1 is developmentally regulated and reveal a new molecular link between Bicc1 and Pkd1.
Collapse
Affiliation(s)
- Peiwen Lian
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ao Li
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yuan Li
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haichao Liu
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Liang
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Bo Hu
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - De Lin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Tang Jiang
- Department of Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dahui Qin
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Guanqing Wu
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
21
|
Charlesworth A, Meijer HA, de Moor CH. Specificity factors in cytoplasmic polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 4:437-61. [PMID: 23776146 PMCID: PMC3736149 DOI: 10.1002/wrna.1171] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
Abstract
Poly(A) tail elongation after export of an messenger RNA (mRNA) to the cytoplasm is called cytoplasmic polyadenylation. It was first discovered in oocytes and embryos, where it has roles in meiosis and development. In recent years, however, has been implicated in many other processes, including synaptic plasticity and mitosis. This review aims to introduce cytoplasmic polyadenylation with an emphasis on the factors and elements mediating this process for different mRNAs and in different animal species. We will discuss the RNA sequence elements mediating cytoplasmic polyadenylation in the 3' untranslated regions of mRNAs, including the CPE, MBE, TCS, eCPE, and C-CPE. In addition to describing the role of general polyadenylation factors, we discuss the specific RNA binding protein families associated with cytoplasmic polyadenylation elements, including CPEB (CPEB1, CPEB2, CPEB3, and CPEB4), Pumilio (PUM2), Musashi (MSI1, MSI2), zygote arrest (ZAR2), ELAV like proteins (ELAVL1, HuR), poly(C) binding proteins (PCBP2, αCP2, hnRNP-E2), and Bicaudal C (BICC1). Some emerging themes in cytoplasmic polyadenylation will be highlighted. To facilitate understanding for those working in different organisms and fields, particularly those who are analyzing high throughput data, HUGO gene nomenclature for the human orthologs is used throughout. Where human orthologs have not been clearly identified, reference is made to protein families identified in man.
Collapse
Affiliation(s)
- Amanda Charlesworth
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | | | | |
Collapse
|
22
|
Lekva T, Berg JP, Fougner SL, Olstad OK, Ueland T, Bollerslev J. Gene expression profiling identifies ESRP1 as a potential regulator of epithelial mesenchymal transition in somatotroph adenomas from a large cohort of patients with acromegaly. J Clin Endocrinol Metab 2012; 97:E1506-14. [PMID: 22585092 DOI: 10.1210/jc.2012-1760] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT The epithelial marker E-cadherin plays a crucial role in epithelial-mesenchymal transition (EMT). Decreased protein content in somatotroph adenomas has been associated with increased tumor size, invasion, and poor response to somatostatin analog (SA) treatment, but the potential mechanisms of EMT progression in these adenomas are lacking. OBJECTIVE We hypothesized that characterization of EMT-related transcripts in somatotroph adenomas could identify novel therapeutic targets in individuals with poor response to SA treatment and provide more knowledge of the mechanism of EMT progression. PATIENTS Fifty-three patients with acromegaly participated in the study. RESEARCH DESIGN AND METHODS We performed microarray analysis of 16 adenomas, eight with high expression and eight with low expression of E-cadherin, in order to identify EMT-related transcripts. Candidate transcripts were further explored in vivo in 53 adenomas and in vitro in a rat pituitary GH-producing cell (GH3) after exploring three models for reducing E-cadherin and inducing a mesenchymal phenotype. RESULTS In vivo E-cadherin mRNA expression in tumor tissue is associated negatively with tumor size and invasiveness and positively with GH and IGF-I levels in serum and response to SA treatment. Microarray and subsequent PCR analysis identify several EMT-related genes associated with E-cadherin expression. In vitro, few of these EMT-related genes were regulated by silencing E-cadherin or by TGF-β1 treatment in GH3 cells. In contrast, silencing Esrp1 in GH3 cells regulated many of the EMT-related transcripts. CONCLUSION These results indicate that ESRP1 could be a master regulator of the EMT process in pituitary adenomas causing acromegaly.
Collapse
Affiliation(s)
- Tove Lekva
- Section of Specialized Endocrinology, Department of Endocrinology, and Research Institute for Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
23
|
Piazzon N, Maisonneuve C, Guilleret I, Rotman S, Constam DB. Bicc1 links the regulation of cAMP signaling in polycystic kidneys to microRNA-induced gene silencing. J Mol Cell Biol 2012; 4:398-408. [PMID: 22641646 DOI: 10.1093/jmcb/mjs027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genetic defects in autosomal-dominant polycystic kidney disease (ADPKD) promote cystic growth of renal tubules, at least in part by stimulating the accumulation of cAMP. How renal cAMP levels are regulated is incompletely understood. We show that cAMP and the expression of its synthetic enzyme adenylate cyclase-6 (AC6) are up-regulated in cystic kidneys of Bicc1(-)(/-) knockout mice. Bicc1, a protein comprising three K homology (KH) domains and a sterile alpha motif (SAM), is expressed in proximal tubules. The KH domains independently bind AC6 mRNA and recruit the miR-125a from Dicer, whereas the SAM domain enables silencing by Argonaute and TNRC6A/GW182. Bicc1 similarly induces silencing of the protein kinase inhibitor PKIα by miR-27a. Thus, Bicc1 is needed on these target mRNAs for silencing by specific miRNAs. The repression of AC6 by Bicc1 might explain why cysts in ADPKD patients preferentially arise from distal tubules.
Collapse
Affiliation(s)
- Nathalie Piazzon
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
24
|
The Bic-C family of developmental translational regulators. Comp Funct Genomics 2012; 2012:141386. [PMID: 22611335 PMCID: PMC3352585 DOI: 10.1155/2012/141386] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/18/2012] [Indexed: 12/14/2022] Open
Abstract
Regulation of mRNA translation is especially important during cellular and developmental processes. Many evolutionarily conserved proteins act in the context of multiprotein complexes and modulate protein translation both at the spatial and the temporal levels. Among these, Bicaudal C constitutes a family of RNA binding proteins whose founding member was first identified in Drosophila and contains orthologs in vertebrates. We discuss recent advances towards understanding the functions of these proteins in the context of the cellular and developmental biology of many model organisms and their connection to human disease.
Collapse
|
25
|
Leushacke M, Spörle R, Bernemann C, Brouwer-Lehmitz A, Fritzmann J, Theis M, Buchholz F, Herrmann BG, Morkel M. An RNA interference phenotypic screen identifies a role for FGF signals in colon cancer progression. PLoS One 2011; 6:e23381. [PMID: 21853123 PMCID: PMC3154943 DOI: 10.1371/journal.pone.0023381] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/15/2011] [Indexed: 12/19/2022] Open
Abstract
In tumor cells, stepwise oncogenic deregulation of signaling cascades induces alterations of cellular morphology and promotes the acquisition of malignant traits. Here, we identified a set of 21 genes, including FGF9, as determinants of tumor cell morphology by an RNA interference phenotypic screen in SW480 colon cancer cells. Using a panel of small molecular inhibitors, we subsequently established phenotypic effects, downstream signaling cascades, and associated gene expression signatures of FGF receptor signals. We found that inhibition of FGF signals induces epithelial cell adhesion and loss of motility in colon cancer cells. These effects are mediated via the mitogen-activated protein kinase (MAPK) and Rho GTPase cascades. In agreement with these findings, inhibition of the MEK1/2 or JNK cascades, but not of the PI3K-AKT signaling axis also induced epithelial cell morphology. Finally, we found that expression of FGF9 was strong in a subset of advanced colon cancers, and overexpression negatively correlated with patients' survival. Our functional and expression analyses suggest that FGF receptor signals can contribute to colon cancer progression.
Collapse
Affiliation(s)
- Marc Leushacke
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University Berlin, Berlin, Germany
| | - Ralf Spörle
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Christof Bernemann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Antje Brouwer-Lehmitz
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Johannes Fritzmann
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mirko Theis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- University Hospital Carl Gustav Carus and Medical Faculty, University of Technology Dresden, Dresden, Germany
| | - Frank Buchholz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- University Hospital Carl Gustav Carus and Medical Faculty, University of Technology Dresden, Dresden, Germany
| | - Bernhard G. Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Markus Morkel
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| |
Collapse
|
26
|
Hu B, He X, Li A, Qiu Q, Li C, Liang D, Zhao P, Ma J, Coffey RJ, Zhan Q, Wu G. Cystogenesis in ARPKD results from increased apoptosis in collecting duct epithelial cells of Pkhd1 mutant kidneys. Exp Cell Res 2010; 317:173-87. [PMID: 20875407 DOI: 10.1016/j.yexcr.2010.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/09/2010] [Accepted: 09/19/2010] [Indexed: 12/14/2022]
Abstract
Mutations in the PKHD1 gene result in autosomal recessive polycystic kidney disease (ARPKD) in humans. To determine the molecular mechanism of the cystogenesis in ARPKD, we recently generated a mouse model for ARPKD that carries a targeted mutation in the mouse orthologue of human PKHD1. The homozygous mutant mice display hepatorenal cysts whose phenotypes are similar to those of human ARPKD patients. By littermates of this mouse, we developed two immortalized renal collecting duct cell lines with Pkhd1 and two without. Under nonpermissive culture conditions, the Pkhd1(-/-) renal cells displayed aberrant cell-cell contacts and tubulomorphogenesis. The Pkhd1(-/-) cells also showed significantly reduced cell proliferation and elevated apoptosis. To validate this finding in vivo, we examined proliferation and apoptosis in the kidneys of Pkhd1(-/-) mice and their wildtype littermates. Using proliferation (PCNA and Histone-3) and apoptosis (TUNEL and caspase-3) markers, similar results were obtained in the Pkhd1(-/-) kidney tissues as in the cells. To identify the molecular basis of these findings, we analyzed the effect of Pkhd1 loss on multiple putative signaling regulators. We demonstrated that the loss of Pkhd1 disrupts multiple major phosphorylations of focal adhesion kinase (FAK), and these disruptions either inhibit the Ras/C-Raf pathways to suppress MEK/ERK activity and ultimately reduce cell proliferation, or suppress PDK1/AKT to upregulate Bax/caspase-9/caspase-3 and promote apoptosis. Our findings indicate that apoptosis may be a major player in the cyst formation in ARPKD, which may lead to new therapeutic strategies for human ARPKD.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Caspase 3/genetics
- Caspase 3/metabolism
- Caspase 9/genetics
- Caspase 9/metabolism
- Cell Line, Transformed
- Cell Proliferation
- Crosses, Genetic
- Cysts/genetics
- Disease Models, Animal
- Epithelial Cells/metabolism
- Genes, cdc
- Genotype
- Humans
- In Vitro Techniques
- Kidney/metabolism
- Kidney Tubules, Collecting/metabolism
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Phenotype
- Polycystic Kidney, Autosomal Recessive/genetics
- Polycystic Kidney, Autosomal Recessive/metabolism
- Polycystic Kidney, Autosomal Recessive/pathology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Cell Surface/genetics
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Bo Hu
- Cancer Research Institute, University of South China, Hengyang, Hunan, 421001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|