1
|
Zhang Q, Liu J, Yao D, Shi JX, Liu YJ, Wei YG, Guo S. Comprehensive Analysis to Identify Rh Family C Glycoprotein ( RHCG) as the Causative Gene for Psoriasis and Search for Alternative Treatment Modalities. Drug Des Devel Ther 2023; 17:2593-2611. [PMID: 37664450 PMCID: PMC10473404 DOI: 10.2147/dddt.s421300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Background Psoriasis is a complex autoimmune disease. Frequent interactions between epidermal and immune cells are likely to be responsible for the strong heterogeneity of psoriasis. Therefore, our work aims to build on current knowledge and further search for new molecular mechanisms related to psoriasis pathogenesis in order to develop new targeted drugs. Methods Data from psoriasis samples were obtained from the Gene Expression Omnibus (GEO) database, and batch effects were corrected using the "Combat" algorithm in the "SVA" package. Functional annotation of differential genes in psoriasis was performed by Gene set enrichment analysis (GSEA). Core functional modules were identified using the Multiscale Embedded Gene Co-Expression Network Analysis (MEGENA) algorithm for selection from the differential gene interaction network. The expression and potential function of Rh Family C Glycoprotein (RHCG) was predicted in single cell data by the "Seurat" package and validated in psoriasis samples by multiplex immunofluorescence. In addition, the regulatory function of HOP Homeobox (HOPX) on RHCG in keratinocytes was confirmed using RNA interference. Using immune infiltration analysis, RHCG and DC cells were analyzed for their association. Finally, the molecular mechanisms of treatment of psoriasis using Tripterygii Radix (TR) and Cinnamomi Ramulus (CR) were explored through network pharmacology and experimental validation. Results Immune response (represented by C1_2) and collagen matrix formation (represented by C1_3) were identified as two important pathogenic factors in psoriasis and helped to define new biological subtypes of psoriasis. One important psoriasis hub gene, RHCG, was obtained and found to be closely associated with keratinocyte differentiation as well as DC cell maturation. And RHCG was regulated by HOPX in keratinocytes. In addition, the mechanism of action of CR and TR in the treatment of psoriasis was tentatively confirmed to be related to TRPV3, NFKB2, and YAP1. Conclusions Our study identifies a new causal disease gene (RHCG) and offers potential alternatives for the treatment of psoriasis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Jia Liu
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Dan Yao
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Jian-Xin Shi
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Yuan-Jie Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Yue-Gang Wei
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Shun Guo
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| |
Collapse
|
2
|
Bourque J, Kousnetsov R, Hawiger D. Roles of Hopx in the differentiation and functions of immune cells. Eur J Cell Biol 2022; 101:151242. [DOI: 10.1016/j.ejcb.2022.151242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
|
3
|
Stewart AS, Schaaf CR, Luff JA, Freund JM, Becker TC, Tufts SR, Robertson JB, Gonzalez LM. HOPX + injury-resistant intestinal stem cells drive epithelial recovery after severe intestinal ischemia. Am J Physiol Gastrointest Liver Physiol 2021; 321:G588-G602. [PMID: 34549599 PMCID: PMC8616590 DOI: 10.1152/ajpgi.00165.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
Intestinal ischemia is a life-threatening emergency with mortality rates of 50%-80% due to epithelial cell death and resultant barrier loss. Loss of the epithelial barrier occurs in conditions including intestinal volvulus and neonatal necrotizing enterocolitis. Survival depends on effective epithelial repair; crypt-based intestinal epithelial stem cells (ISCs) are the source of epithelial renewal in homeostasis and after injury. Two ISC populations have been described: 1) active ISC [aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 (LGR5+)-positive or sex-determining region Y-box 9 -antigen Ki67-positive (SOX9+Ki67+)] and 2) reserve ISC [rISC; less proliferative; homeodomain-only protein X positive (HOPX+)]. The contributions of these ISCs have been evaluated both in vivo and in vitro using a porcine model of mesenteric vascular occlusion to understand mechanisms that modulate ISC recovery responses following ischemic injury. In our previously published work, we observed that rISC conversion to an activated state was associated with decreased HOPX expression during in vitro recovery. In the present study, we wanted to evaluate the direct role of HOPX on cellular proliferation during recovery after injury. Our data demonstrated that during early in vivo recovery, injury-resistant HOPX+ cells maintain quiescence. Subsequent early regeneration within the intestinal crypt occurs around 2 days after injury, a period in which HOPX expression decreased. When HOPX was silenced in vitro, cellular proliferation of injured cells was promoted during recovery. This suggests that HOPX may serve a functional role in ISC-mediated regeneration after injury and could be a target to control ISC proliferation.NEW & NOTEWORTHY This paper supports that rISCs are resistant to ischemic injury and likely an important source of cellular renewal following near-complete epithelial loss. Furthermore, we have evidence that HOPX controls ISC activity state and may be a critical signaling pathway during ISC-mediated repair. Finally, we use multiple novel methods to evaluate ISCs in a translationally relevant large animal model of severe intestinal injury and provide evidence for the potential role of rISCs as therapeutic targets.
Collapse
Affiliation(s)
- Amy Stieler Stewart
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Cecilia Renee Schaaf
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jennifer A Luff
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - John M Freund
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Thomas C Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
| | - Sara R Tufts
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - James B Robertson
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Liara M Gonzalez
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
4
|
HOPX Exhibits Oncogenic Activity during Squamous Skin Carcinogenesis. J Invest Dermatol 2021; 141:2354-2368. [PMID: 33845078 DOI: 10.1016/j.jid.2020.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022]
Abstract
Cutaneous squamous cell carcinomas (SCCs) are frequent heterogeneous tumors arising from sun-exposed regions of the skin and characterized by complex pathogenesis. HOPX is a member of the homeodomain-containing superfamily of proteins holding an atypical homeodomain unable to bind to DNA. First discovered in the heart as a regulator of cardiac development, in the skin, HOPX modulates the terminal differentiation of keratinocytes. There is a particular interest in studying HOPX in squamous skin carcinogenesis because it has the atypical structure and the functional duality as an oncogene and a tumor suppressor gene, reported in different malignancies. In this study, we analyzed the effects of HOPX knockdown and overexpression on SCC tumorigenicity in vitro and in vivo. Our data show that HOPX knockdown in SCC cells inhibits their proliferative and invasive activity through the acceleration of apoptosis. We established that methylation of two alternative HOPX promoters leads to differential expression of HOPX transcripts in normal keratinocytes and SCC cells. Importantly, we report that HOPX acts as an oncogene in the pathogenesis of SCC probably through the activation of the second alternative promoter and the modulation of apoptosis.
Collapse
|
5
|
Ooizumi Y, Katoh H, Yokota M, Watanabe M, Yamashita K. Epigenetic silencing of HOPX is critically involved in aggressive phenotypes and patient prognosis in papillary thyroid cancer. Oncotarget 2019; 10:5906-5918. [PMID: 31666923 PMCID: PMC6800262 DOI: 10.18632/oncotarget.27187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/12/2019] [Indexed: 01/14/2023] Open
Abstract
HOPX is involved in multiple organ development and acts as a tumor suppressor in various cancers. Epigenetic silencing of HOPX via its promoter methylation has been shown frequent and cancer-specific in human cancers. The proliferation of thyroid cancer cells and cancer progression are strongly influenced by epigenetic alterations as well as genetic changes. Papillary thyroid cancer (PTC) comprises the vast majority of thyroid cancers and exhibits slow progression. However, ~10% of patients still show disease recurrence and refractoriness to treatment. Accordingly, it is important approach to research epigenetic mechanisms in PTC progression to find useful biomarkers. Here, we aimed to seek into the roles and clinical impact of epigenetic silencing of HOPX in PTC. The promoter methylation of HOPX was observed in five of six human thyroid cancer cell lines. Down-regulation of HOPX was seen in three cell lines including PTC line K1, and demethylating agents restored HOPX expression. The promoter methylation was observed with high sensitivity and specificity in human PTC tissues. HOPX promoter methylation independently predicted disease recurrence in PTC patients. Epigenetic silencing of HOPX was associated with Ki-67 expression. Of note, HOPX promoter methylation was dramatically associated with worse prognosis especially in patients with stage I PTC. Forced HOPX expression suppressed cell proliferation, invasive activities, and anchorage-independent growth in vitro. HOPX promoter methylation is frequent and cancer-specific event, leading to aggressive phenotype in PTC. Epigenetic silencing of HOPX may be a clue to tackle cancer progression and have clinical impact as a novel biomarker in PTC.
Collapse
Affiliation(s)
- Yosuke Ooizumi
- Department of Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Hiroshi Katoh
- Breast and Endocrine Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Mitsuo Yokota
- Department of Surgery, Kitasato University Hospital, Kanagawa, Japan.,Breast and Endocrine Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University Hospital, Kanagawa, Japan.,Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University Hospital, Kanagawa, Japan
| |
Collapse
|
6
|
Chen SY, Ishii MA, Cheng B, Otten ABC, Sun BK. HOPX Is a ZNF750 Target that Promotes Late Epidermal Differentiation. J Invest Dermatol 2019; 139:2039-2042.e2. [PMID: 30959041 DOI: 10.1016/j.jid.2019.03.1141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/08/2019] [Accepted: 03/05/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Selena Y Chen
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Mitsuhiro A Ishii
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Binbin Cheng
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Auke B C Otten
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Bryan K Sun
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA.
| |
Collapse
|
7
|
Gonzalez LM, Stewart AS, Freund J, Kucera CR, Dekaney CM, Magness ST, Blikslager AT. Preservation of reserve intestinal epithelial stem cells following severe ischemic injury. Am J Physiol Gastrointest Liver Physiol 2019; 316:G482-G494. [PMID: 30714814 PMCID: PMC6483022 DOI: 10.1152/ajpgi.00262.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal ischemia is an abdominal emergency with a mortality rate >50%, leading to epithelial barrier loss and subsequent sepsis. Epithelial renewal and repair after injury depend on intestinal epithelial stem cells (ISC) that reside within the crypts of Lieberkühn. Two ISC populations critical to epithelial repair have been described: 1) active ISC (aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 positive, sex determining region Y-box 9 positive) and 2) reserve ISC [rISC; less proliferative; homeodomain only protein X (Hopx)+]. Yorkshire crossbred pigs (8-10 wk old) were subjected to 1-4 h of ischemia and 1 h of reperfusion or recovery by reversible mesenteric vascular occlusion. This study was designed to evaluate whether ISC-expressing biomarkers of aISCs or rISCs show differential resistance to ischemic injury and different contributions to the subsequent repair and regenerative responses. Our data demonstrate that, following 3-4 h ischemic injury, aISC undergo apoptosis, whereas rISC are preserved. Furthermore, these rISC are retained ex vivo in spheroids in which cell populations are enriched in the rISC biomarker Hopx. These cells appear to go on to provide a proliferative pool of cells during the recovery period. Taken together, these data indicate that Hopx+ cells are resistant to injury and are the likely source of epithelial renewal following prolonged ischemic injury. It is therefore possible that targeting reserve stem cells will lead to new therapies for patients with severe intestinal injury. NEW & NOTEWORTHY The population of reserve less-proliferative intestinal epithelial stem cells appears resistant to injury despite severe epithelial cell loss, including that of the active stem cell population, which results from prolonged mesenteric ischemia. These cells can change to an activated state and are likely indispensable to regenerative processes. Reserve stem cell targeted therapies may improve treatment and outcome of patients with ischemic disease.
Collapse
Affiliation(s)
- Liara M. Gonzalez
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina,4Center for Gastrointestinal Biologyand Disease, Joint Center at University of North Carolina Chapel Hill and North Carolina State University, Raleigh,North Carolina
| | - Amy Stieler Stewart
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - John Freund
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Cecilia Renee Kucera
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Christopher M. Dekaney
- 2Department of Molecular and Biological Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina,4Center for Gastrointestinal Biologyand Disease, Joint Center at University of North Carolina Chapel Hill and North Carolina State University, Raleigh,North Carolina
| | - Scott T. Magness
- 3University of North Carolina, Chapel Hill, North Carolina,4Center for Gastrointestinal Biologyand Disease, Joint Center at University of North Carolina Chapel Hill and North Carolina State University, Raleigh,North Carolina
| | - Anthony T. Blikslager
- 1Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina,4Center for Gastrointestinal Biologyand Disease, Joint Center at University of North Carolina Chapel Hill and North Carolina State University, Raleigh,North Carolina
| |
Collapse
|
8
|
HOPX Defines Heterogeneity of Postnatal Subventricular Zone Neural Stem Cells. Stem Cell Reports 2018; 11:770-783. [PMID: 30174314 PMCID: PMC6135899 DOI: 10.1016/j.stemcr.2018.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/16/2022] Open
Abstract
The largest diversity of neural lineages generated from the subventricular zone (SVZ) occurs early after birth and is regulated in a spatiotemporal manner depending on the expression of specific transcriptional cues. Transcriptomics and fate-mapping approaches were employed to explore the relationship between regional expression of transcription factors by neural stem cells (NSCs) and the specification of distinct neural lineages. Our results support an early priming of NSCs for the genesis of defined cell types depending on their spatial location in the SVZ and identify HOPX as a marker of a subpopulation primed toward astrocytic fates. Manipulation of HOPX expression, however, showed no effect on astrogenesis but resulted in marked changes in the number of NSCs and of their progenies. Taken together, our results highlight transcriptional and spatial heterogeneity of postnatal NSCs and reveal a key role for HOPX in controlling SVZ germinal activity.
Collapse
|
9
|
Ren X, Yang X, Cheng B, Chen X, Zhang T, He Q, Li B, Li Y, Tang X, Wen X, Zhong Q, Kang T, Zeng M, Liu N, Ma J. HOPX hypermethylation promotes metastasis via activating SNAIL transcription in nasopharyngeal carcinoma. Nat Commun 2017; 8:14053. [PMID: 28146149 PMCID: PMC5296651 DOI: 10.1038/ncomms14053] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/22/2016] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is characterized by a high rate of local invasion and early distant metastasis. Increasing evidence indicates that epigenetic abnormalities play important roles in NPC development. However, the epigenetic mechanisms underlying NPC metastasis remain unclear. Here we investigate aberrantly methylated transcription factors in NPC tissues, and we identify the HOP homeobox HOPX as the most significantly hypermethylated gene. Consistently, we find that HOXP expression is downregulated in NPC tissues and NPC cell lines. Restoring HOPX expression suppresses metastasis and enhances chemosensitivity of NPC cells. These effects are mediated by HOPX-mediated epigenetic silencing of SNAIL transcription through the enhancement of histone H3K9 deacetylation in the SNAIL promoter. Moreover, we find that patients with high methylation levels of HOPX exhibit poor clinical outcomes in both the training and validation cohorts. In summary, HOPX acts as a tumour suppressor via the epigenetic regulation of SNAIL transcription, which provides a novel prognostic biomarker for NPC metastasis and therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Xianyue Ren
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road west, Guangzhou, Guangdong 510055, China
| | - Xiaojing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road west, Guangzhou, Guangdong 510055, China
| | - Xiaozhong Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, 38 Guangji Road, Hangzhou, Zhejiang 310022, China
| | - Tianpeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, 132 Waihuan Road East, Guangzhou, Guangdong 510006, China
| | - Qingmei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Bin Li
- Department of Radiation Oncology, Zhejiang Cancer Hospital, 38 Guangji Road, Hangzhou, Zhejiang 310022, China
| | - Yingqin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Xinran Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Xin Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Qian Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Musheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, China
| |
Collapse
|
10
|
Yap LF, Lai SL, Patmanathan SN, Gokulan R, Robinson CM, White JB, Chai SJ, Rajadurai P, Prepageran N, Liew YT, Lopes V, Wei W, Hollows RJ, Murray PG, Lambert DW, Hunter KD, Paterson IC. HOPX functions as a tumour suppressor in head and neck cancer. Sci Rep 2016; 6:38758. [PMID: 27934959 PMCID: PMC5146930 DOI: 10.1038/srep38758] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/14/2016] [Indexed: 11/08/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is generalized term that encompasses a diverse group of cancers that includes tumours of the oral cavity (OSCC), oropharynx (OPSCC) and nasopharynx (NPC). Genetic alterations that are common to all HNSCC types are likely to be important for squamous carcinogenesis. In this study, we have investigated the role of the homeodomain-only homeobox gene, HOPX, in the pathogenesis of HNSCC. We show that HOPX mRNA levels are reduced in OSCC and NPC cell lines and tissues and there is a general reduction of HOPX protein expression in these tumours and OPSCCs. HOPX promoter methylation was observed in a subset of HNSCCs and was associated with a worse overall survival in HPV negative tumours. RNAseq analysis of OSCC cells transfected with HOPX revealed a widespread deregulation of the transcription of genes related to epithelial homeostasis and ectopic over-expression of HOPX in OSCC and NPC cells inhibited cell proliferation, plating efficiency and migration, and enhanced sensitivity to UVA-induced apoptosis. Our results demonstrate that HOPX functions as a tumour suppressor in HNSCC and suggest a central role for HOPX in suppressing epithelial carcinogenesis.
Collapse
Affiliation(s)
- Lee Fah Yap
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sook Ling Lai
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sathya Narayanan Patmanathan
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ravindran Gokulan
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - C. Max Robinson
- Centre for Oral Health Research, Newcastle University, Newcastle, NE2 4BW, United Kingdom
| | - Joe B. White
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, Unite Kingdom
| | - San Jiun Chai
- Cancer Research Malaysia, Selangor, 47500 Subang Jaya, Malaysia
| | | | - Narayanan Prepageran
- Department of Otorhinolaryngology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yew Toong Liew
- Department of Otorhinolaryngology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Victor Lopes
- Department of Oral surgery, Edinburgh Postgraduate Dental Institute, University of Edinburgh, Edinburgh, EH3 9HA, United Kingdom
| | - Wenbin Wei
- Institute of Cancer and Genomic Studies, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, United Kingdom
| | - Robert J. Hollows
- Institute of Cancer and Genomic Studies, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Paul G. Murray
- Institute of Cancer and Genomic Studies, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Daniel W. Lambert
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, Unite Kingdom
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, Unite Kingdom
| | - Ian C. Paterson
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Kikuchi M, Katoh H, Waraya M, Tanaka Y, Ishii S, Tanaka T, Nishizawa N, Yokoi K, Minatani N, Ema A, Kosaka Y, Tanino H, Yamashita K, Watanabe M. Epigenetic silencing of HOPX contributes to cancer aggressiveness in breast cancer. Cancer Lett 2016; 384:70-78. [PMID: 27756570 DOI: 10.1016/j.canlet.2016.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 01/18/2023]
Abstract
Epigenetic silencing of HOPX has been shown to be frequent and specific in human cancers. HOPX is thought as a tumor suppressor gene and its promoter methylation is the main mechanism of down-regulation. In non-hereditary breast cancer, since roles of epigenetic modifications are more critical than in other cancers, the aim of this study is to seek into the roles and clinical relevance of epigenetic silencing of HOPX. Down-regulation of HOPX was observed in all human breast cancer cell lines tested. The promoter methylation was found in six of seven cell lines, and demethylating agents restored HOPX expression. The promoter methylation was cancer-specific in human breast tissues. Forced expression of HOPX attenuated anchorage-independent growth in vitro. HOPX promoter methylation independently predicted worse prognosis of breast cancer patients. Of note, HOPX promoter methylation was significantly associated with HER2 positivity as well as advanced lymph node metastasis. HOPX promoter methylation is not only frequent and cancer-specific but also associated with aggressive phenotype in breast cancer. Epigenetic silencing of HOPX may have clinical potential as a biomarker in the treatment strategy of breast cancer patients.
Collapse
Affiliation(s)
- Mariko Kikuchi
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiroshi Katoh
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Mina Waraya
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoko Tanaka
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Satoru Ishii
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Toshimichi Tanaka
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Nobuyuki Nishizawa
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Keigo Yokoi
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Naoko Minatani
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Akira Ema
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoshimasa Kosaka
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hirokazu Tanino
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
12
|
Homeobox-Only Protein Expression Is a Critical Prognostic Indicator of Pancreatic Neuroendocrine Tumor and Is Regulated by Promoter DNA Hypermethylation. Pancreas 2016; 45:1255-1262. [PMID: 27776044 DOI: 10.1097/mpa.0000000000000646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES We have identified homeobox-only protein (HOPX) as a tumor suppressor gene in various human cancer, and its expression was reduced by promoter DNA hypermethylation. Homeobox-only protein is strongly expressed on pancreatic islet cells; however, clinical relevance of HOPX expression has remained elusive in pancreatic neuroendocrine tumor (pNET). METHODS We investigated 36 patients with pNET who undertook surgical resection between 1988 and 2012 for HOPX expression and DNA methylation to reveal its clinical significance. RESULTS (1) Homeobox-only protein is strongly expressed on pancreatic islet cells by immunohistochemistry (IHC). Homeobox-only protein expression was recognized on pNET tumor cells for 1+ in 15, for 2+ in 16, and for 3+ in 5. (2) Homeobox-only protein IHC expression was significantly associated with prognosis (P = 0.03), and survival rate was 37.5%, 70.3%, and 100% in HOPX 1+, 2+, and 3+, respectively. (3) Promoter DNA methylation was quantitatively assessed, and HOPX hypermethylation is found in 6.3%, 11.8%, and 66.7% of G1/G2/G3 pNET, respectively (P = 0.02). (4) Multivariate Cox proportional hazards model identified HOPX IHC expression and HOPX promoter DNA hypermethylation as independent prognostic factors in pNET. CONCLUSIONS Homeobox-only protein expression is a critical prognostic indicator of pNET, and its regulation may be made through promoter DNA methylation.
Collapse
|
13
|
Mariotto A, Pavlova O, Park HS, Huber M, Hohl D. HOPX: The Unusual Homeodomain-Containing Protein. J Invest Dermatol 2016; 136:905-911. [PMID: 27017330 DOI: 10.1016/j.jid.2016.01.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 01/15/2023]
Abstract
The homeodomain-only protein homeobox (HOPX) is the smallest known member of the homeodomain-containing protein family, atypically unable to bind DNA. HOPX is widely expressed in diverse tissues, where it is critically involved in the regulation of proliferation and differentiation. In human skin, HOPX controls epidermal formation through the regulation of late differentiation markers, and HOPX expression correlates with the level of differentiation in cutaneous pathologies. In mouse skin, Hopx was additionally identified as a lineage tracing marker of quiescent hair follicle stem cells. This review discusses current knowledge of HOPX structure and function in normal and pathological conditions.
Collapse
Affiliation(s)
- Anita Mariotto
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Olesya Pavlova
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Hyun-Sook Park
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Marcel Huber
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Daniel Hohl
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Myocardial injury and disease often result in heart failure, a major cause of death worldwide. To achieve myocardial regeneration and foster development of efficient therapeutics for cardiac injury, it is essential to uncover molecular mechanisms that will promote myocardial regeneration. In this review, we examine the latest progress made in elucidation of the roles of small non-coding RNAs called microRNAs (miRs) in myocardial regeneration. RECENT FINDINGS Promising progress has been made in studying cardiac regeneration. Several miRs, which include miR-590, miR-199a, miR-17-92 cluster, miR-199a-214 cluster, miR-34a, and miR-15 family, have been recently shown to play an essential role in myocardial regeneration by regulating different processes during cardiac repair, including cell death, proliferation, and metabolism. For example, miR-590 promotes cardiac regeneration through activating cardiomyocyte proliferation, whereas miR-34a inhibits cardiac repair through inducing apoptosis. SUMMARY These recent findings shed new light on our understanding of myocardial regeneration and suggest potential novel therapeutic targets to treat cardiac disease.
Collapse
|
15
|
Li B, Tsoi LC, Swindell WR, Gudjonsson JE, Tejasvi T, Johnston A, Ding J, Stuart PE, Xing X, Kochkodan JJ, Voorhees JJ, Kang HM, Nair RP, Abecasis GR, Elder JT. Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. J Invest Dermatol 2014; 134:1828-1838. [PMID: 24441097 PMCID: PMC4057954 DOI: 10.1038/jid.2014.28] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/27/2013] [Accepted: 12/09/2013] [Indexed: 02/08/2023]
Abstract
To increase our understanding of psoriasis, we utilized RNA-seq to assay the transcriptomes of lesional psoriatic and normal skin. We sequenced polyadenylated RNA-derived cDNAs from 92 psoriatic and 82 normal punch biopsies, generating an average of ~38 million single-end 80-bp reads per sample. Comparison of 42 samples examined by both RNA-seq and microarray revealed marked differences in sensitivity, with transcripts identified only by RNA-seq having much lower expression than those also identified by microarray. RNA-seq identified many more differentially expressed transcripts enriched in immune system processes. Weighted gene co-expression network analysis (WGCNA) revealed multiple modules of coordinately expressed epidermal differentiation genes, overlapping significantly with genes regulated by the long non-coding RNA TINCR, its target gene, staufen-1 (STAU1), the p63 target gene ZNF750, and its target KLF4. Other coordinately expressed modules were enriched for lymphoid and/or myeloid signature transcripts and genes induced by IL-17 in keratinocytes. Dermally-expressed genes were significantly down-regulated in psoriatic biopsies, most likely due to expansion of the epidermal compartment. These results demonstrate the power of WGCNA to elucidate gene regulatory circuits in psoriasis, and emphasize the influence of tissue architecture in both differential expression and co-expression analysis.
Collapse
Affiliation(s)
- Bingshan Li
- Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, USA; Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - William R Swindell
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Ann Arbor Veterans Affairs Hospital, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew Johnston
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jun Ding
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA; Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Philip E Stuart
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - James J Kochkodan
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Hyun M Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Rajan P Nair
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Goncalo R Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Ann Arbor Veterans Affairs Hospital, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
16
|
The homeobox only protein homeobox (HOPX) and colorectal cancer. Int J Mol Sci 2013; 14:23231-43. [PMID: 24287901 PMCID: PMC3876040 DOI: 10.3390/ijms141223231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/13/2022] Open
Abstract
The HOP (homeobox only protein) homeobox (HOPX) is most closely related to the homeobox protein that contains a homeobox-like domain but lacks certain conserved residues required for DNA binding. Here, we review the current understanding of HOPX in the progression of colorectal cancer (CRC). HOPX was initially reported as a differentiation marker and is expressed in various normal tissues. In the colon, HOPX is expressed uniquely in the quiescent stem cell, +4, and in differentiated mucosal cells of the colon. HOPX expression is markedly suppressed in a subset of cancers, mainly in an epigenetic manner. CRC may include separate entities which are differentially characterized by HOPX expression from a prognostic point of view. HOPX itself can regulate epigenetics, and defective expression of HOPX can result in loss of tumor suppressive function and differentiation phenotype. These findings indicate that HOPX may be both a central regulator of epigenetic dynamics and a critical determinant for differentiation in human cells. HOPX downstream targets were identified in CRC cell lines and hold promise as candidates for therapeutic targets of CRC, such as EphA2 or AP-1. Further analysis will elucidate and confirm the precise role of such proteins in CRC progression.
Collapse
|
17
|
Kypriotou M, Rivero D, Haller S, Mariotto A, Huber M, Acha-Orbea H, Werner S, Hohl D. Activin a inhibits antigen-induced allergy in murine epicutaneous sensitization. Front Immunol 2013; 4:246. [PMID: 23986758 PMCID: PMC3749436 DOI: 10.3389/fimmu.2013.00246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 08/07/2013] [Indexed: 01/20/2023] Open
Abstract
Activin A, a member of the TGFβ superfamily, is involved in physiological processes such as cell differentiation, tissue homeostasis, wound healing, reproduction, and in pathological conditions, such as fibrosis, cancer, and asthma. Activin enhances mast cell maturation, as well as regulatory T-cell and Langerhans cell differentiation. In this study we investigated the potential role of activin in epicutaneous sensitization with ovalbumin (OVA), notably with respect to its effect on known Th2-polarization. For this purpose, transgenic mice overexpressing activin in keratinocytes and their wild-type (WT) controls were sensitized epicutaneously with OVA. Skin biopsies were analyzed with regard to histopathological features and mRNA expression of pro-inflammatory and Th1/Th2 cytokines, and Ig levels were measured in the serum. Unexpectedly, activin overexpressing animals were protected from Th2-cytokine expression and induction of OVA-specific IgE levels compared to WT animals. On the other hand, transgenic mice were more susceptible to inflammation compared to WT littermates after tape-stripping and saline (vehicle) or OVA application, as shown by increased pro-inflammatory cytokine mRNA levels and neutrophil accumulation at the site of the treatment. We conclude that activin protects from antigen-induced cutaneous Th2-polarization through modulation of the immune response. These findings highlight the role of activin in cutaneous sensitization, allergy, and in skin homeostasis.
Collapse
Affiliation(s)
- Magdalini Kypriotou
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, Beaumont Hospital, CHUV , Lausanne , Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kypriotou M, Boéchat C, Huber M, Hohl D. Spontaneous atopic dermatitis-like symptoms in a/a ma ft/ma ft/J flaky tail mice appear early after birth. PLoS One 2013; 8:e67869. [PMID: 23844115 PMCID: PMC3700905 DOI: 10.1371/journal.pone.0067869] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 05/21/2013] [Indexed: 01/27/2023] Open
Abstract
Loss-of-function mutations in human profilaggrin gene have been identified as the cause of ichthyosis vulgaris (IV), and as a major predisposition factor for atopic dermatitis (AD). Similarly, flaky tail (a/a ma ft/ma ft/J) mice were described as a model for IV, and shown to be predisposed to eczema. The aim of this study was to correlate the flaky tail mouse phenotype with human IV and AD, in order to dissect early molecular events leading to atopic dermatitis in mice and men, suffering from filaggrin deficiency. Thus, 5-days old flaky tail pups were analyzed histologically, expression of cytokines was measured in skin and signaling pathways were investigated by protein analysis. Human biopsies of IV and AD patients were analyzed histologically and by real time PCR assays. Our data show acanthosis and hyperproliferation in flaky tail epidermis, associated with increased IL1β and thymic stromal lymphopoietin (TSLP) expression, and Th2-polarization. Consequently, NFκB and Stat pathways were activated, and IL6 mRNA levels were increased. Further, quantitative analysis of late epidermal differentiation markers revealed increased Small proline-rich protein 2A (Sprr2a) synthesis. Th2-polarization and Sprr2a increase may result from high TSLP expression, as shown after analysis of 5-days old K14-TSLP tg mouse skin biopsies. Our findings in the flaky tail mouse correlate with data obtained from patient biopsies of AD, but not IV. We propose that proinflammatory cytokines are responsible for acanthosis in flaky tail epidermis, and together with the Th2-derived cytokines lead to morphological changes. Accordingly, the a/a ma ft/ma ft/J mouse model can be used as an appropriate model to study early AD onset associated with profilaggrin deficiency.
Collapse
Affiliation(s)
- Magdalini Kypriotou
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, Beaumont Hospital CHUV, Lausanne, Switzerland
| | - Cloé Boéchat
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, Beaumont Hospital CHUV, Lausanne, Switzerland
| | - Marcel Huber
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, Beaumont Hospital CHUV, Lausanne, Switzerland
| | - Daniel Hohl
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, Beaumont Hospital CHUV, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Kypriotou M, Huber M, Hohl D. The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the 'fused genes' family. Exp Dermatol 2012; 21:643-9. [PMID: 22507538 DOI: 10.1111/j.1600-0625.2012.01472.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The skin is essential for survival and protects our body against biological attacks, physical stress, chemical injury, water loss, ultraviolet radiation and immunological impairment. The epidermal barrier constitutes the primordial frontline of this defense established during terminal differentiation. During this complex process proliferating basal keratinocytes become suprabasally mitotically inactive and move through four epidermal layers (basal, spinous, granular and layer, stratum corneum) constantly adapting to the needs of the respective cell layer. As a result, squamous keratinocytes contain polymerized keratin intermediate filament bundles and a water-retaining matrix surrounded by the cross-linked cornified cell envelope (CE) with ceramide lipids attached on the outer surface. These cells are concomitantly insulated by intercellular lipid lamellae and hold together by corneodesmosmes. Many proteins essential for epidermal differentiation are encoded by genes clustered on chromosomal human region 1q21. These genes constitute the 'epidermal differentiation complex' (EDC), which is divided on the basis of common gene and protein structures, in three gene families: (i) CE precursors, (ii) S100A and (iii) S100 fused genes. EDC protein expression is regulated in a gene and tissue-specific manner by a pool of transcription factors. Among them, Klf4, Grhl3 and Arnt are essential, and their deletion in mice is lethal. The importance of the EDC is further reflected by human diseases: FLG mutations are the strongest risk factor for atopic dermatitis (AD) and for AD-associated asthma, and faulty CE formation caused by TG1 deficiency causes life-threatening lamellar ichthyosis. Here, we review the EDC genes and the progress in this field.
Collapse
Affiliation(s)
- Magdalini Kypriotou
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, Beaumont Hospital CHUV, Lausanne, Switzerland
| | | | | |
Collapse
|
20
|
Miyoshi S, Yamazaki S, Uchiumi A, Katagata Y. The Hsp90 inhibitor 17-AAG represses calcium-induced cytokeratin 1 and 10 expression in HaCaT keratinocytes. FEBS Open Bio 2012; 2:47-50. [PMID: 23650580 PMCID: PMC3642114 DOI: 10.1016/j.fob.2012.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/20/2012] [Indexed: 11/28/2022] Open
Abstract
Hsp90 is essential for maintaining the activity of numerous signaling factors, and plays a key role in cellular signal transduction networks. 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is an ansamycin antibiotic that binds to Hsp90 and inhibits its function. HaCaT human keratinocytes were used to investigate the cellular and molecular functions of Hsp90 in keratinocyte differentiation. Inhibition of Hsp90 by 17-AAG leads to downregulation of the differentiation markers cytokeratin 1 and cytokeratin 10 at the protein and mRNA levels.
Collapse
Affiliation(s)
- Sadanori Miyoshi
- Department of Biochemistry and Biotechnology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| | | | | | | |
Collapse
|