1
|
Fan SM, Li ZQ, Zhang SZ, Chen LY, Wei XY, Liang J, Zhao XQ, Su C. Multi-integrated approach for unraveling small open reading frames potentially associated with secondary metabolism in Streptomyces. mSystems 2023; 8:e0024523. [PMID: 37712700 PMCID: PMC10654065 DOI: 10.1128/msystems.00245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Due to their small size and special chemical features, small open reading frame (smORF)-encoding peptides (SEPs) are often neglected. However, they may play critical roles in regulating gene expression, enzyme activity, and metabolite production. Studies on bacterial microproteins have mainly focused on pathogenic bacteria, which are importance to systematically investigate SEPs in streptomycetes and are rich sources of bioactive secondary metabolites. Our study is the first to perform a global identification of smORFs in streptomycetes. We established a peptidogenomic workflow for non-model microbial strains and identified multiple novel smORFs that are potentially linked to secondary metabolism in streptomycetes. Our multi-integrated approach in this study is meaningful to improve the quality and quantity of the detected smORFs. Ultimately, the workflow we established could be extended to other organisms and would benefit the genome mining of microproteins with critical functions for regulation and engineering useful microorganisms.
Collapse
Affiliation(s)
- Si-Min Fan
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Ze-Qi Li
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Shi-Zhe Zhang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Liang-Yu Chen
- ProteinT (Tianjin) biotechnology Co. Ltd., Tianjin, China
| | - Xi-Ying Wei
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Jian Liang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
- College of Biology and Geography, Yili Normal University, Yining, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai Jiao, China
| | - Chun Su
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| |
Collapse
|
2
|
Wang J, Lang H, Zhang W, Zhai Y, Zheng L, Chen H, Liu Y, Zheng H. Stably transmitted defined microbial community in honeybees preserves Hafnia alvei inhibition by regulating the immune system. Front Microbiol 2022; 13:1074153. [PMID: 36532452 PMCID: PMC9751035 DOI: 10.3389/fmicb.2022.1074153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 12/08/2023] Open
Abstract
The gut microbiota of honeybees is highly diverse at the strain level and essential to the proper function and development of the host. Interactions between the host and its gut microbiota, such as specific microbes regulating the innate immune system, protect the host against pathogen infections. However, little is known about the capacity of these strains deposited in one colony to inhibit pathogens. In this study, we assembled a defined microbial community based on phylogeny analysis, the 'Core-20' community, consisting of 20 strains isolated from the honeybee intestine. The Core-20 community could trigger the upregulation of immune gene expressions and reduce Hafnia alvei prevalence, indicating immune priming underlies the microbial protective effect. Functions related to carbohydrate utilization and the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS systems) are represented in genomic analysis of the defined community, which might be involved in manipulating immune responses. Additionally, we found that the defined Core-20 community is able to colonize the honeybee gut stably through passages. In conclusion, our findings highlight that the synthetic gut microbiota could offer protection by regulating the host immune system, suggesting that the strain collection can yield insights into host-microbiota interactions and provide solutions to protect honeybees from pathogen infections.
Collapse
Affiliation(s)
- Jieni Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wenhao Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Yifan Zhai
- Shandong Academy of Agricultural Sciences, Institute of Plant Protection, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Li Zheng
- Shandong Academy of Agricultural Sciences, Institute of Plant Protection, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Hao Chen
- Shandong Academy of Agricultural Sciences, Institute of Plant Protection, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Yan Liu
- Shandong Academy of Agricultural Sciences, Institute of Plant Protection, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Re-designing Escherichia coli for high-yield production of β-alanine by metabolic engineering. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Liu X, Pang X, Wu Y, Wu Y, Shi Y, Zhang X, Chen Q. Synergistic Antibacterial Mechanism of Mannosylerythritol Lipid-A and Lactic Acid on Listeria monocytogenes Based on Transcriptomic Analysis. Foods 2022; 11:foods11172660. [PMID: 36076848 PMCID: PMC9455235 DOI: 10.3390/foods11172660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
Mannosylerythritol lipids-A (MEL-A) is a novel biosurfactant with multiple biological effects. The synergistic antibacterial activity and mechanism of MEL-A and lactic acid (LA) against Listeria monocytogenes were investigated. The synergistic effect resulted in a significant increase in the antibacterial rate compared to LA treatment alone. Genome-wide transcriptomic analysis was applied to deeply investigate the synergistic antibacterial mechanism. Gene Ontology (GO) enrichment analysis showed that the synergy between MEL-A and LA affected many potential cellular responses, including the sugar phosphotransferase system, carbohydrate transport, and ribosomes. KEGG enrichment analysis showed that the PTS system and ribosome-related pathways were significantly enriched. In addition, synergistic treatment affected locomotion and membrane-related cellular responses in GO enrichment analysis and carbohydrate metabolism and amino acid metabolism pathways in KEGG enrichment analysis compared to LA treatment alone. The accuracy of the transcriptome analysis results was verified by qPCR (R2 = 0.9903). This study will provide new insights for the prevention and control of L. monocytogenes.
Collapse
Affiliation(s)
- Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-86984316
| |
Collapse
|
5
|
Veldman W, Liberato MV, Souza VP, Almeida VM, Marana SR, Tastan Bishop Ö, Polikarpov I. Differences in Gluco and Galacto Substrate-Binding Interactions in a Dual 6Pβ-Glucosidase/6Pβ-Galactosidase Glycoside Hydrolase 1 Enzyme from Bacillus licheniformis. J Chem Inf Model 2021; 61:4554-4570. [PMID: 34423980 DOI: 10.1021/acs.jcim.1c00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial glycoside hydrolase 1 (GH1) enzymes with 6-phospho-β-galactosidase and 6-phospho-β-glucosidase activities have the important task of releasing phosphorylated and nonphosphorylated monosaccharides into the cytoplasm. Curiously, dual 6-phospho-β-galactosidase/6-phospho-β-glucosidase (dual-phospho) enzymes have broad specificity and are able to hydrolyze galacto- and gluco-derived substrates. This study investigates the structure and substrate specificity of a GH family 1 enzyme from Bacillus licheniformis, hereafter known as BlBglC. The enzyme structure has been solved, and sequence analysis, molecular dynamics simulations, and binding free energy calculations offered evidence of dual-phospho activity. Both test ligands p-nitrophenyl-β-d-galactoside-6-phosphate (PNP6Pgal) and p-nitrophenyl-β-d-glucoside-6-phosphate (PNP6Pglc) demonstrated strong binding to BlBglC although the pose and interactions of the PNP6Pglc triplicates were slightly more consistent. Interestingly, known specificity-inducing residues, Gln23 and Trp433, bind strongly to the ligand O3 hydroxyl group in the PNP6Pgal-BlBglC complex and to the ligand O4 hydroxyl group in the PNP6Pglc-BlBglC complex. Additionally, the BlBglC-His124 residue is a major contributor of hydrogen bonds to the PNP6Pgal O3 hydroxyl group but does not form any hydrogen bonds with PNP6Pglc. On the other hand, BlBglC residues Tyr173, Tyr301, Gln302, and Thr321 form hydrogen bonds with PNP6Pglc but not PNP6Pgal. These findings provide important details of the broad specificity of dual-phospho activity GH1 enzymes.
Collapse
Affiliation(s)
- Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | | | - Valquiria P Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Vitor M Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Sandro R Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| |
Collapse
|
6
|
Tyrosine phosphorylation-dependent localization of TmaR that controls activity of a major bacterial sugar regulator by polar sequestration. Proc Natl Acad Sci U S A 2021; 118:2016017118. [PMID: 33376208 DOI: 10.1073/pnas.2016017118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The poles of Escherichia coli cells are emerging as hubs for major sensory systems, but the polar determinants that allocate their components to the pole are largely unknown. Here, we describe the discovery of a previously unannotated protein, TmaR, which localizes to the E. coli cell pole when phosphorylated on a tyrosine residue. TmaR is shown here to control the subcellular localization and activity of the general PTS protein Enzyme I (EI) by binding and polar sequestration of EI, thus regulating sugar uptake and metabolism. Depletion or overexpression of TmaR results in EI release from the pole or enhanced recruitment to the pole, which leads to increasing or decreasing the rate of sugar consumption, respectively. Notably, phosphorylation of TmaR is required to release EI and enable its activity. Like TmaR, the ability of EI to be recruited to the pole depends on phosphorylation of one of its tyrosines. In addition to hyperactivity in sugar consumption, the absence of TmaR also leads to detrimental effects on the ability of cells to survive in mild acidic conditions. Our results suggest that this survival defect, which is sugar- and EI-dependent, reflects the difficulty of cells lacking TmaR to enter stationary phase. Our study identifies TmaR as the first, to our knowledge, E. coli protein reported to localize in a tyrosine-dependent manner and to control the activity of other proteins by their polar sequestration and release.
Collapse
|
7
|
Lin HH, Filloux A, Lai EM. Role of Recipient Susceptibility Factors During Contact-Dependent Interbacterial Competition. Front Microbiol 2020; 11:603652. [PMID: 33281802 PMCID: PMC7690452 DOI: 10.3389/fmicb.2020.603652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
Bacteria evolved multiple strategies to survive and develop optimal fitness in their ecological niche. They deployed protein secretion systems for robust and efficient delivery of antibacterial toxins into their target cells, therefore inhibiting their growth or killing them. To maximize antagonism, recipient factors on target cells can be recognized or hijacked to enhance the entry or toxicity of these toxins. To date, knowledge regarding recipient susceptibility (RS) factors and their mode of action is mostly originating from studies on the type Vb secretion system that is also known as the contact-dependent inhibition (CDI) system. Yet, recent studies on the type VI secretion system (T6SS), and the CDI by glycine-zipper protein (Cdz) system, also reported the emerging roles of RS factors in interbacterial competition. Here, we review these RS factors and their mechanistic impact in increasing susceptibility of recipient cells in response to CDI, T6SS, and Cdz. Past and future strategies for identifying novel RS factors are also discussed, which will help in understanding the interplay between attacker and prey upon secretion system-dependent competition. Understanding these mechanisms would also provide insights for developing novel antibacterial strategies to antagonize aggressive bacteria-killing pathogens.
Collapse
Affiliation(s)
- Hsiao-Han Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Veldman W, Liberato MV, Almeida VM, Souza VP, Frutuoso MA, Marana SR, Moses V, Tastan Bishop Ö, Polikarpov I. X-ray Structure, Bioinformatics Analysis, and Substrate Specificity of a 6-Phospho-β-glucosidase Glycoside Hydrolase 1 Enzyme from Bacillus licheniformis. J Chem Inf Model 2020; 60:6392-6407. [PMID: 33166469 DOI: 10.1021/acs.jcim.0c00759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In bacteria, mono- and disaccharides are phosphorylated during the uptake processes through the vastly spread transport system phosphoenolpyruvate-dependent phosphotransferase. As an initial step in the phosphorylated disaccharide metabolism pathway, 6-phospho-β-glucosidases and 6-phospho-β-galactosidases play a crucial role by releasing phosphorylated and nonphosphorylated monosaccharides. However, structural determinants for the specificity of these enzymes still need to be clarified. Here, an X-ray structure of a glycoside hydrolase family 1 enzyme from Bacillus licheniformis, hereafter known as BlBglH, was determined at 2.2 Å resolution, and its substrate specificity was investigated. The sequence of BlBglH was compared to the sequences of 58 other GH1 enzymes using sequence alignments, sequence identity calculations, phylogenetic analysis, and motif discovery. Through these various analyses, BlBglH was found to have sequence features characteristic of the 6-phospho-β-glucosidase activity enzymes. Motif and structural observations highlighted the importance of loop L8 in 6-phospho-β-glucosidase activity enzymes. To further affirm enzyme specificity, molecular docking and molecular dynamics simulations were performed using the crystallographic structure of BlBglH. Docking was carried out with a 6-phospho-β-glucosidase enzyme activity positive and negative control ligand, followed by 400 ns of MD simulations. The positive and negative control ligands were PNP6Pglc and PNP6Pgal, respectively. PNP6Pglc maintained favorable interactions within the active site until the end of the MD simulation, while PNP6Pgal exhibited instability. The favorable binding of substrate stabilized the loops that surround the active site. Binding free energy calculations showed that the PNP6Pglc complex had a substantially lower binding energy compared to the PNP6Pgal complex. Altogether, the findings of this study suggest that BlBglH possesses 6-phospho-β-glucosidase enzymatic activity and revealed sequence and structural differences between bacterial GH1 enzymes of various activities.
Collapse
Affiliation(s)
- Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | | | - Vitor M Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Valquiria P Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Maira A Frutuoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Sandro R Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Vuyani Moses
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| |
Collapse
|
9
|
L-Glucose: Another Path to Cancer Cells. Cancers (Basel) 2020; 12:cancers12040850. [PMID: 32244695 PMCID: PMC7225996 DOI: 10.3390/cancers12040850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/31/2023] Open
Abstract
Cancerous tumors comprise cells showing metabolic heterogeneity. Among numerous efforts to understand this property, little attention has been paid to the possibility that cancer cells take up and utilize otherwise unusable substrates as fuel. Here we discuss this issue by focusing on l-glucose, the mirror image isomer of naturally occurring d-glucose; l-glucose is an unmetabolizable sugar except in some bacteria. By combining relatively small fluorophores with l-glucose, we generated fluorescence-emitting l-glucose tracers (fLGs). To our surprise, 2-NBDLG, one of these fLGs, which we thought to be merely a control substrate for the fluorescent d-glucose tracer 2-NBDG, was specifically taken up into tumor cell aggregates (spheroids) that exhibited nuclear heterogeneity, a major cytological feature of malignancy in cancer diagnosis. Changes in mitochondrial activity were also associated with the spheroids taking up fLG. To better understand these phenomena, we review here the Warburg effect as well as key studies regarding glucose uptake. We also discuss tumor heterogeneity involving aberrant uptake of glucose and mitochondrial changes based on the data obtained by fLG. We then consider the use of fLGs as novel markers for visualization and characterization of malignant tumor cells.
Collapse
|
10
|
Aboulwafa M, Zhang Z, Saier MH. Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system. PLoS One 2019; 14:e0219332. [PMID: 31751341 PMCID: PMC6872149 DOI: 10.1371/journal.pone.0219332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/13/2019] [Indexed: 01/05/2023] Open
Abstract
The multicomponent phosphoenolpyruvate (PEP)-dependent sugar-transporting phosphotransferase system (PTS) in Escherichia coli takes up sugar substrates from the medium and concomitantly phosphorylates them, releasing sugar phosphates into the cytoplasm. We have recently provided evidence that many of the integral membrane PTS permeases interact with the fructose PTS (FruA/FruB) [1]. However, the biochemical and physiological significance of this finding was not known. We have carried out molecular genetic/biochemical/physiological studies that show that interactions of the fructose PTS often enhance, but sometimes inhibit the activities of other PTS transporters many fold, depending on the target PTS system under study. Thus, the glucose (Glc), mannose (Man), mannitol (Mtl) and N-acetylglucosamine (NAG) permeases exhibit enhanced in vivo sugar transport and sometimes in vitro PEP-dependent sugar phosphorylation activities while the galactitol (Gat) and trehalose (Tre) systems show inhibited activities. This is observed when the fructose system is induced to high levels and prevented when the fruA/fruB genes are deleted. Overexpression of the fruA and/or fruB genes in the absence of fructose induction during growth also enhances the rates of uptake of other hexoses. The β-galactosidase activities of man, mtl, and gat-lacZ transcriptional fusions and the sugar-specific transphosphorylation activities of these enzyme transporters were not affected either by frustose induction or by fruAB overexpression, showing that the rates of synthesis of the target PTS permeases were not altered. We thus suggest that specific protein-protein interactions within the cytoplasmic membrane regulate transport in vivo (and sometimes the PEP-dependent phosphorylation activities in vitro) of PTS permeases in a physiologically meaningful way that may help to provide a hierarchy of preferred PTS sugars. These observations appear to be applicable in principle to other types of transport systems as well.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Zhu L, Fang Y, Ding Z, Zhang S, Wang X. Developing an l-threonine-producing strain from wild-type Escherichia coli by modifying the glucose uptake, glyoxylate shunt, and l-threonine biosynthetic pathway. Biotechnol Appl Biochem 2019; 66:962-976. [PMID: 31486127 DOI: 10.1002/bab.1813] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Wild-type Escherichia coli MG1655 usually does not accumulate l-threonine. In this study, the effects of 13 genes related to the glucose uptake, glycolysis, TCA cycle, l-threonine biosynthesis, or their regulation on l-threonine accumulation in E. coli MG1655 were investigated. Sixteen E. coli mutant strains were constructed by chromosomal deletion or overexpression of one or more genes of rsd, ptsG, ptsH, ptsI, crr, galP, glk, iclR, and gltA; the plasmid pFW01-thrA*BC-rhtC harboring the key genes for l-threonine biosynthesis and secretion was introduced into these mutants. The analyses on cell growth, glucose consumption, and l-threonine production of these recombinant strains showed that most of these strains could accumulate l-threonine, and the highest yield was obtained in WMZ016/pFW01-thrA*BC-rhtC. WMZ016 was derived from MG1655 by deleting crr and iclR and enhancing the expression of gltA. WMZ016/pFW01-thrA*BC-rhtC could produce 17.98 g/L l-threonine with a yield of 0.346 g/g glucose, whereas the control strain MG1655/pFW01-thrA*BC-rhtC could only produce 0.68 g/L l-threonine. In addition, WMZ016/pFW01-thrA*BC-rhtC could tolerate the high concentration of glucose and produced no detectable by-products; therefore, it should be an ideal platform strain for further development. The results indicate that manipulating the glucose uptake and TCA cycle could efficiently increase l-threonine production in E. coli.
Collapse
Affiliation(s)
- Lifei Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yu Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhixiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuyan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Piao X, Wang L, Lin B, Chen H, Liu W, Tao Y. Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative β-alanine with high stoichiometric yield. Metab Eng 2019; 54:244-254. [DOI: 10.1016/j.ymben.2019.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 12/14/2022]
|
13
|
Niu H, Li R, Gao J, Fan X, Li Q, Gu P. Different performance of Escherichia coli mutants with defects in the phosphoenolpyruvate: carbohydrate phosphotransferase system under low glucose condition. 3 Biotech 2019; 9:50. [PMID: 30729074 DOI: 10.1007/s13205-019-1584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/17/2019] [Indexed: 11/26/2022] Open
Abstract
In Escherichia coli, the transport and phosphorylation of glucose is mainly accomplished by the phosphoenolpyruvate-dependent glucose-specific phosphotransferase system (PTSGlc), which is, therefore, frequently selected as a target for engineering to increase the intracellular level of phosphoenolpyruvate. Here we characterized the effects of a low glucose concentration on the growth, glucose consumption, and acetate secretion of individual strains with a single PTSGlc mutation. We found that most mutants accumulated similar amounts of biomass, consumed glucose at lower rates, and secreted less acetate compared with the wild-type parental strain. The exception was the growth-impaired strain MG1655I harboring a ptsI deletion. In summary, the fermentation performance of mutant strains under 5 g/L glucose was obviously different with those strains under 20 g/L glucose. This study is a good complement to the knowledge of PTSGlc in E. coli and indicates that engineering the components of PTSGlc should be carefully optimized, particularly during fermentation in the presence of low concentrations of glucose.
Collapse
Affiliation(s)
- Hao Niu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Ruirui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 People's Republic of China
| |
Collapse
|
14
|
Jeckelmann JM, Erni B. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. Subcell Biochem 2019; 92:223-274. [PMID: 31214989 DOI: 10.1007/978-3-030-18768-2_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland.
| | - Bernhard Erni
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
15
|
Escherichia coli as a host for metabolic engineering. Metab Eng 2018; 50:16-46. [DOI: 10.1016/j.ymben.2018.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
16
|
Wang J, Lu X, Ying H, Ma W, Xu S, Wang X, Chen K, Ouyang P. A Novel Process for Cadaverine Bio-Production Using a Consortium of Two Engineered Escherichia coli. Front Microbiol 2018; 9:1312. [PMID: 29971056 PMCID: PMC6018084 DOI: 10.3389/fmicb.2018.01312] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/29/2018] [Indexed: 01/03/2023] Open
Abstract
Bio-production of cadaverine from cheap carbon sources for synthesizing bio-based polyamides is becoming more common. Here, a novel fermentation process for cadaverine bio-production from glucose was implemented by using a microbial consortium of two engineered Escherichia coli strains to relieve the toxic effect of cadaverine on fermentation efficiency. To achieve controllable growth of strains in the microbial consortium, two engineered E. coli strains grown separately on different carbon sources were first constructed. The strains were, an L-lysine-producing E. coli NT1004 with glucose as carbon source, and a cadaverine-producing E. coli CAD03 with glucose metabolism deficiency generated by modifying the PTSGlc system with CRISPR-Cas9 technology and inactivating cadaverine degradation pathways. Co-culturing these two engineered E. coli strains with a mixture of glucose and glycerol led to successful production of cadaverine. After optimizing cultivation conditions, a cadaverine titer of 28.5 g/L was achieved with a multi-stage constant-speed feeding strategy.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaolu Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hanxiao Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Weichao Ma
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
17
|
Westfall CS, Levin PA. Comprehensive analysis of central carbon metabolism illuminates connections between nutrient availability, growth rate, and cell morphology in Escherichia coli. PLoS Genet 2018; 14:e1007205. [PMID: 29432413 PMCID: PMC5825171 DOI: 10.1371/journal.pgen.1007205] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/23/2018] [Accepted: 01/17/2018] [Indexed: 01/23/2023] Open
Abstract
Bacterial morphology is a complex trait that is highly sensitive to changes in the environment. For heterotrophic organisms, such as Escherichia coli, increases in nutrient levels are frequently accompanied by several-fold increases in both size and growth rate. Despite the dramatic nature of these changes, how alterations in nutrient availability translate into changes in growth and morphology remains a largely open question. To understand the signaling networks coupling nutrient availability with size and shape, we examined the impact of deletions in the entirety of non-essential central carbon metabolic genes on E. coli growth rate and cell size. Our data reveal the presence of multiple metabolic nodes that play important yet distinctive roles in dictating biosynthetic capacity and shaping cell morphology. Specifically, perturbations of acetyl-CoA metabolism impact cell size and division through changes in fatty acid synthesis. Additionally, we identify a genetic pathway linking glucose levels to cell width through the signaling molecule cyclic-AMP. Together our findings highlight a surprising diversity of factors and mechanisms contributing to growth potential and cell morphology, providing a foundation for further studies. Often taken for granted, the shape of bacterial cells is a complex trait that is highly sensitive to environmental perturbations. Nutrients in particular, strongly impact bacterial morphology together with growth rate. The ubiquitous, rod-shaped bacteria Escherichia coli increases both length and width several fold upon a shift from nutrient poor to nutrient rich medium, a change accompanied by an equally dramatic increase in growth rate. Central carbon metabolism is an obvious site for the integration of nutrient dependent signals that dictate cell size and shape. To develop a clearer picture of the molecular mechanisms coupling nutrient assimilation with cell growth and morphology, we screened the entirety of non-essential carbon metabolic genes for their contribution to growth rate and cell shape. Our data reveal the presence of multiple regulatory circuits coordinating different metabolic pathways with specific aspects of cell growth and morphology. Together, these data firmly establish a role for central carbon metabolism as an environmentally sensitive sculptor of bacterial cells.
Collapse
Affiliation(s)
- Corey S. Westfall
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Petra Anne Levin
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
18
|
Zhong XF, Zhang YB, Huang GD, Ouyang YZ, Liao DJ, Peng JW, Huang WZ. Proteomic analysis of stachyose contribution to the growth of Lactobacillus acidophilus CICC22162. Food Funct 2018; 9:2979-2988. [DOI: 10.1039/c8fo00528a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stachyose is a functional oligosaccharide, acting as a potential prebiotic for colonic fermentation.
Collapse
Affiliation(s)
- Xian-feng Zhong
- Department of Food Science
- Foshan University
- Foshan 528231
- China
- Foshan Engineering Research Center for Brewing Technology
| | - Yu-bo Zhang
- Department of Food Science
- Foshan University
- Foshan 528231
- China
- Foshan Engineering Research Center for Brewing Technology
| | - Gui-dong Huang
- Department of Food Science
- Foshan University
- Foshan 528231
- China
- Foshan Engineering Research Center for Brewing Technology
| | - Yong-zhong Ouyang
- School of Environmental and Chemical Engineering
- Foshan University
- Foshan 528231
- China
| | | | - Jia-wei Peng
- Department of Food Science
- Foshan University
- Foshan 528231
- China
- Foshan Engineering Research Center for Brewing Technology
| | - Wei-zhi Huang
- Department of Food Science
- Foshan University
- Foshan 528231
- China
- Foshan Engineering Research Center for Brewing Technology
| |
Collapse
|
19
|
Tilocca B, Burbach K, Heyer CME, Hoelzle LE, Mosenthin R, Stefanski V, Camarinha-Silva A, Seifert J. Dietary changes in nutritional studies shape the structural and functional composition of the pigs' fecal microbiome-from days to weeks. MICROBIOME 2017; 5:144. [PMID: 29078812 PMCID: PMC5659009 DOI: 10.1186/s40168-017-0362-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/17/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND The possible impact of changes in diet composition on the intestinal microbiome is mostly studied after some days of adaptation to the diet of interest. The question arises if a few days are enough to reflect the microbial response to the diet by changing the community composition and function. The present study investigated the fecal microbiome of pigs during a time span of 4 weeks after a dietary change to obtain insights regarding the time required for adaptation. Four different diets were used differing in either protein source (field peas meal vs. soybean meal) or the concentration of calcium and phosphorus (CaP). RESULTS Twelve pigs were sampled at seven time points within 4 weeks after the dietary change. Fecal samples were used to sequence the 16S rRNA gene amplicons to analyse microbial proteins via LC-MS/MS and to determine the SCFA production. The analysis of OTU abundances and quantification values of proteins showed a significant separation of three periods of time (p = 0.001). Samples from the first day are used to define the 'zero period'; samples of weeks 1 and 2 are combined as 'metabolic period' and an 'equilibrium period was defined based on samples from weeks 3 and 4. Only in this last period, a separation according to the supplementation of CaP was significantly detectable (p = 0.001). No changes were found based on the corn-soybean meal or corn-field peas administration. The analysis of possible factors causing this significant separation showed only an overall change of bacterial members and functional properties. The metaproteomic approach yielded a total of about 9700 proteins, which were used to deduce possible metabolic functions of the bacterial community. CONCLUSIONS A gradual taxonomic and functional rearrangement of the bacterial community has been depicted after a change of diet composition. The adaptation lasts several weeks despite the usually assumed time span of several days. The obtained knowledge is of a great importance for the design of future nutritional studies. Moreover, considering the high similarities between the porcine and human gastrointestinal tract anatomy and physiology, the findings of the current study might imply in the design of human-related nutritional studies.
Collapse
Affiliation(s)
- Bruno Tilocca
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Katharina Burbach
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Charlotte M. E. Heyer
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Ludwig E. Hoelzle
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Rainer Mosenthin
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Volker Stefanski
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| |
Collapse
|
20
|
The Small Protein SgrT Controls Transport Activity of the Glucose-Specific Phosphotransferase System. J Bacteriol 2017; 199:JB.00869-16. [PMID: 28289085 DOI: 10.1128/jb.00869-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/07/2017] [Indexed: 02/04/2023] Open
Abstract
The bacterial small RNA (sRNA) SgrS has been a fruitful model for discovery of novel RNA-based regulatory mechanisms and new facets of bacterial physiology and metabolism. SgrS is one of only a few characterized dual-function sRNAs. SgrS can control gene expression posttranscriptionally via sRNA-mRNA base-pairing interactions. Its second function is coding for the small protein SgrT. Previous work demonstrated that both functions contribute to relief of growth inhibition caused by glucose-phosphate stress, a condition characterized by disrupted glycolytic flux and accumulation of sugar phosphates. The base-pairing activity of SgrS has been the subject of numerous studies, but the activity of SgrT is less well characterized. Here, we provide evidence that SgrT acts to specifically inhibit the transport activity of the major glucose permease PtsG. Superresolution microscopy demonstrated that SgrT localizes to the cell membrane in a PtsG-dependent manner. Mutational analysis determined that residues in the N-terminal domain of PtsG are important for conferring sensitivity to SgrT-mediated inhibition of transport activity. Growth assays support a model in which SgrT-mediated inhibition of PtsG transport activity reduces accumulation of nonmetabolizable sugar phosphates and promotes utilization of alternative carbon sources by modulating carbon catabolite repression. The results of this study expand our understanding of a basic and well-studied biological problem, namely, how cells coordinate carbohydrate transport and metabolism. Further, this work highlights the complex activities that can be carried out by sRNAs and small proteins in bacteria.IMPORTANCE Sequencing, annotation and investigation of hundreds of bacterial genomes have identified vast numbers of small RNAs and small proteins, the majority of which have no known function. In this study, we explore the function of a small protein that acts in tandem with a well-characterized small RNA during metabolic stress to help bacterial cells maintain balanced metabolism and continue growing. Our results indicate that this protein acts on the glucose transport system, inhibiting its activity under stress conditions in order to allow cells to utilize alternative carbon sources. This work sheds new light on a key biological problem: how cells coordinate carbohydrate transport and metabolism. The study also expands our understanding of the functional capacities of small proteins.
Collapse
|
21
|
Zhang Z, Saier MH. Transposon-mediated activation of the Escherichia coli glpFK operon is inhibited by specific DNA-binding proteins: Implications for stress-induced transposition events. Mutat Res 2016; 793-794:22-31. [PMID: 27810619 DOI: 10.1016/j.mrfmmm.2016.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/18/2016] [Accepted: 10/22/2016] [Indexed: 11/16/2022]
Abstract
Escherichia coli cells deleted for the cyclic AMP (cAMP) receptor protein (Crp) gene (Δcrp) cannot utilize glycerol because cAMP-Crp is a required activator of the glycerol utilization operon, glpFK. We have previously shown that a transposon, Insertion Sequence 5 (IS5), can insert into the upstream regulatory region of the operon to activate the glpFK promoter and enable glycerol utilization. GlpR, which represses glpFK transcription, binds to the glpFK upstream region near the site of IS5 insertion and inhibits insertion. By adding cAMP to the culture medium in ΔcyaA cells, we here show that the cAMP-Crp complex, which also binds to the glpFK upstream regulatory region, inhibits IS5 hopping into the activating site. Control experiments showed that the frequencies of mutations in response to cAMP were independent of parental cell growth rate and the selection procedure. These findings led to the prediction that glpFK-activating IS5 insertions can also occur in wild-type (Crp+) cells under conditions that limit cAMP production. Accordingly, we found that IS5 insertion into the activating site in wild-type cells is elevated in the presence of glycerol and a non-metabolizable sugar analogue that lowers cytoplasmic cAMP concentrations. The resultant IS5 insertion mutants arising in this minimal medium become dominant constituents of the population after prolonged periods of growth. The results show that DNA binding transcription factors can reversibly mask a favored transposon target site, rendering a hot spot for insertion less favored. Such mechanisms could have evolved by natural selection to overcome environmental adversity.
Collapse
Affiliation(s)
- Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States.
| |
Collapse
|
22
|
Leng Y, Vakulskas CA, Zere TR, Pickering BS, Watnick PI, Babitzke P, Romeo T. Regulation of CsrB/C sRNA decay by EIIA(Glc) of the phosphoenolpyruvate: carbohydrate phosphotransferase system. Mol Microbiol 2015; 99:627-39. [PMID: 26507976 DOI: 10.1111/mmi.13259] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 02/06/2023]
Abstract
Csr is a conserved global regulatory system, which uses the sequence-specific RNA-binding protein CsrA to activate or repress gene expression by binding to mRNA and altering translation, stability and/or transcript elongation. In Escherichia coli, CsrA activity is regulated by two sRNAs, CsrB and CsrC, which bind to multiple CsrA dimers, thereby sequestering this protein away from its mRNA targets. Turnover of CsrB/C sRNAs is tightly regulated by a GGDEF-EAL domain protein, CsrD, which targets them for cleavage by RNase E. Here, we show that EIIA(Glc) of the glucose-specific PTS system is also required for the normal decay of these sRNAs and that it acts by binding to the EAL domain of CsrD. Only the unphosphorylated form of EIIA(Glc) bound to CsrD in vitro and was capable of activating CsrB/C turnover in vivo. Genetic studies confirmed that this mechanism couples CsrB/C sRNA decay to the availability of a preferred carbon source. These findings reveal a new physiological influence on the workings of the Csr system, a novel function for the EAL domain, and an important new way in which EIIA(Glc) shapes global regulatory circuitry in response to nutritional status.
Collapse
Affiliation(s)
- Yuanyuan Leng
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611-0700, USA
| | - Christopher A Vakulskas
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611-0700, USA
| | - Tesfalem R Zere
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611-0700, USA
| | - Bradley S Pickering
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611-0700, USA
| |
Collapse
|
23
|
Kuhlmann N, Petrov DP, Henrich AW, Lindner SN, Wendisch VF, Seibold GM. Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum. Microbiology (Reading) 2015; 161:1830-1843. [DOI: 10.1099/mic.0.000134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Nora Kuhlmann
- Institute of Biochemistry, Department of Chemistry, University of Cologne, D-50674 Cologne, Germany
| | - Dimitar P. Petrov
- Institute of Biochemistry, Department of Chemistry, University of Cologne, D-50674 Cologne, Germany
| | - Alexander W. Henrich
- Institute of Biochemistry, Department of Chemistry, University of Cologne, D-50674 Cologne, Germany
| | - Steffen N. Lindner
- Faculty of Biology & CeBiTec, Bielefeld University, D-33501 Bielefeld, Germany
| | - Volker F. Wendisch
- Faculty of Biology & CeBiTec, Bielefeld University, D-33501 Bielefeld, Germany
| | - Gerd M. Seibold
- Institute of Biochemistry, Department of Chemistry, University of Cologne, D-50674 Cologne, Germany
- Institute of Microbiology and Biotechnology, Faculty of Natural Sciences, Ulm University, D-89081 Ulm, Germany
| |
Collapse
|
24
|
Liang Q, Zhang F, Li Y, Zhang X, Li J, Yang P, Qi Q. Comparison of individual component deletions in a glucose-specific phosphotransferase system revealed their different applications. Sci Rep 2015; 5:13200. [PMID: 26285685 PMCID: PMC4541071 DOI: 10.1038/srep13200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/14/2015] [Indexed: 01/28/2023] Open
Abstract
The phosphoenolpyruvate-dependent glucose-specific phosphotransferase system (PTSGlc) is the main glucose uptake pathway in Escherichia coli that affects both substrate assimilation and metabolism leading to the product formation. In this study, the effect of single PTSGlc mutation on cell growth and substrate consumption was investigated by knocking out the genes involved in the phosphotransfer cascade of the PTSGlc. In addition, the distribution of the metabolites of mutants was analyzed. Each mutant was confirmed to have different adaptability in the presence of both glucose and xylose with different ratios, and a substrate mixture with high xylose content can be completely consumed in short time when the ptsI mutant is employed. Finally, ptsH deletion was for the first time applied for succinate production due to its well performance under anaerobic condition. Strain YL104H, in which ptsH was deleted, exhibited considerably increased succinate yield under both aerobic and anaerobic conditions. The succinate titer and overall productivity reached 511.11 mM and 1.01 g/L/h after 60 h during the whole-phase fermentation in a mineral salt medium. The present results demonstrated the glucose and xylose co-utilization efficiency and the product yield and productivity can be significantly improved if a suitable PTSGlc deletion mutant was selected.
Collapse
Affiliation(s)
- Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Yikui Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Xu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Jiaojiao Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Peng Yang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
25
|
Lengeler JW. PTS 50: Past, Present and Future, or Diauxie Revisited. J Mol Microbiol Biotechnol 2015; 25:79-93. [DOI: 10.1159/000369809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
<b><i>Past:</i></b> The title ‘PTS 50 or The PTS after 50 years' relies on the first description in 1964 of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system (PTS) by Kundig, Gosh and Roseman [Proc Natl Acad Sci USA 1964;52:1067-1074]. The system comprised proteins named Enzyme I, HPr and Enzymes II, as part of a novel PTS for carbohydrates in Gram-negative and Gram-positive bacteria, whose ‘biological significance remained unclear'. In contrast, studies which would eventually lead to the discovery of the central role of the PTS in bacterial metabolism had been published since before 1942. They are primarily linked to names like Epps and Gale, J. Monod, Cohn and Horibata, and B. Magasanik, and to phenomena like ‘glucose effects', ‘diauxie', ‘catabolite repression' and carbohydrate transport. <b><i>Present:</i></b> The pioneering work from Roseman's group initiated a flood of publications. The extraordinary progress from 1964 to this day in the qualitative and in vitro description of the genes and enzymes of the PTS, and of its multiple roles in global cellular control through ‘inducer exclusion', gene induction and ‘catabolite repression', in cellular growth, in cell differentiation and in chemotaxis, as well as the differences of its functions between Gram-positive and Gram-negative bacteria, was one theme of the meeting and will not be treated in detail here. <b><i>Future:</i></b> At the 1988 Paris meeting entitled ‘The PTS after 25 years', Saul Roseman predicted that ‘we must describe these interactions [of the PTS components] in a quantitative way [under] in vivo conditions'. I will present some results obtained by our group during recent years on the old phenomenon of diauxie by means of very fast and quantitative tests, measured in vivo, and obtained from cultures of isogenic mutant strains growing under chemostat conditions. The results begin to hint at the problems relating to future PTS research, but also to the ‘true science' of Roseman.
Collapse
|
26
|
Bhat SV, Booth SC, McGrath SGK, Dahms TES. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways. PLoS One 2015; 10:e0123813. [PMID: 25919284 PMCID: PMC4412571 DOI: 10.1371/journal.pone.0123813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/07/2015] [Indexed: 11/18/2022] Open
Abstract
There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria.
Collapse
Affiliation(s)
- Supriya V. Bhat
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2 Canada
| | - Sean C. Booth
- Department of Biological Sciences, University of Calgary, 2500 University Dr, NW Calgary, AB, T2N 1N4 Canada
| | - Seamus G. K. McGrath
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2 Canada
| | - Tanya E. S. Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2 Canada
- * E-mail:
| |
Collapse
|
27
|
Panoramic view of a superfamily of phosphatases through substrate profiling. Proc Natl Acad Sci U S A 2015; 112:E1974-83. [PMID: 25848029 DOI: 10.1073/pnas.1423570112] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Large-scale activity profiling of enzyme superfamilies provides information about cellular functions as well as the intrinsic binding capabilities of conserved folds. Herein, the functional space of the ubiquitous haloalkanoate dehalogenase superfamily (HADSF) was revealed by screening a customized substrate library against >200 enzymes from representative prokaryotic species, enabling inferred annotation of ∼35% of the HADSF. An extremely high level of substrate ambiguity was revealed, with the majority of HADSF enzymes using more than five substrates. Substrate profiling allowed assignment of function to previously unannotated enzymes with known structure, uncovered potential new pathways, and identified iso-functional orthologs from evolutionarily distant taxonomic groups. Intriguingly, the HADSF subfamily having the least structural elaboration of the Rossmann fold catalytic domain was the most specific, consistent with the concept that domain insertions drive the evolution of new functions and that the broad specificity observed in HADSF may be a relic of this process.
Collapse
|
28
|
The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2015; 78:231-56. [PMID: 24847021 DOI: 10.1128/mmbr.00001-14] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.
Collapse
|
29
|
Liu P, Zhu X, Tan Z, Zhang X, Ma Y. Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:107-40. [PMID: 25577396 DOI: 10.1007/10_2014_294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Production of bulk chemicals from renewable biomass has been proved to be sustainable and environmentally friendly. Escherichia coli is the most commonly used host strain for constructing cell factories for production of bulk chemicals since it has clear physiological and genetic characteristics, grows fast in minimal salts medium, uses a wide range of substrates, and can be genetically modified easily. With the development of metabolic engineering, systems biology, and synthetic biology, a technology platform has been established to construct E. coli cell factories for bulk chemicals production. In this chapter, we will introduce this technology platform, as well as E. coli cell factories successfully constructed for production of organic acids and alcohols.
Collapse
Affiliation(s)
- Pingping Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Zaigao Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
30
|
Tian Z, Fauré A, Mori H, Matsuno H. Identification of key regulators in glycogen utilization in E. coli based on the simulations from a hybrid functional Petri net model. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 6:S1. [PMID: 24565082 PMCID: PMC4029488 DOI: 10.1186/1752-0509-7-s6-s1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Glycogen and glucose are two sugar sources available during the lag phase of E. coli, but the mechanism that regulates their utilization is still unclear. METHODS Attempting to unveil the relationship between glucose and glycogen, we propose an integrated hybrid functional Petri net (HFPN) model including glycolysis, PTS, glycogen metabolic pathway, and their internal regulatory systems. RESULTS AND CONCLUSIONS By comparing known biological results to this model, basic necessary regulatory mechanism for utilizing glucose and glycogen were identified as a feedback circuit in which HPr and EIIAGlc play key roles. Based on this regulatory HFPN model, we discuss the process of glycogen utilization in E. coli in the context of a systematic understanding of carbohydrate metabolism.
Collapse
|
31
|
A role for EIIA Ntr in controlling fluxes in the central metabolism of E. coli K12. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2879-2889. [DOI: 10.1016/j.bbamcr.2013.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/04/2013] [Accepted: 07/15/2013] [Indexed: 11/21/2022]
|
32
|
Combining genotype improvement and statistical media optimization for isoprenoid production in E. coli. PLoS One 2013; 8:e75164. [PMID: 24124471 PMCID: PMC3790805 DOI: 10.1371/journal.pone.0075164] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
Isoprenoids are a large and diverse class of compounds that includes many high value natural products and are thus in great demand. To meet the increasing demand for isoprenoid compounds, metabolic engineering of microbes has been used to produce isoprenoids in an economical and sustainable manner. To achieve high isoprenoid yields using this technology, the availability of metabolic precursors feeding the deoxyxylulose phosphate (DXP) pathway, responsible for isoprenoid biosynthesis, has to be optimized. In this study, phosphoenolpyruvate, a vital DXP pathway precursor, was enriched by deleting the genes encoding the carbohydrate phosphotransferase system (PTS) in E. coli. Production of lycopene (a C40 isoprenoid) was maximized by optimizing growth medium and culture conditions. In optimized conditions, the lycopene yield from PTS mutant was seven fold higher than that obtained from the wild type strain. This resulted in the highest reported specific yield of lycopene produced from the DXP pathway in E. coli to date (20,000 µg/g dry cell weight). Both the copy number of the plasmid encoding the lycopene biosynthetic genes and the expression were found to be increased in the optimized media. Deletion of PTS together with a similar optimization strategy was also successful in enhancing the production of amorpha-1,4-diene, a distinct C15 isoprenoid, suggesting that the approaches developed herein can be generally applied to optimize production of other isoprenoids.
Collapse
|
33
|
Sato T, Fujihashi M, Miyamoto Y, Kuwata K, Kusaka E, Fujita H, Miki K, Atomi H. An uncharacterized member of the ribokinase family in Thermococcus kodakarensis exhibits myo-inositol kinase activity. J Biol Chem 2013; 288:20856-20867. [PMID: 23737529 DOI: 10.1074/jbc.m113.457259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we performed structural and biochemical analyses on the TK2285 gene product, an uncharacterized protein annotated as a member of the ribokinase family, from the hyperthermophilic archaeon Thermococcus kodakarensis. The three-dimensional structure of the TK2285 protein resembled those of previously characterized members of the ribokinase family including ribokinase, adenosine kinase, and phosphofructokinase. Conserved residues characteristic of this protein family were located in a cleft of the TK2285 protein as in other members whose structures have been determined. We thus examined the kinase activity of the TK2285 protein toward various sugars recognized by well characterized ribokinase family members. Although activity with sugar phosphates and nucleosides was not detected, kinase activity was observed toward d-allose, d-lyxose, d-tagatose, d-talose, d-xylose, and d-xylulose. Kinetic analyses with the six sugar substrates revealed high Km values, suggesting that they were not the true physiological substrates. By examining activity toward amino sugars, sugar alcohols, and disaccharides, we found that the TK2285 protein exhibited prominent kinase activity toward myo-inositol. Kinetic analyses with myo-inositol revealed a greater kcat and much lower Km value than those obtained with the monosaccharides, resulting in over a 2,000-fold increase in kcat/Km values. TK2285 homologs are distributed among members of Thermococcales, and in most species, the gene is positioned close to a myo-inositol monophosphate synthase gene. Our results suggest the presence of a novel subfamily of the ribokinase family whose members are present in Archaea and recognize myo-inositol as a substrate.
Collapse
Affiliation(s)
- Takaaki Sato
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan,; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Masahiro Fujihashi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan; Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan, and
| | - Yukika Miyamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan, and
| | - Keiko Kuwata
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Eriko Kusaka
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruo Fujita
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kunio Miki
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan; Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan, and
| | - Haruyuki Atomi
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan,; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.
| |
Collapse
|
34
|
Iverson A, Garza E, Zhao J, Wang Y, Zhao X, Wang J, Manow R, Zhou S. Increasing reducing power output (NADH) of glucose catabolism for reduction of xylose to xylitol by genetically engineered Escherichia coli AI05. World J Microbiol Biotechnol 2013; 29:1225-32. [PMID: 23435875 DOI: 10.1007/s11274-013-1285-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
Anaerobic homofermentative production of reduced products requires additional reducing power (NADH and/or NADPH) output from glucose catabolism. Previously, with an anaerobically expressed pyruvate dehydrogenase operon (aceEF-lpd), we doubled the reducing power output to four NADH per glucose (or 1.2 xylose) catabolized anaerobically, which satisfied the NADH requirement to establish a non-transgenic homoethanol pathway (1 glucose or 1.2 xylose --> 2 acetyl-CoA + 4 NADH --> 2 ethanol) in the engineered strain, Escherichia coli SZ420 (∆frdBC ∆ldhA ∆ackA ∆focA-pflB ∆pdhR::pflBp6-pflBrbs-aceEF-lpd). In this study, E. coli SZ420 was further engineered for reduction of xylose to xylitol by (1) deleting the alcohol dehydrogenase gene (adhE) to divert NADH from the ethanol pathway; (2) deleting the glucose-specific PTS permease gene (ptsG) to eliminate catabolite repression and allow simultaneous uptake of glucose and xylose; (3) cloning the aldose reductase gene (xylI) of Candida boidinii to reduce xylose to xylitol. The resulting strain, E. coli AI05 (pAGI02), could in theory simultaneously uptake glucose and xylose, and utilize glucose as a source of reducing power for the reduction of xylose to xylitol, with an expected yield of four xylitol for each glucose consumed (YRPG = 4) under anaerobic conditions. In resting cell fermentation tests using glucose and xylose mixtures, E. coli AI05 (pAGI02) achieved an actual YRPG value of ~3.6, with xylitol as the major fermentation product and acetate as the by-product.
Collapse
Affiliation(s)
- Andrew Iverson
- Key Laboratory of Fermentation Engineering, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Joyet P, Bouraoui H, Aké FMD, Derkaoui M, Zébré AC, Cao TN, Ventroux M, Nessler S, Noirot-Gros MF, Deutscher J, Milohanic E. Transcription regulators controlled by interaction with enzyme IIB components of the phosphoenolpyruvate: sugar phosphotransferase system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1415-24. [PMID: 23318733 DOI: 10.1016/j.bbapap.2013.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/27/2012] [Accepted: 01/04/2013] [Indexed: 11/16/2022]
Abstract
Numerous bacteria possess transcription activators and antiterminators composed of regulatory domains phosphorylated by components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). These domains, called PTS regulation domains (PRDs), usually contain two conserved histidines as potential phosphorylation sites. While antiterminators possess two PRDs with four phosphorylation sites, transcription activators contain two PRDs plus two regulatory domains resembling PTS components (EIIA and EIIB). The activity of these transcription regulators is controlled by up to five phosphorylations catalyzed by PTS proteins. Phosphorylation by the general PTS components EI and HPr is usually essential for the activity of PRD-containing transcription regulators, whereas phosphorylation by the sugar-specific components EIIA or EIIB lowers their activity. For a specific regulator, for example the Bacillus subtilis mtl operon activator MtlR, the functional phosphorylation sites can be different in other bacteria and consequently the detailed mode of regulation varies. Some of these transcription regulators are also controlled by an interaction with a sugar-specific EIIB PTS component. The EIIBs are frequently fused to the membrane-spanning EIIC and EIIB-mediated membrane sequestration is sometimes crucial for the control of a transcription regulator. This is also true for the Escherichia coli repressor Mlc, which does not contain a PRD but nevertheless interacts with the EIIB domain of the glucose-specific PTS. In addition, some PRD-containing transcription activators interact with a distinct EIIB protein located in the cytoplasm. The phosphorylation state of the EIIB components, which changes in response to the presence or absence of the corresponding carbon source, affects their interaction with transcription regulators. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Philippe Joyet
- Institut National de la Recherche Agronomique, UMR1319 Microbiologie de l'alimentation au service de la santé humaine Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR Micalis, F-78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Many microorganisms contain cellulases that are important for plant cell wall degradation and overall soil ecosystem functioning. At present, we have extensive biochemical knowledge of cellulases but little is known about the phylogenetic distribution of these enzymes. To address this, we analyzed the distribution of 21,985 genes encoding proteins related to cellulose utilization in 5,123 sequenced bacterial genomes. First, we identified the distribution of glycoside hydrolases involved in cellulose utilization and synthesis at different taxonomic levels, from the phylum to the strain. Cellulose degradation/utilization capabilities appeared in nearly all major groups and resulted in strains displaying various enzyme gene combinations. Potential cellulose degraders, having both cellulases and β-glucosidases, constituted 24% of all genomes whereas potential opportunistic strains, having β-glucosidases only, accounted for 56%. Finally, 20% of the bacteria have no relevant enzymes and do not rely on cellulose utilization. The latter group was primarily connected to specific bacterial lifestyles like autotrophy and parasitism. Cellulose degraders, as well as opportunists, have multiple enzymes with similar functions. However, the potential degraders systematically harbor about twice more β-glucosidases than their potential opportunistic relatives. Although scattered, the distribution of functional types, in bacterial lineages, is not random but mostly follows a Brownian motion evolution model. Degraders form clusters of relatives at the species level, whereas opportunists are clustered at the genus level. This information can form a mechanistic basis for the linking of changes in microbial community composition to soil ecosystem processes.
Collapse
|
37
|
Kremling A, Goehler A, Jahreis K, Nees M, Auerbach B, Schmidt-Heck W, Kökpinar O, Geffers R, Rinas U, Bettenbrock K. Analysis and Design of Stimulus Response Curves of E. coli. Metabolites 2012; 2:844-71. [PMID: 24957765 PMCID: PMC3901224 DOI: 10.3390/metabo2040844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/29/2012] [Indexed: 11/16/2022] Open
Abstract
Metabolism and signalling are tightly coupled in bacteria. Combining several theoretical approaches, a core model is presented that describes transcriptional and allosteric control of glycolysis in Escherichia coli. Experimental data based on microarrays, signaling components and extracellular metabolites are used to estimate kinetic parameters. A newly designed strain was used that adjusts the incoming glucose flux into the system and allows a kinetic analysis. Based on the results, prediction for intracelluar metabolite concentrations over a broad range of the growth rate could be performed and compared with data from literature.
Collapse
Affiliation(s)
- Andreas Kremling
- Systems Biotechnology, Technische Universität München, Boltzmannstr. 15, Garching b. München, Germany.
| | - Anna Goehler
- University Osnabrück, Barbarastrasse 11, Osnabrück, Germany.
| | - Knut Jahreis
- University Osnabrück, Barbarastrasse 11, Osnabrück, Germany.
| | - Markus Nees
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Benedikt Auerbach
- Systems Biotechnology, Technische Universität München, Boltzmannstr. 15, Garching b. München, Germany.
| | | | - Oznur Kökpinar
- Helmholtz Center for Infection Research, Inhoffenstr. 7, Braunschweig, Germany.
| | - Robert Geffers
- Helmholtz Center for Infection Research, Inhoffenstr. 7, Braunschweig, Germany.
| | - Ursula Rinas
- Helmholtz Center for Infection Research, Inhoffenstr. 7, Braunschweig, Germany.
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| |
Collapse
|
38
|
Kosfeld A, Jahreis K. Characterization of the Interaction Between the Small Regulatory Peptide SgrT and the EIICBGlc of the Glucose-Phosphotransferase System of E. coli K-12. Metabolites 2012; 2:756-74. [PMID: 24957761 PMCID: PMC3901232 DOI: 10.3390/metabo2040756] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/29/2012] [Accepted: 10/10/2012] [Indexed: 11/21/2022] Open
Abstract
Escherichia coli is a widely used microorganism in biotechnological processes. An obvious goal for current scientific and technical research in this field is the search for new tools to optimize productivity. Usually glucose is the preferred carbon source in biotechnological applications. In E. coli, glucose is taken up by the phosphoenolpyruvate-dependent glucose phosphotransferase system (PTS). The regulation of the ptsG gene for the glucose transporter is very complex and involves several regulatory proteins. Recently, a novel posttranscriptional regulation system has been identified which consists of a small regulatory RNA SgrS and a small regulatory polypeptide called SgrT. During the accumulation of glucose-6-phosphate or fructose-6-phosphate, SgrS is involved in downregulation of ptsG mRNA stability, whereas SgrT inhibits glucose transport activity by a yet unknown mechanism. The function of SgrS has been studied intensively. In contrast, the knowledge about the function of SgrT is still limited. Therefore, in this paper, we focused our interest on the regulation of glucose transport activity by SgrT. We identified the SgrT target sequence within the glucose transporter and characterized the interaction in great detail. Finally, we suggest a novel experimental approach to regulate artificially carbohydrate uptake in E. coli to minimize metabolic overflow in biotechnological applications.
Collapse
Affiliation(s)
- Anne Kosfeld
- Centre for Pathology and Forensic and Genetic Medicine, Institute for Human Genetics-Hannover Medical School, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | - Knut Jahreis
- Department of Biology and Chemistry, University of Osnabrück, Barbarastr.11, D-49069 Osnabrück, Germany.
| |
Collapse
|
39
|
Xu Q, Göhler AK, Kosfeld A, Carlton D, Chiu HJ, Klock HE, Knuth MW, Miller MD, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Jahreis K, Wilson IA. The structure of Mlc titration factor A (MtfA/YeeI) reveals a prototypical zinc metallopeptidase related to anthrax lethal factor. J Bacteriol 2012; 194:2987-99. [PMID: 22467785 PMCID: PMC3370624 DOI: 10.1128/jb.00038-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/23/2012] [Indexed: 12/25/2022] Open
Abstract
MtfA of Escherichia coli (formerly YeeI) was previously identified as a regulator of the phosphoenolpyruvate (PEP)-dependent:glucose phosphotransferase system. MtfA homolog proteins are highly conserved, especially among beta- and gammaproteobacteria. We determined the crystal structures of the full-length MtfA apoenzyme from Klebsiella pneumoniae and its complex with zinc (holoenzyme) at 2.2 and 1.95 Å, respectively. MtfA contains a conserved H(149)E(150)XXH(153)+E(212)+Y(205) metallopeptidase motif. The presence of zinc in the active site induces significant conformational changes in the region around Tyr205 compared to the conformation of the apoenzyme. Additionally, the zinc-bound MtfA structure is in a self-inhibitory conformation where a region that was disordered in the unliganded structure is now observed in the active site and a nonproductive state of the enzyme is formed. MtfA is related to the catalytic domain of the anthrax lethal factor and the Mop protein involved in the virulence of Vibrio cholerae, with conservation in both overall structure and in the residues around the active site. These results clearly provide support for MtfA as a prototypical zinc metallopeptidase (gluzincin clan).
Collapse
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | | | - Anne Kosfeld
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Dennis Carlton
- Joint Center for Structural Genomics
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Heath E. Klock
- Joint Center for Structural Genomics
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Mark W. Knuth
- Joint Center for Structural Genomics
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Mitchell D. Miller
- Joint Center for Structural Genomics
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ashley M. Deacon
- Joint Center for Structural Genomics
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Adam Godzik
- Joint Center for Structural Genomics
- Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, California, USA
| | - Scott A. Lesley
- Joint Center for Structural Genomics
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | - Knut Jahreis
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Ian A. Wilson
- Joint Center for Structural Genomics
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
40
|
Andrulis ED. Theory of the origin, evolution, and nature of life. Life (Basel) 2011; 2:1-105. [PMID: 25382118 PMCID: PMC4187144 DOI: 10.3390/life2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/22/2022] Open
Abstract
Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.
Collapse
Affiliation(s)
- Erik D Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Wood Building, W212, Cleveland, OH 44106, USA.
| |
Collapse
|
41
|
Characterization of MtfA, a novel regulatory output signal protein of the glucose-phosphotransferase system in Escherichia coli K-12. J Bacteriol 2011; 194:1024-35. [PMID: 22178967 DOI: 10.1128/jb.06387-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glucose-phosphotransferase system (PTS) in Escherichia coli K-12 is a complex sensory and regulatory system. In addition to its central role in glucose uptake, it informs other global regulatory networks about carbohydrate availability and the physiological status of the cell. The expression of the ptsG gene encoding the glucose-PTS transporter EIICB(Glc) is primarily regulated via the repressor Mlc, whose inactivation is glucose dependent. During transport of glucose and dephosphorylation of EIICB(Glc), Mlc binds to the B domain of the transporter, resulting in derepression of several Mlc-regulated genes. In addition, Mlc can also be inactivated by the cytoplasmic protein MtfA in a direct protein-protein interaction. In this study, we identified the binding site for Mlc in the carboxy-terminal region of MtfA by measuring the effect of mutated MtfAs on ptsG expression. In addition, we demonstrated the ability of MtfA to inactivate an Mlc super-repressor, which cannot be inactivated by EIICB(Glc), by using in vivo titration and gel shift assays. Finally, we characterized the proteolytic activity of purified MtfA by monitoring cleavage of amino 4-nitroanilide substrates and show Mlc's ability to enhance this activity. Based on our findings, we propose a model of MtfA as a glucose-regulated peptidase activated by cytoplasmic Mlc. Its activity may be necessary during the growth of cultures as they enter the stationary phase. This proteolytic activity of MtfA modulated by Mlc constitutes a newly identified PTS output signal that responds to changes in environmental conditions.
Collapse
|