1
|
Woytinek K, Glitscher M, Hildt E. Antagonism of epidermal growth factor receptor signaling favors hepatitis E virus life cycle. J Virol 2024; 98:e0058024. [PMID: 38856640 PMCID: PMC11265270 DOI: 10.1128/jvi.00580-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Hepatitis E virus (HEV) poses a global threat, which currently remains understudied in terms of host interactions. Epidermal growth factor receptor (EGFR) plays multifaceted roles in viral pathogenesis, impacting host-cell entry, viral replication, and host-defense modulation. On the one hand, EGFR signaling emerged as a major driver in innate immunity; on the other hand, a crosstalk between HEV and EGFR requires deeper analysis. We therefore aimed to dissect the receptor's involvement in the HEV life cycle. In persistently HEV-infected cells, the EGFR amount is decreased alongside with enhanced receptor internalization. As compared with the control ligand-induced EGFR, activation revealed an early receptor internalization and degradation in HEV-replicating cells, resulting in a notable EGFR signaling delay. Interestingly, inhibition or silencing of EGFR increased viral replication, extracellular and intracellular viral transcripts, and released infectious particles. The pro-viral impact of EGFR inhibition was attributed to (i) impaired expression of interferon-stimulated genes, (ii) activation of the autophagosomal system, (iii) virus-induced inhibition of lysosomal acidification, and (iv) a decrease of the cellular cholesterol level. IMPORTANCE This study identifies epidermal growth factor receptor (EGFR) as a novel host factor affecting hepatitis E virus (HEV): EGFR downregulation promotes viral replication, release, and evasion from the innate immune response. The discovery that EGFR inhibition favors viral spread is particularly concerning for HEV patients undergoing EGFR inhibitor treatment.
Collapse
Affiliation(s)
| | - Mirco Glitscher
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| | - Eberhard Hildt
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
2
|
Linden T, Hanses F, Domingo-Fernández D, DeLong LN, Kodamullil AT, Schneider J, Vehreschild MJGT, Lanznaster J, Ruethrich MM, Borgmann S, Hower M, Wille K, Feldt T, Rieg S, Hertenstein B, Wyen C, Roemmele C, Vehreschild JJ, Jakob CEM, Stecher M, Kuzikov M, Zaliani A, Fröhlich H. Machine Learning Based Prediction of COVID-19 Mortality Suggests Repositioning of Anticancer Drug for Treating Severe Cases. ARTIFICIAL INTELLIGENCE IN THE LIFE SCIENCES 2021; 1:100020. [PMID: 34988543 PMCID: PMC8677630 DOI: 10.1016/j.ailsci.2021.100020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Despite available vaccinations COVID-19 case numbers around the world are still growing, and effective medications against severe cases are lacking. In this work, we developed a machine learning model which predicts mortality for COVID-19 patients using data from the multi-center 'Lean European Open Survey on SARS-CoV-2-infected patients' (LEOSS) observational study (>100 active sites in Europe, primarily in Germany), resulting into an AUC of almost 80%. We showed that molecular mechanisms related to dementia, one of the relevant predictors in our model, intersect with those associated to COVID-19. Most notably, among these molecules was tyrosine kinase 2 (TYK2), a protein that has been patented as drug target in Alzheimer's Disease but also genetically associated with severe COVID-19 outcomes. We experimentally verified that anti-cancer drugs Sorafenib and Regorafenib showed a clear anti-cytopathic effect in Caco2 and VERO-E6 cells and can thus be regarded as potential treatments against COVID-19. Altogether, our work demonstrates that interpretation of machine learning based risk models can point towards drug targets and new treatment options, which are strongly needed for COVID-19.
Collapse
Affiliation(s)
- Thomas Linden
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- University of Bonn, Bonn-Aachen International Center for IT, Friedrich Hirzebruch-Allee 6, 53115 Bonn, Germany
| | - Frank Hanses
- Emergency Department, University Hospital Regensburg, 93053 Regensburg, Germany
- Department for Infectious Diseases and Infection Control, University Hospital Regensburg, Germany
| | - Daniel Domingo-Fernández
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
| | - Lauren Nicole DeLong
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- University of Bonn, Bonn-Aachen International Center for IT, Friedrich Hirzebruch-Allee 6, 53115 Bonn, Germany
| | - Alpha Tom Kodamullil
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
| | - Jochen Schneider
- Technical University of Munich, School of Medicine, University Hospital rechts der Isar, Department of Internal Medicine II, 81675 Munich, Germany
| | - Maria J G T Vehreschild
- Department II of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Julia Lanznaster
- Department of Internal Medicine II, Hospital Passau, Innstraße 76, 94032 Passau, Germany
| | - Maria Madeleine Ruethrich
- Institute for Infection Medicine and Hospital Hygiene, University Hospital Jena, 07743 Jena, Germany
| | - Stefan Borgmann
- Department of Infectious Diseases and Infection Control, Hospital Ingolstadt, 85049 Ingolstadt, Germany
| | - Martin Hower
- Department of Pneumology, Infectious Diseases and Intensive Care, Klinikum Dortmund gGmbH, Hospital of University Witten / Herdecke, 44137 Dortmund, Germany
| | - Kai Wille
- University Clinic for Haematology, Oncology, Haemostaseology and Palliative Care, Johannes Wesling Medical Centre Minden, 32429 Minden, Germany
| | - Torsten Feldt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Siegbert Rieg
- Department of Medicine II, University Hospital Freiburg, 79110 Freiburg, Germany
| | - Bernd Hertenstein
- Department of Medicine II, University Hospital Freiburg, 79110 Freiburg, Germany
| | - Christoph Wyen
- Christoph Wyen, Praxis am Ebertplatz Cologne, 50668 Cologne, Germany
| | - Christoph Roemmele
- Internal Medicine III - Gastroenterology and Infectious Diseases, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Jörg Janne Vehreschild
- Department II of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
| | - Carolin E M Jakob
- Department I for Internal Medicine, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Melanie Stecher
- Fraunhofer Institute for Translational Medicine and Pharmacologie (ITMP), VolksparkLabs, Schnackenburgallee 114, 22535 Hamburg, Germany
| | - Maria Kuzikov
- Department for Infectious Diseases and Infection Control, University Hospital Regensburg, Germany
| | - Andrea Zaliani
- Department for Infectious Diseases and Infection Control, University Hospital Regensburg, Germany
| | - Holger Fröhlich
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- University of Bonn, Bonn-Aachen International Center for IT, Friedrich Hirzebruch-Allee 6, 53115 Bonn, Germany
| |
Collapse
|
3
|
The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther 2020; 5:87. [PMID: 32532960 PMCID: PMC7292831 DOI: 10.1038/s41392-020-0187-x] [Citation(s) in RCA: 537] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Sorafenib is a multikinase inhibitor capable of facilitating apoptosis, mitigating angiogenesis and suppressing tumor cell proliferation. In late-stage hepatocellular carcinoma (HCC), sorafenib is currently an effective first-line therapy. Unfortunately, the development of drug resistance to sorafenib is becoming increasingly common. This study aims to identify factors contributing to resistance and ways to mitigate resistance. Recent studies have shown that epigenetics, transport processes, regulated cell death, and the tumor microenvironment are involved in the development of sorafenib resistance in HCC and subsequent HCC progression. This study summarizes discoveries achieved recently in terms of the principles of sorafenib resistance and outlines approaches suitable for improving therapeutic outcomes for HCC patients.
Collapse
|
4
|
Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Curr Opin Virol 2019; 35:1-13. [PMID: 30753961 DOI: 10.1016/j.coviro.2018.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Rabies virus (RABV) constitutes a major social and economic burden associated with 60 000 deaths annually worldwide. Although pre-exposure and post-exposure treatment options are available, they are efficacious only when initiated before the onset of clinical symptoms. Aggravating the problem, the current RABV vaccine does not cross-protect against the emerging zoonotic phylogroup II lyssaviruses. A requirement for an uninterrupted cold chain and high cost of the immunoglobulin component of rabies prophylaxis generate an unmet need for the development of RABV-specific antivirals. We discuss desirable anti-RABV drug profiles, past efforts to address the problem and inhibitor candidates identified, and examine how the rapidly expanding structural insight into RABV protein organization has illuminated novel druggable target candidates and paved the way to structure-aided drug optimization. Special emphasis is given to the viral RNA-dependent RNA polymerase complex as a promising target for direct-acting broad-spectrum RABV inhibitors.
Collapse
|
5
|
Lundberg L, Brahms A, Hooper I, Carey B, Lin SC, Dahal B, Narayanan A, Kehn-Hall K. Repurposed FDA-Approved drug sorafenib reduces replication of Venezuelan equine encephalitis virus and other alphaviruses. Antiviral Res 2018; 157:57-67. [PMID: 29981794 DOI: 10.1016/j.antiviral.2018.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
The New World alphaviruses -Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV respectively) - cause a febrile disease that is often lethal in equines and children and leads to long-term neurological sequelae in survivors. Endemic to the Americas, epizootic outbreaks of the three viruses occur sporadically in the continental United States. All three viruses aerosolize readily, replicate to high titers in cell culture, and have low infectious doses. Additionally, there are no FDA-approved vaccines or therapeutics for human use. To address the therapeutic gap, a high throughput assay utilizing a luciferase reporter virus, TC83-luc, was performed to screen a library of commercially available, FDA-approved drugs for antiviral activity. From a group of twenty compounds found to significantly decrease luminescence, the carcinoma therapeutic sorafenib inhibited replication of VEEV-TC83 and TrD in vitro. Additionally, sorafenib inhibited replication of EEEV and two Old World alphaviruses, Sindbis virus and chikungunya virus, at 8 and 16 h post-infection. Sorafenib caused no toxicity in Vero cells, and coupled with a low EC50 value, yielded a selectivity index of >19. Mechanism of actions studies suggest that sorafenib inhibited viral translation through dephosphorylation of several key proteins, including eIF4E and p70S6K, leading to a reduction in viral protein production and overall viral replication.
Collapse
Affiliation(s)
- Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Ashwini Brahms
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Idris Hooper
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Brian Carey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Shih-Chao Lin
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Bibha Dahal
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
6
|
Dual effects of the Nrf2 inhibitor for inhibition of hepatitis C virus and hepatic cancer cells. BMC Cancer 2018; 18:680. [PMID: 29940898 PMCID: PMC6019801 DOI: 10.1186/s12885-018-4588-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 06/13/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We previously showed that knockdown of nuclear factor E2-related factor 2 (Nrf2) resulted in suppression of hepatitis C virus (HCV) infection. In this study, whether brusatol, an Nrf2 inhibitor, has dual anti-HCV and anticancer effects was explored. METHODS The anti-HCV effect of brusatol was investigated by analyzing HCV RNA and proteins in a hepatic cell line persistently-infected with HCV, HPI cells, and by analyzing HCV replication in a replicon-replicating hepatic cell line, OR6 cells. Then, dual anti-HCV and anticancer effects of brusatol and enhancement of the effects by the combination of brusatol with anticancer drugs including sorafenib, which has been reported to have the dual effects, were then investigated. RESULTS Brusatol suppressed the persistent HCV infection at both the RNA and protein levels in association with a reduction in Nrf2 protein in the HPI cells. Analysis of the OR6 cells treated with brusatol indicated that brusatol inhibited HCV persistence by inhibiting HCV replication. Combination of brusatol with an anticancer drug not only enhanced the anticancer effect but also, in the case of the combination with sorafenib, strongly suppressed HCV infection. CONCLUSIONS Brusatol has dual anti-HCV and anticancer effects and can enhance the comparable effects of sorafenib. There is therefore the potential for combination therapy of brusatol and sorafenib for HCV-related hepatocellular carcinoma.
Collapse
|
7
|
Himmelsbach K, Hildt E. Identification of various cell culture models for the study of Zika virus. World J Virol 2018; 7:10-20. [PMID: 29468137 PMCID: PMC5807893 DOI: 10.5501/wjv.v7.i1.10] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To identify cell culture models supportive for Zika virus (ZIKV) replication.
METHODS Various human and non-human cell lines were infected with a defined amount of ZIKV Polynesia strain. Cells were analyzed 48 h post infection for the amount of intracellular and extracellular viral genomes and infectious viral particles by quantitative real-time PCR and virus titration assay. The extent of replication was monitored by immunofluorescence and western blot analysis by using Env and NS1 specific antibodies. Innate immunity was assayed by luciferase reporter assay and immunofluorescence analysis.
RESULTS All investigated cell lines except CHO cells supported infection, replication and release of ZIKV. While in infected A549 and Vero cells a pronounced cytopathic effect was observed COS7, 293T and Huh7.5 cells were most resistant. Although the analyzed cell lines released comparable amounts of viral genomes to the supernatant significant differences were found for the number of infectious viral particles. The neuronal cell lines N29.1 and SH-SY5Y released 100 times less infectious viral particles than Vero-, A549- or 293T-cells. However there is no strict correlation between the amount of produced viral particles and the induction of an interferon response in the analyzed cell lines.
CONCLUSION The investigated cell lines with their different tissue origins and diverging ZIKV susceptibility display a toolbox for ZIKV research.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Langen 63225, Germany
- Center for Infection Research (DZIF), Braunschweig 38124, Germany
| |
Collapse
|
8
|
Chen J, Jin R, Zhao J, Liu J, Ying H, Yan H, Zhou S, Liang Y, Huang D, Liang X, Yu H, Lin H, Cai X. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Lett 2015; 367:1-11. [PMID: 26170167 DOI: 10.1016/j.canlet.2015.06.019] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Renan Jin
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinghua Liu
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Han Yan
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Senjun Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Diyu Huang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Yang Y, Wen F, Li J, Zhang P, Yan W, Hao P, Xia F, Bi F, Li Q. A high baseline HBV load and antiviral therapy affect the survival of patients with advanced HBV-related HCC treated with sorafenib. Liver Int 2015; 35:2147-54. [PMID: 25676812 DOI: 10.1111/liv.12805] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/01/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Although a high viral load is an independent risk factor for recurrence of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) after surgery, the prognostic impact of viral load on advanced HCC is unclear. This study investigated the impact of baseline HBV load and antiviral therapy on survival of patients with advanced HCC treated with sorafenib. METHODS Of 130 patients with advanced HBV-related HCC received first-line sorafenib therapy were evaluated in a multicenter, retrospective study. RESULTS No patients experienced severe hepatic impairment because of HBV reactivation during sorafenib therapy. The median progression-free survival (PFS) and overall survival (OS) of all patients were 5.7 and 9.6 months respectively. Patients with a baseline HBV DNA ≤10(4) copies/ml had significantly better OS than those with >10(4) copies/ml (10.4 vs 6.6 months; P = 0.002), but PFS showed an increasing trend (5.8 vs 4.8 months; P = 0.068). Patients who received antiviral therapy had a better trend in OS than those who did not (12.0 vs 8.3 months; P = 0.058), but there was no difference in PFS (6.4 vs 4.1 months; P = 0.280). In a multivariate analysis, the baseline HBV DNA level >10(4) copies/ml (P = 0.001; hazard ration [HR] = 2.294; 95% CI 1.429-3.676) and antiviral therapy (P = 0.038; HR 0.617; 95% CI 0.390-0.975) were independent predictors of OS. CONCLUSION In patients with advanced HBV-related HCC treated with sorafenib, a high baseline HBV load was an adverse prognostic factor for survival. However, survival was significantly improved with the use of antiviral therapy.
Collapse
Affiliation(s)
- Yu Yang
- The Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Wen
- The Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianliang Li
- The Department of Medical Oncology, Hunan Cancer Hospital/The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Pengfei Zhang
- The Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenhui Yan
- The Department of Medical Oncology, Second People's Hospital of Hunan Province, Changsha, China
| | - Ping Hao
- The Department of Oncology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Feng Xia
- The Department of Hepatobiliary Surgery, Southwest Hospital, Chongqing, China
| | - Feng Bi
- The Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu Li
- The Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
The kinase-inhibitor sorafenib inhibits multiple steps of the Hepatitis C Virus infectious cycle in vitro. Antiviral Res 2015; 118:93-102. [PMID: 25823619 DOI: 10.1016/j.antiviral.2015.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/19/2015] [Accepted: 03/22/2015] [Indexed: 12/18/2022]
Abstract
Hepatitis C Virus (HCV) chronic infection is a major cause of hepatocellular carcinoma. Sorafenib is the only medical treatment that has been approved for the treatment of this cancer. It is a multikinase inhibitor with anti-tumor activity against a wide variety of cancers. Sorafenib blocks angiogenesis and tumor cell proliferation through inhibition of kinases, such as VEGFR2, PDGFR, or the serine/threonine kinases RAF. Previous studies have reported an anti-HCV effect of sorafenib in vitro, but various mechanisms of action have been described. The aim of this study was to clarify the action of sorafenib on the complete HCV infectious cycle. In order to examine the action of sorafenib on all steps of the HCV infectious cycle, we used a combination of validated cell culture models, based on the HuH-7 reference cell line and primary human hepatocytes. We found that sorafenib blocks HCV infection by altering the viral entry step and the production of viral particles. Moreover, we observed that treatment with sorafenib lead to a modification of Claudin-1 expression and localization, which could partly be responsible for the anti-HCV effect. Collectively, our findings confirm the anti-HCV effect of sorafenib in vitro, while highlighting the complexity of the action of sorafenib on the HCV infectious cycle.
Collapse
|
11
|
Xiao F, Fofana I, Thumann C, Mailly L, Alles R, Robinet E, Meyer N, Schaeffer M, Habersetzer F, Doffoël M, Leyssen P, Neyts J, Zeisel MB, Baumert TF. Synergy of entry inhibitors with direct-acting antivirals uncovers novel combinations for prevention and treatment of hepatitis C. Gut 2015; 64:483-94. [PMID: 24848265 PMCID: PMC4345833 DOI: 10.1136/gutjnl-2013-306155] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Although direct-acting antiviral agents (DAAs) have markedly improved the outcome of treatment in chronic HCV infection, there continues to be an unmet medical need for improved therapies in difficult-to-treat patients as well as liver graft infection. Viral entry is a promising target for antiviral therapy. DESIGN Aiming to explore the role of entry inhibitors for future clinical development, we investigated the antiviral efficacy and toxicity of entry inhibitors in combination with DAAs or other host-targeting agents (HTAs). Screening a large series of combinations of entry inhibitors with DAAs or other HTAs, we uncovered novel combinations of antivirals for prevention and treatment of HCV infection. RESULTS Combinations of DAAs or HTAs and entry inhibitors including CD81-, scavenger receptor class B type I (SR-BI)- or claudin-1 (CLDN1)-specific antibodies or small-molecule inhibitors erlotinib and dasatinib were characterised by a marked and synergistic inhibition of HCV infection over a broad range of concentrations with undetectable toxicity in experimental designs for prevention and treatment both in cell culture models and in human liver-chimeric uPA/SCID mice. CONCLUSIONS Our results provide a rationale for the development of antiviral strategies combining entry inhibitors with DAAs or HTAs by taking advantage of synergy. The uncovered combinations provide perspectives for efficient strategies to prevent liver graft infection and novel interferon-free regimens.
Collapse
Affiliation(s)
- Fei Xiao
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Isabel Fofana
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Christine Thumann
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Laurent Mailly
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Roxane Alles
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Inserm, U977, Strasbourg, France
| | - Eric Robinet
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Nicolas Meyer
- Pôle de Santé Publique, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - Mickaël Schaeffer
- Pôle de Santé Publique, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
| | - François Habersetzer
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Michel Doffoël
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pieter Leyssen
- Rega Institute for Medical Research, KULeuven, Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, KULeuven, Leuven, Belgium
| | - Mirjam B Zeisel
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France,Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
12
|
Chen L, Lu J, Huang T, Yin J, Wei L, Cai YD. Finding candidate drugs for hepatitis C based on chemical-chemical and chemical-protein interactions. PLoS One 2014; 9:e107767. [PMID: 25225900 PMCID: PMC4166673 DOI: 10.1371/journal.pone.0107767] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/14/2014] [Indexed: 11/18/2022] Open
Abstract
Hepatitis C virus (HCV) is an infectious virus that can cause serious illnesses. Only a few drugs have been reported to effectively treat hepatitis C. To have greater diversity in drug choice and better treatment options, it is necessary to develop more drugs to treat the infection. However, it is time-consuming and expensive to discover candidate drugs using experimental methods, and computational methods may complement experimental approaches as a preliminary filtering process. This type of approach was proposed by using known chemical-chemical interactions to extract interactive compounds with three known drug compounds of HCV, and the probabilities of these drug compounds being able to treat hepatitis C were calculated using chemical-protein interactions between the interactive compounds and HCV target genes. Moreover, the randomization test and expectation-maximization (EM) algorithm were both employed to exclude false discoveries. Analysis of the selected compounds, including acyclovir and ganciclovir, indicated that some of these compounds had potential to treat the HCV. Hopefully, this proposed method could provide new insights into the discovery of candidate drugs for the treatment of HCV and other diseases.
Collapse
Affiliation(s)
- Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, People's Republic of China
| | - Jing Lu
- Department of Medicinal Chemistry, School of Pharmacy, Yantai University, Shandong, Yantai, People's Republic of China
| | - Tao Huang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jun Yin
- College of Information Engineering, Shanghai Maritime University, Shanghai, People's Republic of China
| | - Lai Wei
- College of Information Engineering, Shanghai Maritime University, Shanghai, People's Republic of China
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|