1
|
Yao LL, Hou WD, Liang Y, Li XD, Ji HH. Spire2 and Rab11a synergistically activate myosin-5b motor function. Biochem Biophys Res Commun 2024; 703:149653. [PMID: 38364682 DOI: 10.1016/j.bbrc.2024.149653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Cellular vesicle long-distance transport along the cytoplasmic actin network has recently been uncovered in several cell systems. In metaphase mouse oocytes, the motor protein myosin-5b (Myo5b) and the actin nucleation factor Spire are recruited to the Rab11a-positive vesicle membrane, forming a ternary complex of Myo5b/Spire/Rab11a that drives the vesicle long-distance transport to the oocyte cortex. However, the mechanism underlying the intermolecular regulation of the Myo5b/Spire/Rab11a complex remains unknown. In this study, we expressed and purified Myo5b, Spire2, and Rab11a proteins, and performed ATPase activity measurements, pulldown and single-molecule motility assays. Our results demonstrate that both Spire2 and Rab11a are required to activate Myo5b motor activity under physiological ionic conditions. The GTBM fragment of Spire2 stimulates the ATPase activity of Myo5b, while Rab11a enhances this activation. This activation occurs by disrupting the head-tail interaction of Myo5b. Furthermore, at the single-molecule level, we observed that the GTBM fragment of Spire2 and Rab11a coordinate to stimulate the Myo5b motility activity. Based on our results, we propose that upon association with the vesicle membrane, Myo5b, Spire2 and Rab11a form a ternary complex, and the inhibited Myo5b is synergistically activated by Spire2 and Rab11a, thereby triggering the long-distance transport of vesicles.
Collapse
Affiliation(s)
- Lin-Lin Yao
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Wei-Dong Hou
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Yi Liang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Xiang-Dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huan-Hong Ji
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
2
|
Dimchev V, Lahmann I, Koestler SA, Kage F, Dimchev G, Steffen A, Stradal TEB, Vauti F, Arnold HH, Rottner K. Induced Arp2/3 Complex Depletion Increases FMNL2/3 Formin Expression and Filopodia Formation. Front Cell Dev Biol 2021; 9:634708. [PMID: 33598464 PMCID: PMC7882613 DOI: 10.3389/fcell.2021.634708] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 01/12/2023] Open
Abstract
The Arp2/3 complex generates branched actin filament networks operating in cell edge protrusion and vesicle trafficking. Here we employ a conditional knockout mouse model permitting tissue- or cell-type specific deletion of the murine Actr3 gene (encoding Arp3). A functional Actr3 gene appeared essential for fibroblast viability and growth. Thus, we developed cell lines for exploring the consequences of acute, tamoxifen-induced Actr3 deletion causing near-complete loss of functional Arp2/3 complex expression as well as abolished lamellipodia formation and membrane ruffling, as expected. Interestingly, Arp3-depleted cells displayed enhanced rather than reduced cell spreading, employing numerous filopodia, and showed little defects in the rates of random cell migration. However, both exploration of new space by individual cells and collective migration were clearly compromised by the incapability to efficiently maintain directionality of migration, while the principal ability to chemotax was only moderately affected. Examination of actin remodeling at the cell periphery revealed reduced actin turnover rates in Arp2/3-deficient cells, clearly deviating from previous sequestration approaches. Most surprisingly, induced removal of Arp2/3 complexes reproducibly increased FMNL formin expression, which correlated with the explosive induction of filopodia formation. Our results thus highlight both direct and indirect effects of acute Arp2/3 complex removal on actin cytoskeleton regulation.
Collapse
Affiliation(s)
- Vanessa Dimchev
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ines Lahmann
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan A Koestler
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frieda Kage
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Georgi Dimchev
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Franz Vauti
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hans-Henning Arnold
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| |
Collapse
|
3
|
Niu F, Sun K, Wei W, Yu C, Wei Z. F-actin disassembly factor MICAL1 binding to Myosin Va mediates cargo unloading during cytokinesis. SCIENCE ADVANCES 2020; 6:6/45/eabb1307. [PMID: 33158857 PMCID: PMC7673715 DOI: 10.1126/sciadv.abb1307] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/25/2020] [Indexed: 05/08/2023]
Abstract
Motor-mediated intracellular trafficking requires motors to position cargoes at proper locations. Myosin Va (MyoVa), an actin-based motor, is a classic model for studying cargo transport. However, the molecular basis underlying cargo unloading in MyoVa-mediated transport has remained enigmatic. We have identified MICAL1, an F-actin disassembly regulator, as a binding partner of MyoVa and shown that MICAL1-MyoVa interaction is critical for localization of MyoVa at the midbody. By binding to MICAL1, MyoVa-mediated transport is terminated, resulting in vesicle unloading at the midbody for efficient cytokinesis. The MyoVa/MICAL1 complex structure reveals that MICAL1 and F-actin assembly factors, Spires, share an overlapped binding surface on MyoVa, suggesting a regulatory role of F-actin dynamics in cargo unloading. Down-regulating F-actin disassembly by a MICAL1 mutant significantly reduces MyoVa and vesicles accumulating at the midbody. Collectively, our findings demonstrate that MyoVa binds to MICAL1 at the midbody destination and triggers F-actin disassembly to unload the vesicle cargo.
Collapse
Affiliation(s)
- Fengfeng Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kang Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
| | - Wenjie Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Wu X, Yan T, Hao L, Zhu Y. Wnt5a induces ROR1 and ROR2 to activate RhoA in esophageal squamous cell carcinoma cells. Cancer Manag Res 2019; 11:2803-2815. [PMID: 31114334 PMCID: PMC6497886 DOI: 10.2147/cmar.s190999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Wnt5a is a nontransforming Wnt family member and identified as an oncogenic role on cell motility of breast cancer and glioblastoma. However, Wnt5a signaling in esophageal squamous cell carcinoma (ESCC) progression remains poorly defined. Materials and methods: Immunohistochemistry assays were used to measure the Wnt5a expression in ESCC sections. We evaluated the role of receptor tyrosine kinase-like orphan receptor (ROR)1/2 and RhoA on the invasion of ESCC cells by using cell invasion assay, immunoprecipitation, immunofluorescence, and Rho activation assay. Results: Wnt5a was highly expressed in invasive ESCC tissues compared with that in noninvasive and nonmalignant tissues. In vitro assay showed that sfrp2 (Wnt5a antagonist) largely blocked the invasion but not the colony formation of KYSE410 and KYSE520 ESCC cells. Anti-ROR1 mAb and ROR2-shRNA markedly inhibited the disheveled-associated activator of morphogenesis 1 (DAAM1) activity, RhoA activity, microfilament formation and the invasion of ESCC cells. Fluorescent phalloidin staining experiment showed ROR1/ROR2, receptors of Wnt5a signaling, and regulated the reassembly of actin filaments in ESCC cells. Further experiments showed that ROR1 was strongly associated with ROR2 in KYSE410 cells. The activation of RhoA, not Rac1 or Rac2, was involved in ROR1/ROR2 signaling pathway. By using DAAM1 shRNA, we found that RhoA was downstream of DAAM1, which could be rescued by the overexpression of wild-type DAAM1. This could be further proved by a RhoA inhibitor CCG-1423 which could inhibit the invasion of ESCC cells but not DAAM1 activity. Conclusions: Wnt5a promotes ESCC cell invasion via ROR1 and ROR2 receptors and DAAM1/RhoA signaling pathway.
Collapse
Affiliation(s)
- Xuping Wu
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, People's Republic of China
| | - Ting Yan
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Leiyu Hao
- Department of Physiology, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, People's Republic of China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
5
|
Mei J, Yan T, Huang Y, Xia T, Chang F, Shen S, Hao L, Chen Y, Wang Z, Jiang X, Xu B, Zhu Y. A DAAM1 3'-UTR SNP mutation regulates breast cancer metastasis through affecting miR-208a-5p-DAAM1-RhoA axis. Cancer Cell Int 2019; 19:55. [PMID: 30911286 PMCID: PMC6417246 DOI: 10.1186/s12935-019-0747-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Dishevelled-associated activator of morphogenesis 1 (DAAM1) is a member of microfilament-related formins and mediates cell motility in breast cancer (BrCa). However, the genetic mutation status of DAAM1 mRNA and its correlation with pathological characteristics are still unclearly. Methods: A patient cohort and BrCa cells were recruited to demonstrate the role of functional SNP in microRNA-208a-5p binding site of DAAM1 3′-UTR and underlying mechanism in BrCa metastasis. Methods A patient cohort and BrCa cells were recruited to demonstrate the role of functional SNP in microRNA-208a-5p binding site of DAAM1 3′-UTR and underlying mechanism in BrCa metastasis. Results The expression and activation of DAAM1 increased markedly in lymphnode metastatic tissues. A genetic variant (rs79036859 A/G) was validated in the miR-208a-5p binding site of DAAM1 3′-UTR. The G genotype (AG/GG) was a risk genotype for the metastasis of BrCa by reducing binding affinity of miR-208a-5p for the DAAM1 3′-UTR. Furthermore, the miR-208a-5p expression level was significantly suppressed in lymphnode metastatic tissues compared with that in non-lymphnode metastatic tissues. Overexpression of miR-208a-5p inhibited DAAM1/RhoA signaling pathway, thereby leading to the decrease of the migratory ability. Conclusion Overall, the rs79036859 G variant of DAAM1 3′-UTR was identified as a relevant role in BrCa metastasis via the diversity of miR-208a-5p binding affinity. Electronic supplementary material The online version of this article (10.1186/s12935-019-0747-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Mei
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Ting Yan
- 2Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166 China
| | - Yifu Huang
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China.,3Department of Prevention and Healthcare, Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, 214400 China
| | - Tiansong Xia
- 4Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210036 China
| | - Fei Chang
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Shuning Shen
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Leiyu Hao
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Yin Chen
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Zhongyuan Wang
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Xiaozheng Jiang
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Bujie Xu
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China
| | - Yichao Zhu
- 1Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166 China.,5State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
6
|
Rottner K, Faix J, Bogdan S, Linder S, Kerkhoff E. Actin assembly mechanisms at a glance. J Cell Sci 2018; 130:3427-3435. [PMID: 29032357 DOI: 10.1242/jcs.206433] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The actin cytoskeleton and associated motor proteins provide the driving forces for establishing the astonishing morphological diversity and dynamics of mammalian cells. Aside from functions in protruding and contracting cell membranes for motility, differentiation or cell division, the actin cytoskeleton provides forces to shape and move intracellular membranes of organelles and vesicles. To establish the many different actin assembly functions required in time and space, actin nucleators are targeted to specific subcellular compartments, thereby restricting the generation of specific actin filament structures to those sites. Recent research has revealed that targeting and activation of actin filament nucleators, elongators and myosin motors are tightly coordinated by conserved protein complexes to orchestrate force generation. In this Cell Science at a Glance article and the accompanying poster, we summarize and discuss the current knowledge on the corresponding protein complexes and their modes of action in actin nucleation, elongation and force generation.
Collapse
Affiliation(s)
- Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Sven Bogdan
- Institute for Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Eugen Kerkhoff
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Yan T, Zhang A, Shi F, Chang F, Mei J, Liu Y, Zhu Y. Integrin αvβ3-associated DAAM1 is essential for collagen-induced invadopodia extension and cell haptotaxis in breast cancer cells. J Biol Chem 2018; 293:10172-10185. [PMID: 29752407 DOI: 10.1074/jbc.ra117.000327] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/02/2018] [Indexed: 01/17/2023] Open
Abstract
The formin protein dishevelled-associated activator of morphogenesis 1 (DAAM1) polymerizes straight actin filaments and mediates migration of cancer cells. However, how DAAM1 governs cell haptotaxis in response to collagen remains unexplored in breast cancer cells. We hypothesized that DAAM1 mediates invadopodia extension and cell haptotaxis in response to type IV collagen in association with integrin receptors. Using Boyden chamber membranes coated with type IV collagen, we show here that type IV collagen activates both DAAM1 and Ras homolog family member A (RHOA) and promotes haptotaxis of MDA-MB-231 and MDA-MB-453 breast cancer cells, a process abolished by treatment with the integrin αvβ3 inhibitor cyclo(-RGDfK). shRNA-mediated knockdown of DAAM1 or a dominant-negative DAAM1 mutation (N-DAAM1) significantly decreased collagen-induced RHOA activity and the assembly of stress fibers, invadopodia extension, and cell haptotaxis. Immunoprecipitation and pulldown assays revealed that integrin αvβ3 is associated with, but only indirectly binds to, the C-terminal DAD domain of DAAM1 in mammalian cells. Blockade of RHOA activation with a specific inhibitor (CCG-1423) or via a dominant-negative RHOA mutation (RHOA-N19) suppressed collagen-induced invadopodia extension and haptotaxis of the MDA-MB-231 and MDA-MB-453 cells. Immunoblotting and immunofluorescence assays indicated high DAAM1 and RHOA expression in invadopodia, which was abolished by cyclo(-RGDfK) treatment or DAAM1 knockdown. These findings have uncovered an integrin αvβ3/DAAM1/RHOA signaling pathway for type IV collagen-induced invadopodia extension and haptotaxis in breast cancer cells. Targeting this pathway may be a means for reducing invasiveness and metastasis of breast cancer.
Collapse
Affiliation(s)
- Ting Yan
- From the Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug of Jiangsu Province
| | - Ailiang Zhang
- the Department of Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou 213003, China, and
| | - Fangfang Shi
- the Department of Oncology, Zhongda Hospital Southeast University, Nanjing 210009, China
| | | | - Jie Mei
- the Department of Physiology, and
| | | | - Yichao Zhu
- the Department of Physiology, and .,the State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
8
|
Wen Q, Li N, Xiao X, Lui WY, Chu DS, Wong CKC, Lian Q, Ge R, Lee WM, Silvestrini B, Cheng CY. Actin nucleator Spire 1 is a regulator of ectoplasmic specialization in the testis. Cell Death Dis 2018; 9:208. [PMID: 29434191 PMCID: PMC5833730 DOI: 10.1038/s41419-017-0201-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/10/2017] [Accepted: 12/06/2017] [Indexed: 01/26/2023]
Abstract
Germ cell differentiation during the epithelial cycle of spermatogenesis is accompanied by extensive remodeling at the Sertoli cell-cell and Sertoli cell-spermatid interface to accommodate the transport of preleptotene spermatocytes and developing spermatids across the blood-testis barrier (BTB) and the adluminal compartment of the seminiferous epithelium, respectively. The unique cell junction in the testis is the actin-rich ectoplasmic specialization (ES) designated basal ES at the Sertoli cell-cell interface, and the apical ES at the Sertoli-spermatid interface. Since ES dynamics (i.e., disassembly, reassembly and stabilization) are supported by actin microfilaments, which rapidly converts between their bundled and unbundled/branched configuration to confer plasticity to the ES, it is logical to speculate that actin nucleation proteins play a crucial role to ES dynamics. Herein, we reported findings that Spire 1, an actin nucleator known to polymerize actins into long stretches of linear microfilaments in cells, is an important regulator of ES dynamics. Its knockdown by RNAi in Sertoli cells cultured in vitro was found to impede the Sertoli cell tight junction (TJ)-permeability barrier through changes in the organization of F-actin across Sertoli cell cytosol. Unexpectedly, Spire 1 knockdown also perturbed microtubule (MT) organization in Sertoli cells cultured in vitro. Biochemical studies using cultured Sertoli cells and specific F-actin vs. MT polymerization assays supported the notion that a transient loss of Spire 1 by RNAi disrupted Sertoli cell actin and MT polymerization and bundling activities. These findings in vitro were reproduced in studies in vivo by RNAi using Spire 1-specific siRNA duplexes to transfect testes with Polyplus in vivo-jetPEI as a transfection medium with high transfection efficiency. Spire 1 knockdown in the testis led to gross disruption of F-actin and MT organization across the seminiferous epithelium, thereby impeding the transport of spermatids and phagosomes across the epithelium and perturbing spermatogenesis. In summary, Spire 1 is an ES regulator to support germ cell development during spermatogenesis.
Collapse
Affiliation(s)
- Qing Wen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Avenue, New York, NY, 10065, USA
| | - Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Avenue, New York, NY, 10065, USA
| | - Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Avenue, New York, NY, 10065, USA
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Wing-Yee Lui
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Darren S Chu
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Avenue, New York, NY, 10065, USA
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Qingquan Lian
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | | | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Welz T, Kerkhoff E. Exploring the iceberg: Prospects of coordinated myosin V and actin assembly functions in transport processes. Small GTPases 2017; 10:111-121. [PMID: 28394692 DOI: 10.1080/21541248.2017.1281863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Spir actin nucleators and myosin V motor proteins were recently discovered to coexist in a protein complex. The direct interaction allows the coordinated activation of actin motor proteins and actin filament track generation at vesicle membranes. By now the cooperation of myosin V (MyoV) motors and Spir actin nucleation function has only been shown in the exocytic transport of Rab11 vesicles in metaphase mouse oocytes. Next to Rab11, myosin V motors however interact with a variety of Rab GTPases including Rab3, Rab8 and Rab10. As a common theme most of the MyoV interacting Rab GTPases function at different steps along the exocytic transport routes. We here summarize the different transport functions of class V myosins and provide as proof of principle data showing a colocalization of Spir actin nucleators and MyoVa at Rab8a vesicles. This suggests that besides Rab11/MyoV transport also the Rab8/MyoV and possibly other MyoV transport processes recruit Spir actin filament nucleation function.
Collapse
Affiliation(s)
- Tobias Welz
- a University Hospital Regensburg, Department of Neurology , Molecular Cell Biology Laboratory , Regensburg , Germany
| | - Eugen Kerkhoff
- a University Hospital Regensburg, Department of Neurology , Molecular Cell Biology Laboratory , Regensburg , Germany
| |
Collapse
|
10
|
Wen Q, Tang EI, Xiao X, Gao Y, Chu DS, Mruk DD, Silvestrini B, Cheng CY. Transport of germ cells across the seminiferous epithelium during spermatogenesis-the involvement of both actin- and microtubule-based cytoskeletons. Tissue Barriers 2016; 4:e1265042. [PMID: 28123928 DOI: 10.1080/21688370.2016.1265042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
The transport of germ cells from the base of the seminiferous epithelium toward the luminal edge of the tubule lumen in the adluminal compartment during the epithelial cycle is an essential cellular event to support spermatogenesis. Thus, fully developed elongated spermatids (i.e., spermatozoa) can be released at spermiation in late stage VIII in rodents versus late stage II in humans. Earlier studies to examine the molecular mechanism(s) that support germ cell transport, most notably the transport of preleptotene spermatocytes across the blood-testis barrier (BTB), and the transport of elongating spermatids across the adluminal compartment during spermiogenesis, is focused on the adhesion protein complexes at the cell-cell interface. It is generally accepted that cell junctions at the Sertoli cell-cell interface at the BTB, including the actin-based tight junction (TJ), basal ectoplasmic specialization (basal ES, a testis-specific adherens junction) and gap junction (GJ), as well as the intermediate filament-based desmosome undergo constant remodeling to accommodate the transport of preleptotene spermatocytes across the barrier. On the other hand, similar junction dynamics (i.e., disassembly, reassembly and stabilization/maintenance) take place at the Sertoli-spermatid interface. Emerging evidence has shown that junction dynamics at the Sertoli cell-cell vs. Sertoli-germ cell interface are supported by the 2 intriguingly coordinated cytoskeletons, namely the F-actin- and microtubule (MT)-based cytoskeletons. Herein, we provide a brief summary and critically evaluate the recent findings. We also provide an updated hypothetical concept regarding germ cell transport in the testis utilizing the MT-conferred tracks and the MT-specific motor proteins. Furthermore, this cellular event is also supported by the F-actin-based cytoskeleton.
Collapse
Affiliation(s)
- Qing Wen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| | - Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA; Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| | - Darren S Chu
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| | | | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| |
Collapse
|
11
|
Andritschke D, Dilling S, Emmenlauer M, Welz T, Schmich F, Misselwitz B, Rämö P, Rottner K, Kerkhoff E, Wada T, Penninger JM, Beerenwinkel N, Horvath P, Dehio C, Hardt WD. A Genome-Wide siRNA Screen Implicates Spire1/2 in SipA-Driven Salmonella Typhimurium Host Cell Invasion. PLoS One 2016; 11:e0161965. [PMID: 27627128 PMCID: PMC5023170 DOI: 10.1371/journal.pone.0161965] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
Salmonella Typhimurium (S. Tm) is a leading cause of diarrhea. The disease is triggered by pathogen invasion into the gut epithelium. Invasion is attributed to the SPI-1 type 3 secretion system (T1). T1 injects effector proteins into epithelial cells and thereby elicits rearrangements of the host cellular actin cytoskeleton and pathogen invasion. The T1 effector proteins SopE, SopB, SopE2 and SipA are contributing to this. However, the host cell factors contributing to invasion are still not completely understood. To address this question comprehensively, we used Hela tissue culture cells, a genome-wide siRNA library, a modified gentamicin protection assay and S. TmSipA, a sopBsopE2sopE mutant which strongly relies on the T1 effector protein SipA to invade host cells. We found that S. TmSipA invasion does not elicit membrane ruffles, nor promote the entry of non-invasive bacteria "in trans". However, SipA-mediated infection involved the SPIRE family of actin nucleators, besides well-established host cell factors (WRC, ARP2/3, RhoGTPases, COPI). Stage-specific follow-up assays and knockout fibroblasts indicated that SPIRE1 and SPIRE2 are involved in different steps of the S. Tm infection process. Whereas SPIRE1 interferes with bacterial binding, SPIRE2 influences intracellular replication of S. Tm. Hence, these two proteins might fulfill non-redundant functions in the pathogen-host interaction. The lack of co-localization hints to a short, direct interaction between S. Tm and SPIRE proteins or to an indirect effect.
Collapse
Affiliation(s)
- Daniel Andritschke
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | - Sabrina Dilling
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | | | - Tobias Welz
- Department of Neurology, University of Regensburg, DE- 93040, Regensburg, Germany
| | - Fabian Schmich
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, CH-4058, Basel, Switzerland
- SIB Swiss Institute for Bioinformatics, 4058, Basel, Switzerland
| | - Benjamin Misselwitz
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, CH-8091, Zurich, Switzerland
| | - Pauli Rämö
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Eugen Kerkhoff
- Department of Neurology, University of Regensburg, DE- 93040, Regensburg, Germany
| | - Teiji Wada
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030, Vienna, Austria
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030, Vienna, Austria
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, CH-4058, Basel, Switzerland
- SIB Swiss Institute for Bioinformatics, 4058, Basel, Switzerland
| | - Peter Horvath
- Light Microscopy Center, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | - Christoph Dehio
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| |
Collapse
|
12
|
Li N, Mruk DD, Tang EI, Lee WM, Wong CKC, Cheng CY. Formin 1 Regulates Microtubule and F-Actin Organization to Support Spermatid Transport During Spermatogenesis in the Rat Testis. Endocrinology 2016; 157:2894-908. [PMID: 27145014 PMCID: PMC4929546 DOI: 10.1210/en.2016-1133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Formin 1 confers actin nucleation by generating long stretches of actin microfilaments to support cell movement, cell shape, and intracellular protein trafficking. Formin 1 is likely involved in microtubule (MT) dynamics due to the presence of a MT binding domain near its N terminus. Here, formin 1 was shown to structurally interact with α-tubulin, the building block of MT, and also end-binding protein 1 (a MT plus [+]-end-binding protein that stabilizes MT) in the testis. Knockdown of formin 1 in Sertoli cells with an established tight junction barrier was found to induce down-regulation of detyrosinated MT (a stabilized form of MT), and disorganization of MTs, in which MTs were retracted from the cell cortical zone, mediated through a loss of MT polymerization and down-regulation of Akt1/2 signaling kinase. An efficient knockdown of formin 1 in the testis reduced the number of track-like structures conferred by MTs and F-actin considerably, causing defects in spermatid and phagosome transport across the seminiferous epithelium. In summary, formin1 maintains MT and F-actin track-like structures to support spermatid and phagosome transport across the seminiferous epithelium during spermatogenesis.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (N.L., D.D.M., E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065-6307; College of Life Sciences and Oceanography (N.L.), Shenzhen University, Shenzhen 518060, China; School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China; and Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (N.L., D.D.M., E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065-6307; College of Life Sciences and Oceanography (N.L.), Shenzhen University, Shenzhen 518060, China; School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China; and Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (N.L., D.D.M., E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065-6307; College of Life Sciences and Oceanography (N.L.), Shenzhen University, Shenzhen 518060, China; School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China; and Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China
| | - Will M Lee
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (N.L., D.D.M., E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065-6307; College of Life Sciences and Oceanography (N.L.), Shenzhen University, Shenzhen 518060, China; School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China; and Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China
| | - Chris K C Wong
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (N.L., D.D.M., E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065-6307; College of Life Sciences and Oceanography (N.L.), Shenzhen University, Shenzhen 518060, China; School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China; and Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (N.L., D.D.M., E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065-6307; College of Life Sciences and Oceanography (N.L.), Shenzhen University, Shenzhen 518060, China; School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China; and Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
13
|
Gao Y, Lui WY, Lee WM, Cheng CY. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep 2016; 6:28589. [PMID: 27358069 PMCID: PMC4928075 DOI: 10.1038/srep28589] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
Crumbs homolog 3 (or Crumbs3, CRB3) is a polarity protein expressed by Sertoli and germ cells at the basal compartment in the seminiferous epithelium. CRB3 also expressed at the blood-testis barrier (BTB), co-localized with F-actin, TJ proteins occludin/ZO-1 and basal ES (ectoplasmic specialization) proteins N-cadherin/β-catenin at stages IV-VII only. The binding partners of CRB3 in the testis were the branched actin polymerization protein Arp3, and the barbed end-capping and bundling protein Eps8, illustrating its possible role in actin organization. CRB3 knockdown (KD) by RNAi in Sertoli cells with an established tight junction (TJ)-permeability barrier perturbed the TJ-barrier via changes in the distribution of TJ- and basal ES-proteins at the cell-cell interface. These changes were the result of CRB3 KD-induced re-organization of actin microfilaments, in which actin microfilaments were truncated, and extensively branched, thereby destabilizing F-actin-based adhesion protein complexes at the BTB. Using Polyplus in vivo-jetPEI as a transfection medium with high efficiency for CRB3 KD in the testis, the CRB3 KD testes displayed defects in spermatid and phagosome transport, and also spermatid polarity due to a disruption of F-actin organization. In summary, CRB3 is an actin microfilament regulator, playing a pivotal role in organizing actin filament bundles at the ES.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, New York, USA
| | - Wing-Yee Lui
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, New York, USA
| |
Collapse
|
14
|
Steffen A, Stradal TEB, Rottner K. Signalling Pathways Controlling Cellular Actin Organization. Handb Exp Pharmacol 2016; 235:153-178. [PMID: 27757765 DOI: 10.1007/164_2016_35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane. Rho-family GTPases are at the core of these pathways, and dissection of their precise contributions to actin reorganization in different cell types and tissues will thus continue to improve our understanding of these important signalling nodes. Furthermore, we will draw your attention to the emerging theme of actin reorganization on intracellular membranes, its functional relation to Rho-GTPase signalling, and its relevance for the exciting phenomenon autophagy.
Collapse
Affiliation(s)
- Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| |
Collapse
|
15
|
Manor U, Bartholomew S, Golani G, Christenson E, Kozlov M, Higgs H, Spudich J, Lippincott-Schwartz J. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 2015; 4:e08828. [PMID: 26305500 PMCID: PMC4574297 DOI: 10.7554/elife.08828] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division.
Collapse
Affiliation(s)
- Uri Manor
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Sadie Bartholomew
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Gonen Golani
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Eric Christenson
- Unit on Structural and Chemical Biology of Membrane Proteins, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Michael Kozlov
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Henry Higgs
- Department of Biochemistry, Geisel School of Medicine, Hanover, United States
| | - James Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| |
Collapse
|
16
|
Li N, Mruk DD, Wong CKC, Han D, Lee WM, Cheng CY. Formin 1 Regulates Ectoplasmic Specialization in the Rat Testis Through Its Actin Nucleation and Bundling Activity. Endocrinology 2015; 156:2969-83. [PMID: 25901598 PMCID: PMC4511136 DOI: 10.1210/en.2015-1161] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During spermatogenesis, developing spermatids and preleptotene spermatocytes are transported across the adluminal compartment and the blood-testis barrier (BTB), respectively, so that spermatids line up near the luminal edge to prepare for spermiation, whereas preleptotene spermatocytes enter the adluminal compartment to differentiate into late spermatocytes to prepare for meiosis I/II. These cellular events involve actin microfilament reorganization at the testis-specific, actin-rich Sertoli-spermatid and Sertoli-Sertoli cell junction called apical and basal ectoplasmic specialization (ES). Formin 1, an actin nucleation protein known to promote actin microfilament elongation and bundling, was expressed at the apical ES but limited to stage VII of the epithelial cycle, whereas its expression at the basal ES/BTB stretched from stage III to stage VI, diminished in stage VII, and was undetectable in stage VIII tubules. Using an in vitro model of studying Sertoli cell BTB function by RNA interference and biochemical assays to monitor actin bundling and polymerization activity, a knockdown of formin 1 in Sertoli cells by approximately 70% impeded the tight junction-permeability function. This disruptive effect on the tight junction barrier was mediated by a loss of actin microfilament bundling and actin polymerization capability mediated by changes in the localization of branched actin-inducing protein Arp3 (actin-related protein 3), and actin bundling proteins Eps8 (epidermal growth factor receptor pathway substrate 8) and palladin, thereby disrupting cell adhesion. Formin 1 knockdown in vivo was found to impede spermatid adhesion, transport, and polarity, causing defects in spermiation in which elongated spermatids remained embedded into the epithelium in stage IX tubules, mediated by changes in the spatiotemporal expression of Arp3, Eps8, and palladin. In summary, formin 1 is a regulator of ES dynamics.
Collapse
Affiliation(s)
- Nan Li
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - Dolores D Mruk
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - Chris K C Wong
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - Daishu Han
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - Will M Lee
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - C Yan Cheng
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Li N, Mruk DD, Tang EI, Wong CK, Lee WM, Silvestrini B, Cheng CY. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis. SPERMATOGENESIS 2015; 5:e1066476. [PMID: 26413414 DOI: 10.1080/21565562.2015.1066476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022]
Abstract
Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| | - Chris Kc Wong
- Department of Biology; Hong Kong Baptist University ; Hong Kong, China
| | - Will M Lee
- School of Biological Sciences; University of Hong Kong ; Hong Kong, China
| | | | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| |
Collapse
|
18
|
Abu Taha A, Schnittler HJ. Dynamics between actin and the VE-cadherin/catenin complex: novel aspects of the ARP2/3 complex in regulation of endothelial junctions. Cell Adh Migr 2015; 8:125-35. [PMID: 24621569 DOI: 10.4161/cam.28243] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endothelial adherens junctions are critical for physiological and pathological processes such as differentiation, maintenance of entire monolayer integrity, and the remodeling. The endothelial-specific VE-cadherin/catenin complex provides the backbone of adherens junctions and acts in close interaction with actin filaments and actin/myosin-mediated contractility to fulfill the junction demands. The functional connection between the cadherin/catenin complex and actin filaments might be either directly through ?-catenins, or indirectly e.g., via linker proteins such as vinculin, p120ctn, ?-actinin, or EPLIN. However, both junction integrity and dynamic remodeling have to be contemporarily coordinated. The actin-related protein complex ARP2/3 and its activating molecules, such as N-WASP and WAVE, have been shown to regulate the lammellipodia-mediated formation of cell junctions in both epithelium and endothelium. Recent reports now demonstrate a novel aspect of the ARP2/3 complex and the nucleating-promoting factors in the maintenance of endothelial barrier function and junction remodeling of established endothelial cell junctions. Those mechanisms open novel possibilities; not only in fulfilling physiological demands but obtained information may be of critical importance in pathologies such as wound healing, angiogenesis, inflammation, and cell diapedesis.
Collapse
Affiliation(s)
- Abdallah Abu Taha
- Institute of Anatomy & Vascular Biology; WWU-Münster, Vesaliusweg 2-4; Münster, Germany
| | - Hans-J Schnittler
- Institute of Anatomy & Vascular Biology; WWU-Münster, Vesaliusweg 2-4; Münster, Germany
| |
Collapse
|
19
|
Tamano H, Minamino T, Fujii H, Takada S, Nakamura M, Ando M, Takeda A. Blockade of intracellular Zn2+ signaling in the dentate gyrus erases recognition memory via impairment of maintained LTP. Hippocampus 2015; 25:952-62. [PMID: 25603776 DOI: 10.1002/hipo.22418] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2015] [Indexed: 11/10/2022]
Abstract
There is no evidence on the precise role of synaptic Zn2+ signaling on the retention and recall of recognition memory. On the basis of the findings that intracellular Zn2+ signaling in the dentate gyrus is required for object recognition, short-term memory, the present study deals with the effect of spatiotemporally blocking Zn2+ signaling in the dentate gyrus after LTP induction and learning. Three-day-maintained LTP was impaired 1 day after injection of clioquinol into the dentate gyrus, which transiently reduced intracellular Zn2+ signaling in the dentate gyrus. The irreversible impairment was rescued not only by co-injection of ZnCl2 , which ameliorated the loss of Zn2+ signaling, but also by pre-injection of Jasplakinolide, a stabilizer of F-actin, prior to clioquinol injection. Simultaneously, 3-day-old space recognition memory was impaired 1 day after injection of clioquinol into the dentate gyrus, but not by pre-injection of Jasplakinolide. Jasplakinolide also rescued both impairments of 3-day-maintained LTP and 3-day-old memory after injection of ZnAF-2DA into the dentate gyrus, which blocked intracellular Zn2+ signaling in the dentate gyrus. The present paper indicates that the blockade and/or loss of intracellular Zn2+ signaling in the dentate gyrus coincidently impair maintained LTP and recognition memory. The mechanism maintaining LTP via intracellular Zn2+ signaling in dentate granule cells, which may be involved in the formation of F-actin, may retain space recognition memory.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-Ku, Shizuoka, Japan
| | - Tatsuya Minamino
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-Ku, Shizuoka, Japan
| | - Hiroaki Fujii
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-Ku, Shizuoka, Japan
| | - Shunsuke Takada
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-Ku, Shizuoka, Japan
| | - Masatoshi Nakamura
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-Ku, Shizuoka, Japan
| | - Masaki Ando
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-Ku, Shizuoka, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-Ku, Shizuoka, Japan.,Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-Ku, Shizuoka, Japan
| |
Collapse
|
20
|
Cvrčková F, Oulehlová D, Žárský V. Formins: linking cytoskeleton and endomembranes in plant cells. Int J Mol Sci 2014; 16:1-18. [PMID: 25546384 PMCID: PMC4307232 DOI: 10.3390/ijms16010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/17/2014] [Indexed: 02/07/2023] Open
Abstract
The cytoskeleton plays a central part in spatial organization of the plant cytoplasm, including the endomebrane system. However, the mechanisms involved are so far only partially understood. Formins (FH2 proteins), a family of evolutionarily conserved proteins sharing the FH2 domain whose dimer can nucleate actin, mediate the co-ordination between actin and microtubule cytoskeletons in multiple eukaryotic lineages including plants. Moreover, some plant formins contain transmembrane domains and participate in anchoring cytoskeletal structures to the plasmalemma, and possibly to other membranes. Direct or indirect membrane association is well documented even for some fungal and metazoan formins lacking membrane insertion motifs, and FH2 proteins have been shown to associate with endomembranes and modulate their dynamics in both fungi and metazoans. Here we summarize the available evidence suggesting that formins participate in membrane trafficking and endomembrane, especially ER, organization also in plants. We propose that, despite some methodological pitfalls inherent to in vivo studies based on (over)expression of truncated and/or tagged proteins, formins are beginning to emerge as candidates for the so far somewhat elusive link between the plant cytoskeleton and the endomembrane system.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic.
| | - Denisa Oulehlová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic.
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
21
|
Takeda A, Fujii H, Minamino T, Tamano H. Intracellular Zn(2+) signaling in cognition. J Neurosci Res 2014; 92:819-24. [PMID: 24723300 DOI: 10.1002/jnr.23385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/30/2014] [Accepted: 02/21/2014] [Indexed: 12/22/2022]
Abstract
Brain zinc homeostasis is strictly controlled under healthy conditions, indicating the importance of zinc for physiological function in the brain. A part of zinc in the brain exists in the synaptic vesicles, is released from a subclass of glutamatergic neurons (i.e., zincergic neurons), and serves as a signal factor (Zn(2+) signal) in the intracellular (cytosol) compartment as well as in the extracellular compartment. Zn(2+) signaling is dynamically linked to glutamate signaling and may be involved in synaptic plasticity, such as long-term potentiaion and cognitive activity. In zincergic synapses, intracellular Zn(2+) signaling in the postsynaptic neurons, which is linked to Zn(2+) release from zincergic neuron terminals, plays a role in cognitive activity. When nonzincergic synapses participate in cognition, on the other hand, it is possible that intracellular Zn(2+) signaling, which is due mainly to Zn(2+) release from the internal stores and/or metallothioneins, also is involved in cognitive activity, because zinc-dependent system such as zinc-binding proteins is usually required for cognitive process. Intracellular Zn(2+) dynamics may be modified via an endocrine system activity, glucocorticoid secretion in both zincergic and nonzincergic neurons, which is linked to a long-lasting change in synaptic efficacy. On the basis of the evidence of cognitive decline caused by the lack and/or the blockade of synaptic Zn(2+) signaling, this article summarizes the involvement of intracellular Zn(2+) signaling in zincergic synapses in cognition and a hypothetical involvement of that in nonzincergic synapses.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Bioorganic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | |
Collapse
|
22
|
Cvrčková F. Formins and membranes: anchoring cortical actin to the cell wall and beyond. FRONTIERS IN PLANT SCIENCE 2013; 4:436. [PMID: 24204371 PMCID: PMC3817587 DOI: 10.3389/fpls.2013.00436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/13/2013] [Indexed: 05/03/2023]
Abstract
Formins are evolutionarily conserved eukaryotic proteins participating in actin and microtubule organization. Land plants have three formin clades, with only two - Class I and II - present in angiosperms. Class I formins are often transmembrane proteins, residing at the plasmalemma and anchoring the cortical cytoskeleton across the membrane to the cell wall, while Class II formins possess a PTEN-related membrane-binding domain. Lower plant Class III and non-plant formins usually contain domains predicted to bind RHO GTPases that are membrane-associated. Thus, some kind of membrane anchorage appears to be a common formin feature. Direct interactions between various non-plant formins and integral or peripheral membrane proteins have indeed been reported, with varying mechanisms and biological implications. Besides of summarizing new data on Class I and Class II formin-membrane relationships, this review surveys such "non-classical" formin-membrane interactions and examines which, if any, of them may be evolutionarily conserved and operating also in plants. FYVE, SH3 and BAR domain-containing proteins emerge as possible candidates for such conserved membrane-associated formin partners.
Collapse
Affiliation(s)
- Fatima Cvrčková
- *Correspondence: Fatima Cvrčková, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43, Prague, Czech Republic e-mail:
| |
Collapse
|
23
|
Ucar H, Tachibana K, Kishimoto T. The Mos-MAPK pathway regulates Diaphanous-related formin activity to drive cleavage furrow closure during polar body extrusion in starfish oocytes. J Cell Sci 2013; 126:5153-65. [PMID: 24046444 DOI: 10.1242/jcs.130476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Maintenance of spindle attachment to the cortex and formation of the cleavage furrow around the protruded spindle are essential for polar body extrusion (PBE) during meiotic maturation of oocytes. Although spindle movement to the cortex has been well-studied, how the spindle is maintained at the cortex during PBE is unknown. Here, we show that activation of Diaphanous-related formin mediated by mitogen-activated protein kinase (MAPK) is required for tight spindle attachment to the cortex and cleavage furrow closure during PBE in starfish (Asterina pectinifera) oocytes. A. pectinifera Diaphanous-related formin (ApDia) had a distinct localization in immature oocytes and was localized to the cleavage furrow during PBE. Inhibition of the Mos-MAPK pathway or the actin nucleating activity of formin homology 2 domain prevented cleavage furrow closure and resulted in PBE failure. In MEK/MAPK-inhibited oocytes, activation of ApDia by relief of its intramolecular inhibition restored PBE. In summary, this study elucidates a link between the Mos-MAPK pathway and Diaphanous-related formins, that is responsible for maintaining tight spindle attachment to the cortex and cleavage furrow closure during PBE.
Collapse
Affiliation(s)
- Hasan Ucar
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
24
|
Cvrčková F. Formins: emerging players in the dynamic plant cell cortex. SCIENTIFICA 2012; 2012:712605. [PMID: 24278734 PMCID: PMC3820618 DOI: 10.6064/2012/712605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/16/2012] [Indexed: 05/11/2023]
Abstract
Formins (FH2 proteins) are an evolutionarily conserved family of eukaryotic proteins, sharing the common FH2 domain. While they have been, until recently, understood mainly as actin nucleators, formins are also engaged in various additional aspects of cytoskeletal organization and signaling, including, but not limited to, the crosstalk between the actin and microtubule networks. A surprising diversity of domain organizations has been discovered among the FH2 proteins, and specific domain setups have been found in plants. Seed plants have two clades of formins, one of them (Class I) containing mostly transmembrane proteins, while members of the other one (Class II) may be anchored to membranes via a putative membrane-binding domain related to the PTEN antioncogene. Thus, plant formins present good candidates for possible mediators of coordination of the cortical actin and microtubule cytoskeletons, as well as their attachment to the plasma membrane, that is, aspects of cell cortex organization likely to be important for cell and tissue morphogenesis. Although experimental studies of plant formin function are hampered by the large number of formin genes and their functional redundancy, recent experimental work has already resulted in some remarkable insights into the function of FH2 proteins in plants.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague, Czech Republic
| |
Collapse
|
25
|
Oelkers JM, Vinzenz M, Nemethova M, Jacob S, Lai FPL, Block J, Szczodrak M, Kerkhoff E, Backert S, Schlüter K, Stradal TEB, Small JV, Koestler SA, Rottner K. Microtubules as platforms for assaying actin polymerization in vivo. PLoS One 2011; 6:e19931. [PMID: 21603613 PMCID: PMC3095617 DOI: 10.1371/journal.pone.0019931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 04/21/2011] [Indexed: 11/19/2022] Open
Abstract
The actin cytoskeleton is continuously remodeled through cycles of actin filament assembly and disassembly. Filaments are born through nucleation and shaped into supramolecular structures with various essential functions. These range from contractile and protrusive assemblies in muscle and non-muscle cells to actin filament comets propelling vesicles or pathogens through the cytosol. Although nucleation has been extensively studied using purified proteins in vitro, dissection of the process in cells is complicated by the abundance and molecular complexity of actin filament arrays. We here describe the ectopic nucleation of actin filaments on the surface of microtubules, free of endogenous actin and interfering membrane or lipid. All major mechanisms of actin filament nucleation were recapitulated, including filament assembly induced by Arp2/3 complex, formin and Spir. This novel approach allows systematic dissection of actin nucleation in the cytosol of live cells, its genetic re-engineering as well as screening for new modifiers of the process.
Collapse
Affiliation(s)
- J. Margit Oelkers
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Marlene Vinzenz
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Maria Nemethova
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Sonja Jacob
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Frank P. L. Lai
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Developmental and Regenerative Biology, Institute of Medical Biology, Immunos, Singapore, Singapore
| | - Jennifer Block
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, University of Bonn, Bonn, Germany
| | | | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, Bavarian Genome Research Network, University Hospital Regensburg, Regensburg, Germany
| | - Steffen Backert
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Kai Schlüter
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Molecular Cell Biology, University of Münster, Münster, Germany
| | - Theresia E. B. Stradal
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Molecular Cell Biology, University of Münster, Münster, Germany
| | - J. Victor Small
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Stefan A. Koestler
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Klemens Rottner
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|