1
|
Wang J, Wu Y, Zhu L, Guo K, Gao S, Dong Y. Genomic evolution and patterns of horizontal gene transfer in Papilio. Genomics 2024; 116:110956. [PMID: 39542384 DOI: 10.1016/j.ygeno.2024.110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/14/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
The Papilio genus, known for its ecological and phenotypic diversity, is a valuable model for evolutionary studies. This study conducted a comparative genomic analysis of 11 Papilio species, revealing species-specific gene family expansions, including the UDP-glucosyltransferase 2 gene associated with insect detoxification, particularly expanding in Papilio polyxenes. Our analysis also revealed 199 horizontal gene transfer (HGT) acquired genes from 76 microbial species, with Pseudomonadota and Bacillota as common HGT donors across these genomes. Furthermore, we examined the evolutionary patterns of nine ABC transporter subfamilies, uncovering potential links between gene family evolution and environmental adaptation. This study provides new insights into evolutionary relationships and genomic adaptations within the Papilio genus, contributing to broader butterfly evolutionary research.
Collapse
Affiliation(s)
- Jiajia Wang
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Yunfei Wu
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Linxin Zhu
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Kaixin Guo
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Shichen Gao
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Yan Dong
- College of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China.
| |
Collapse
|
2
|
Singamshetty S, Selvapandian U, Selvamani SB, Talya Chandrashekara S, Pathak J, Agarwal A, Thiruvengadam V, Ramasamy GG, Sushil SN, Kamanur M, Nara N, Mohan M. Transcriptome mining and expression analysis of ABC transporter genes in a monophagous herbivore, Leucinodes orbonalis (Crambidae: Lepidoptera). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101316. [PMID: 39216277 DOI: 10.1016/j.cbd.2024.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Insecticide resistance is a global concern and requires immediate attention to manage dreadful insect pests. One of the resistance mechanisms adopted by insects is through ATP-binding cassette (ABC) transporter proteins. These proteins rapidly transport and eliminate the insecticidal molecules across the lipid membranes (Phase III detoxification mechanism). In the present study, we investigated the potential role of ABC transporter genes in imparting insecticide resistance in field-collected insecticide resistant larvae of eggplant shoot and fruit borer (Leucinodes orbonalis; Crambidae: Lepidoptera). Dose-mortality bioassays against five insecticidal molecules revealed moderate to high levels of insecticide resistance (32.2. to 134.1-fold). Thirty-one genes encoding ABC transporter proteins were mined from the transcriptome resources of L. orbonalis. They were classified under eight sub-families (ABCA to ABCH). Phylogenetic analysis indicated ABCG is the most divergent, composed of nine genes as compared to many other insects. Transcriptome analysis of the insecticide resistant and susceptible strains of L. orbonalis revealed differential expression of 13 ABC transporter genes. The altered expression of these genes was further validated using qRT-PCR. The knockdown studies indicated the involvement of ABCD1 and ABCG2 genes in chlorantraniliprole resistance in the insecticide-resistant strain of L. orbonalis. This study unveils the additional mechanisms employed by L. orbonalis in resisting insecticide toxicity through accelerated excretion mode. These ABCD and ABCG family genes could be candidate targets in developing genome-assisted pest management strategies in the future.
Collapse
Affiliation(s)
- Santoshkumar Singamshetty
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India; University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
| | - Upasna Selvapandian
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
| | - Selva Babu Selvamani
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India. https://twitter.com/MithranSelva
| | - Suman Talya Chandrashekara
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India; University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
| | - Jyoti Pathak
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India. https://twitter.com/pjyoti29
| | - Aditi Agarwal
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
| | | | | | - Satya Nand Sushil
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India
| | - Muralimohan Kamanur
- University of Agricultural Sciences, GKVK, Bengaluru 560 065, India. https://twitter.com/MMohan97227933
| | - Nagesha Nara
- University of Agricultural Sciences, GKVK, Bengaluru 560 065, India
| | - Muthugounder Mohan
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru 560 024, India.
| |
Collapse
|
3
|
Cui YL, Guo JS, Zhang CX, Yu XP, Li DT. Silencing NlFAR7 destroyed the pore canals and related structures of the brown planthopper. INSECT MOLECULAR BIOLOGY 2024; 33:350-361. [PMID: 38430546 DOI: 10.1111/imb.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/18/2024] [Indexed: 03/04/2024]
Abstract
Fatty acyl-CoA reductase (FAR) is one of the key enzymes, which catalyses the conversion of fatty acyl-CoA to the corresponding alcohols. Among the FAR family members in the brown planthopper (Nilaparvata lugens), NlFAR7 plays a pivotal role in both the synthesis of cuticular hydrocarbons and the waterproofing of the cuticle. However, the precise mechanism by which NlFAR7 influences the formation of the cuticle structure in N. lugens remains unclear. Therefore, this paper aims to investigate the impact of NlFAR7 through RNA interference, transmission electron microscope, focused ion beam scanning electron microscopy (FIB-SEM) and lipidomics analysis. FIB-SEM is employed to reconstruct the three-dimensional (3D) architecture of the pore canals and related cuticle structures in N. lugens subjected to dsNlFAR7 and dsGFP treatments, enabling a comprehensive assessment of changes in the cuticle structures. The results reveal a reduction in the thickness of the cuticle and disruptions in the spiral structure of pore canals, accompanied by widened base and middle diameters. Furthermore, the lipidomics comparison analysis between dsNlFAR7- and dsGFP-treated N. lugens demonstrated that there were 25 metabolites involved in cuticular lipid layer synthesis, including 7 triacylglycerols (TGs), 5 phosphatidylcholines (PCs), 3 phosphatidylethanolamines (PEs) and 2 diacylglycerols (DGs) decreased, and 4 triacylglycerols (TGs) and 4 PEs increased. In conclusion, silencing NlFAR7 disrupts the synthesis of overall lipids and destroys the cuticular pore canals and related structures, thereby disrupting the secretion of cuticular lipids, thus affecting the cuticular waterproofing of N. lugens. These findings give significant attention with reference to further biochemical researches on the substrate specificity of FAR protein, and the molecular regulation mechanisms during N. lugens life cycle.
Collapse
Affiliation(s)
- Yi-Lin Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian-Shen Guo
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Dan-Ting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
4
|
Xing Z, Zhang Y, Kang H, Dong H, Zhu D, Liu Y, Sun C, Guo P, Hu B, Tan A. ABHD5 regulates midgut-specific lipid homeostasis in Bombyx mori. INSECT SCIENCE 2024. [PMID: 38841829 DOI: 10.1111/1744-7917.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Lipids are an important energy source and are utilized as substrates for various physiological processes in insects. Comparative gene identification 58 (CGI-58), also known as α/β hydrolase domain-containing 5 (ABHD5), is a highly conserved and multifunctional gene involved in regulating lipid metabolism and cellular energy balance in many organisms. However, the biological functions of ABHD5 in insects are poorly understood. In the current study, we describe the identification and characterization of the ABHD5 gene in the lepidopteran model insect, Bombyx mori. The tissue expression profile investigated using quantitative reverse transcription polymerase chain reaction (RT-qPCR) reveals that BmABHD5 is widely expressed in all tissues, with particularly high levels found in the midgut and testis. A binary transgenic CRISPR/Cas9 system was employed to conduct a functional analysis of BmABHD5, with the mutation of BmABHD5 leading to the dysregulation of lipid metabolism and excessive lipid accumulation in the larval midgut. Histological and physiological analysis further reveals a significant accumulation of lipid droplets in the midgut of mutant larvae. RNA-seq and RT-qPCR analysis showed that genes related to metabolic pathways were significantly affected by the absence of BmABHD5. Altogether, our data prove that BmABHD5 plays an important role in regulating tissue-specific lipid metabolism in the silkworm midgut.
Collapse
Affiliation(s)
- Zhiping Xing
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Yuting Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Hongxia Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Hui Dong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Dalin Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Yutong Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Chenxin Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Peilin Guo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
5
|
Flaven-Pouchon J, Froschauer C, Moussian B. Dynamics of cuticle-associated transcript profiles during moulting of the bed bug Cimexlectularius. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104112. [PMID: 38513961 DOI: 10.1016/j.ibmb.2024.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
The bed bug Cimex lectularius is a worldwide human pest. The sequenced genome allows molecular analyses of all aspects of bed bug biology. The present work was conducted to contribute to bed bug cuticle biology. As in other insect species, the C. lectularius cuticle consists of the three horizontal layers procuticle, epicuticle and envelope. To analyse the genes needed for the establishment of the stratified cuticle, we studied the expression pattern of 42 key cuticle-related genes at the transition of the penultimate nymphal stage to adult animals when a new cuticle is formed. Based on gene expression dynamics, in simplified model, we distinguish two key events during cuticle renewal in C. lectularius. First, upon blood feeding, modulation of ecdysone signalling culminates in the transcriptional activation of the transcription factor Clec-Ftz-F1 that possibly controls the expression of 32 of the 42 genes tested. Second, timed expression of Clec-Ftz-F1 seems to depend also on the insulin signalling pathway as RNA interference against transcripts of the insulin receptor delays Clec-Ftz-F1 expression and stage transition. An important observation of our transcript survey is that genes needed for the construction of the three cuticle layers are largely expressed simultaneously. Based on these data, we hypothesise a considerable synchronous mechanism of layer formation rather than a strictly sequential one. Together, this work provides a basis for functional analyses of cuticle formation in C. lectularius.
Collapse
Affiliation(s)
- Justin Flaven-Pouchon
- Universität Tübingen, Interfaculty Institute for Cell Biology, Genetik der Tiere, Tübingen, Germany
| | | | | |
Collapse
|
6
|
Wang H, Wang H, Xin T, Xia B. Knockdown of the ABCG23 Gene Disrupts the Development and Lipid Accumulation of Panonychus citri (Acari/Tetranychidae). Int J Mol Sci 2024; 25:827. [PMID: 38255901 PMCID: PMC10815512 DOI: 10.3390/ijms25020827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Panonychus citri is a worldwide citrus pest that is currently controlled through the use of insecticides. However, alternative strategies are required to manage P. citri. Recent studies suggest that the ATP-binding cassette (ABC) transporter G subfamily plays a crucial role in transporting cuticular lipids, which are essential for the insect's barrier function against microbial penetration. Therefore, investigating the potential of the ABC transporter G subfamily as a control measure for P. citri could be a promising approach. Based on the genome database, the gene was cloned, and the transcriptional response of ABCG23 for the different developmental stages of P. citri and under spirobudiclofen stress was investigated. Our results showed that the expression level of ABCG23 was significantly lower in adult females exposed to treatment compared to the control and was higher in females than males. The knockdown of ABCG23 using RNAi led to a decrease in the survival rate, fecundity, and TG contents of P. citri. Additionally, a lethal phenotype was characterized by body wrinkling and darkening. These results indicate that ABCG23 may be involved in cuticular lipid transportation and have adverse effects on the development and reproduction of P. citri, providing insight into the discovery of new targets for pest management based on the insect cuticle's penetration barrier function.
Collapse
Affiliation(s)
| | | | | | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (H.W.); (H.W.); (T.X.)
| |
Collapse
|
7
|
Ren Y, Li Y, Ju Y, Zhang W, Wang Y. Insect cuticle and insecticide development. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22057. [PMID: 37840232 DOI: 10.1002/arch.22057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Insecticide resistance poses a significant challenge, diminishing the effectiveness of chemical insecticides. To address this global concern, the development of novel and efficient pest management technologies based on chemical insecticides is an ongoing necessity. The insect cuticle, a highly complex and continuously renewing organ, plays a crucial role in this context. On one hand, as the most vital structure, it serves as a suitable target for insecticides. On the other hand, it acts as the outermost barrier, isolating the insect's inner organs from the environment, and thus offering resistance to contact with insecticides, preventing their entry into insect bodies. Our work focuses on key targets concerning cuticle formation and the interaction between the cuticle and contact insecticides. Deeper studying insect cuticles and understanding their structure-function relationship, formation process, and regulatory mechanisms during cuticle development, as well as investigating insecticide resistance related to the barrier properties of insect cuticles, are promising strategies not only for developing novel insecticides but also for discovering general synergists for contact insecticides. With this comprehensive review, we hope to contribute valuable insights into the development of effective pest management solutions and the mitigation of insecticide resistance.
Collapse
Affiliation(s)
- Yunuo Ren
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yingjie Ju
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wen Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Kamal M, Tokmakjian L, Knox J, Han D, Moshiri H, Magomedova L, Nguyen KCQ, Zheng H, Burns AR, Cooke B, Lacoste J, Yeo M, Hall DH, Cummins CL, Roy PJ. PGP-14 establishes a polar lipid permeability barrier within the C. elegans pharyngeal cuticle. PLoS Genet 2023; 19:e1011008. [PMID: 37930961 PMCID: PMC10653525 DOI: 10.1371/journal.pgen.1011008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 11/16/2023] [Accepted: 10/05/2023] [Indexed: 11/08/2023] Open
Abstract
The cuticles of ecdysozoan animals are barriers to material loss and xenobiotic insult. Key to this barrier is lipid content, the establishment of which is poorly understood. Here, we show that the p-glycoprotein PGP-14 functions coincidently with the sphingomyelin synthase SMS-5 to establish a polar lipid barrier within the pharyngeal cuticle of the nematode C. elegans. We show that PGP-14 and SMS-5 are coincidentally expressed in the epithelium that surrounds the anterior pharyngeal cuticle where PGP-14 localizes to the apical membrane. pgp-14 and sms-5 also peak in expression at the time of new cuticle synthesis. Loss of PGP-14 and SMS-5 dramatically reduces pharyngeal cuticle staining by Nile Red, a key marker of polar lipids, and coincidently alters the nematode's response to a wide-range of xenobiotics. We infer that PGP-14 exports polar lipids into the developing pharyngeal cuticle in an SMS-5-dependent manner to safeguard the nematode from environmental insult.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Levon Tokmakjian
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Knox
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Duhyun Han
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Houtan Moshiri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Ken CQ Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Hong Zheng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Andrew R. Burns
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Brittany Cooke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Lacoste
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - May Yeo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Carolyn L. Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Roy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Xu J, Zheng J, Zhang R, Wang H, Du J, Li J, Zhou D, Sun Y, Shen B. Identification and functional analysis of ABC transporter genes related to deltamethrin resistance in Culex pipiens pallens. PEST MANAGEMENT SCIENCE 2023; 79:3642-3655. [PMID: 37183172 DOI: 10.1002/ps.7539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Pathogens that reproduce or develop in mosquitoes can transmit several diseases, endanger human health, and overwhelm health systems. Synthetic pyrethroids are the most widely used insecticides against adult mosquitoes, but their widespread use has led to resistance. The adenosine triphosphate (ATP)-binding cassette (ABC) transporters are involved in the resistance monitoring of insects, but their role and underlying mechanisms in insecticide resistance have not been fully elucidated. In the present study, we identified ABC transporter genes in Culex pipiens and investigated their role in the development of insecticide resistance. RESULTS We identified 63 ABC transporter genes in Cx. pipiens and classified them as per the ABC transporter subfamilies. We also performed phylogenetic analysis. The knockdown rate of the mosquitoes orally fed with the ABC transporter inhibitor verapamil increased after deltamethrin treatment compared with that of the control group. Several genes from the ABCB, ABCC, and ABCG subfamilies were highly expressed in resistant mosquitoes. Immunofluorescence analysis revealed that ABCG6032427 was expressed in the head, chest, abdomen, wings, and legs, and the expression was the highest in the legs. Subsequently, knockdown of ABCG6032427 using RNA interference (RNAi) increased the sensitivity of the mosquitoes to deltamethrin, and scanning and transmission electron microscopy revealed that ABCG6032427 knockdown reduced cuticle thickness and the cuticle became loose and irregular. CONCLUSIONS ABCG6032427 may modulate cuticle thickness and structure, thus play an important role in the development of deltamethrin resistance in mosquitoes. Thus, it could be a potential target for deltamethrin resistance management in Cx. pipiens. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingwei Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Junnan Zheng
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Ruimin Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Huan Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - JiaJia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Corthals K, Andersson V, Churcher A, Reimegård J, Enjin A. Genetic atlas of hygro-and thermosensory cells in the vinegar fly Drosophila melanogaster. Sci Rep 2023; 13:15202. [PMID: 37709909 PMCID: PMC10502013 DOI: 10.1038/s41598-023-42506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
The ability of animals to perceive and respond to sensory information is essential for their survival in diverse environments. While much progress has been made in understanding various sensory modalities, the sense of hygrosensation, which involves the detection and response to humidity, remains poorly understood. In this study, we focused on the hygrosensory, and closely related thermosensory, systems in the vinegar fly Drosophila melanogaster to unravel the molecular profile of the cells of these senses. Using a transcriptomic analysis of over 37,000 nuclei, we identified twelve distinct clusters of cells corresponding to temperature-sensing arista neurons, humidity-sensing sacculus neurons, and support cells relating to these neurons. By examining the expression of known and novel marker genes, we validated the identity of these clusters and characterized their gene expression profiles. We found that each cell type could be characterized by a unique expression profile of ion channels, GPCR signaling molecules, synaptic vesicle cycle proteins, and cell adhesion molecules. Our findings provide valuable insights into the molecular basis of hygro- and thermosensation. Understanding the mechanisms underlying hygro- and thermosensation may shed light on the broader understanding of sensory systems and their adaptation to different environmental conditions in animals.
Collapse
Affiliation(s)
- Kristina Corthals
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Vilma Andersson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Allison Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, 901 87, Umeå, Sweden
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Anders Enjin
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
11
|
Kefi M, Balabanidou V, Sarafoglou C, Charamis J, Lycett G, Ranson H, Gouridis G, Vontas J. ABCH2 transporter mediates deltamethrin uptake and toxicity in the malaria vector Anopheles coluzzii. PLoS Pathog 2023; 19:e1011226. [PMID: 37585450 PMCID: PMC10461823 DOI: 10.1371/journal.ppat.1011226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Contact insecticides are primarily used for the control of Anopheles malaria vectors. These chemicals penetrate mosquito legs and other appendages; the first barriers to reaching their neuronal targets. An ATP-Binding Cassette transporter from the H family (ABCH2) is highly expressed in Anopheles coluzzii legs, and further induced upon insecticide exposure. RNAi-mediated silencing of the ABCH2 caused a significant increase in deltamethrin mortality compared to control mosquitoes, coincident with a corresponding increase in 14C-deltamethrin penetration. RT-qPCR analysis and immunolocalization revealed ABCH2 to be mainly localized in the legs and head appendages, and more specifically, the apical part of the epidermis, underneath the cuticle. To unravel the molecular mechanism underlying the role of ABCH2 in modulating pyrethroid toxicity, two hypotheses were investigated: An indirect role, based on the orthology with other insect ABCH transporters involved with lipid transport and deposition of CHC lipids in Anopheles legs which may increase cuticle thickness, slowing down the penetration rate of deltamethrin; or the direct pumping of deltamethrin out of the organism. Evaluation of the leg cuticular hydrocarbon (CHC) content showed no affect by ABCH2 silencing, indicating this protein is not associated with the transport of leg CHCs. Homology-based modeling suggested that the ABCH2 half-transporter adopts a physiological homodimeric state, in line with its ability to hydrolyze ATP in vitro when expressed on its own in insect cells. Docking analysis revealed a deltamethrin pocket in the homodimeric transporter. Furthermore, deltamethrin-induced ATP hydrolysis in ABCH2-expressing cell membranes, further supports that deltamethrin is indeed an ABCH2 substrate. Overall, our findings pinpoint ABCH2 participating in deltamethrin toxicity regulation.
Collapse
Affiliation(s)
- Mary Kefi
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Chara Sarafoglou
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Jason Charamis
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Gareth Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Giorgos Gouridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
12
|
Expression and purification of snustorr snarlik protein from Plutella xylostella. Protein Expr Purif 2023; 206:106256. [PMID: 36871763 DOI: 10.1016/j.pep.2023.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Snustorr snarlik (Snsl) is a type of extracellular protein essential for insect cuticle formation and insect survival, but is absent in mammals, making it a potential selective target for pest control. Here, we successfully expressed and purified the Snsl protein of Plutella xylostella in Escherichia coli. Two truncated forms of Snsl protein, Snsl 16-119 and Snsl 16-159, were expressed as a maltose-binding protein (MBP) fusion protein and purified to a purity above 90% after a five-step purification protocol. Snsl 16-119, forming stable monomer in solution, was crystallized, and the crystal was diffracted to a resolution of ∼10 Å. Snsl 16-159, forming an equilibrium between monomer and octamer in solution, was shown to form rod-shaped particles on negative staining electron-microscopy images. Our results lay a foundation for the determination of the structure of Snsl, which would improve our understanding of the molecular mechanism of cuticle formation and related pesticide resistance and provide a template for structure-based insecticide design.
Collapse
|
13
|
Maiwald F, Haas J, Hertlein G, Lueke B, Roesner J, Nauen R. Expression profile of the entire detoxification gene inventory of the western honeybee, Apis mellifera across life stages. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105410. [PMID: 37105637 DOI: 10.1016/j.pestbp.2023.105410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The western honeybee, Apis mellifera, is a managed pollinator of many crops and potentially exposed to a wide range of foreign compounds, including pesticides throughout its life cycle. Honeybees as well as other insects recruit molecular defense mechanisms to facilitate the detoxification of xenobiotic compounds. The inventory of detoxification genes (DETOXome) is comprised of five protein superfamilies: cytochrome P450 monooxygenases (P450), carboxylesterases, glutathione S-transferases (GST), UDP-glycosyl transferases (UGT) and ATP-binding cassette (ABC) transporters. Here we characterized the gene expression profile of the entire honeybee DETOXome by analyzing 47 transcriptomes across the honeybee life cycle, including different larval instars, pupae, and adults. All life stages were well separated by principal component analysis, and K-means clustering revealed distinct temporal patterns of gene expression. Indeed, >50% of the honeybee detoxification gene inventory is found in one cluster and follows strikingly similar expression profiles, i.e., increased expression during larval development, followed by a sharp decline after pupation and a steep increase again in adults. This cluster includes 29 P450 genes dominated by CYP3 and CYP4 clan members, 15 ABC transporter genes mostly belonging to the ABCC subfamily and 13 carboxylesterase genes including almost all members involved in dietary/detox and hormone/semiochemical processing. RT-qPCR analysis of selected detoxification genes from all families revealed high expression levels in various tissues, especially Malpighian tubules, fatbody and midgut, supporting the view that these tissues are essential for metabolic clearance of environmental toxins and pollutants in honeybees. Our study is meant to spark further research on the molecular basis of detoxification in this critical pollinator to better understand and evaluate negative impacts from potentially toxic substances. Additionally, the entire gene set of 47 transcriptomes collected and analyzed provides a valuable resource for future honeybee research across different disciplines.
Collapse
Affiliation(s)
- Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Julian Haas
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Gillian Hertlein
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Bettina Lueke
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Janin Roesner
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany.
| |
Collapse
|
14
|
Gao L, Zang X, Qiao H, Moussian B, Wang Y. Xenobiotic responses of Drosophila melanogaster to insecticides with different modes of action and entry. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21958. [PMID: 35942563 DOI: 10.1002/arch.21958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Depending on their chemical structure, insecticides enter the insect body either through the cuticle or by ingestion (mode of entry [MoE]), and, naturally, harm or even kill insects through different mechanisms (modes of action). In parallel, they trigger a systemic detoxification response, especially by activation of detoxification gene expression. We monitored the acute genetic alterations of known xenobiotic response target genes against five different insecticides with two most common MoEs (contact toxicity and stomach toxicity), found that: 1. only a few genes were detected responding to acute exposure to insecticides (LD90 ); 2. The expression of cyp12d1 was upregulated in all experiments, except for dichlorodiphenyltrichloroethane exposure, suggesting that cyp12d1 is a general first response gene of the xenobiotic response; 3. The contact and stomach entries did not show any notable difference, both MoEs induced the response of JNK signaling pathway, possibly serving as the driver of the response of cyp12d1 and a few other genes. In conclusion, the changes in gene expression levels were relatively modest and no significant differences were found between the two MoEs, so the insecticide entry route does not seem to have an impact on the detoxification response. However, the two MoEs of the same insecticide showed different efficiencies in our test. Thus, the study of these two MoEs will help to develop more efficient release and management methods for the use of such insecticides.
Collapse
Affiliation(s)
- Lujuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiya Zang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, Parc Valrose, France
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
15
|
Functional Diversity of the Lepidopteran ATP-Binding Cassette Transporters. J Mol Evol 2022; 90:258-270. [PMID: 35513601 DOI: 10.1007/s00239-022-10056-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
The ATP-binding cassette (ABC) transporter gene family is ubiquitous in the living world. ABC proteins bind and hydrolyze ATP to transport a myriad of molecules across various lipid-containing membrane systems. They have been studied well in plants for transport of a variety of compounds and particularly, in vertebrates due to their direct involvement in resistance mechanisms against several toxic molecules/metabolites. ABC transporters in insects are found within large multigene families involved in the efflux of chemical insecticides and toxic/undesired metabolites originating from food and endogenous metabolism. This review deals with ABC transporter subfamilies of few agronomically important Lepidopteran pests. The transcriptional dynamics and regulation of ABC transporters during insect development emphasizes their functional diversity against insecticides, Cry toxins, and plant specialized metabolites. To generate insights about molecular function and physiological roles of ABCs, functional and structural characterization is necessary. Also, expansion and divergence of ABC transporter gene subfamilies in Lepidopteran insects needs more systematic investigation. We anticipate that newer methods of insect control in agriculture can benefit from an understanding of ABC transporter interactions with a vast range of natural specialized molecules and synthetic compounds.
Collapse
|
16
|
Yu RR, Zhang R, Liu WM, Zhao XM, Zhu KY, Moussian B, Zhang JZ. The DOMON domain protein LmKnk contributes to correct chitin content, pore canal formation and lipid deposition in the cuticle of Locusta migratoria during moulting. INSECT MOLECULAR BIOLOGY 2022; 31:127-138. [PMID: 34738680 DOI: 10.1111/imb.12745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Insects prevent uncontrolled penetration of water and xenobiotics by producing an impermeable cuticle. The major component of the cuticle is chitin that adopts a crystalline structure thereby contributing to cuticle stability. Our understanding of the contribution of chitin to the cuticle barrier function is limited. Here, we studied the role of the DOMON domain protein Knickkopf (LmKnk) that is involved in chitin organization and cuticle permeability in the migratory locust Locusta migratoria. We show that LmKnk localizes to the chitin layer in the newly produced cuticle. Injection of double-stranded RNA targeting LmKnk (dsLmKnk) in locust nymphs caused failure of moulting to the next stage. Histological experiments revealed that apolysis, i.e., the detachment of the old cuticle from the body surface, was normal; however, the newly synthesized cuticle was thinner than the cuticle of the control insects. Indeed, chitin content dropped after suppression of LmKnk expression. As seen by transmission electron microscopy, crystalline chitin organization was lost in dsLmKnk-treated insects. In addition, the structure of pore canals, which are lipid transporting routes in the cuticle, was abnormal. Consistently, their content was reduced and, probably by consequence, lipid deposition on the cuticle was decreased after injection of dsLmKnk. Suppression of LmKnk transcript levels rendered L. migratoria more susceptible to each of four selected insecticides including malathion, chlorpyrifos, carbaryl and deltamethrin. Overall, our data show that LmKnk is needed for correct chitin amounts and organization, and their changes ultimately affect cuticular permeability in L. migratoria.
Collapse
Affiliation(s)
- R R Yu
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Department of Biology, Taiyuan Normal University, Jinzhong, China
| | - R Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- College of Life Science, Datong University, Datong, China
| | - W M Liu
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| | - X M Zhao
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| | - K Y Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - B Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, Nice, France
| | - J Z Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
17
|
Chertemps T, Le Goff G, Maïbèche M, Hilliou F. Detoxification gene families in Phylloxera: Endogenous functions and roles in response to the environment. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100867. [PMID: 34246923 DOI: 10.1016/j.cbd.2021.100867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Phylloxera, Daktulosphaira vitifoliae, is an agronomic pest that feeds monophagously on grapevine, Vitis spp. host plants. Phylloxera manipulates primary and secondary plant metabolism to establish either leaf or root galls. We manually annotated 198 detoxification genes potentially involved in plant host manipulation, including cytochrome P450 (66 CYPs), carboxylesterase (20 CCEs), glutathione-S-transferase (10 GSTs), uridine diphosphate-glycosyltransferase (35 UGTs) and ABC transporter (67 ABCs) families. Transcriptomic expression patterns of these detoxification genes were analyzed for root and leaf galls. In addition to these transcriptomic analyses, we reanalyzed recent data from L1 and L2-3 stages feeding on tolerant and resistant rootstock. Data from two agricultural pest aphids, the generalist Myzus persicae and the Fabaceae specialist Acyrthosiphon pisum, and from the true bug vector of Chagas disease, Rhodnius prolixus, were used to perform phylogenetic analyses for each detoxification gene family. We found expansions of several gene sub-families in the genome of D. vitifoliae. Phylogenetically close genes were found to be organized in clusters in the same genomic position and orientation suggesting recent successive duplications. These results highlight the roles of the phylloxera detoxification gene repertoire in insect physiology and in adaptation to plant secondary metabolites, and provide gene candidates for further functional analyses.
Collapse
Affiliation(s)
- Thomas Chertemps
- Sorbonne Université, UPEC, Université Paris 7, INRAE, CNRS, IRD, Institute of Ecology and Environmental Sciences, Paris, France
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, 400 Route des Chappes, 06903 Sophia Antipolis, France
| | - Martine Maïbèche
- Sorbonne Université, UPEC, Université Paris 7, INRAE, CNRS, IRD, Institute of Ecology and Environmental Sciences, Paris, France
| | - Frédérique Hilliou
- Université Côte d'Azur, INRAE, CNRS, ISA, 400 Route des Chappes, 06903 Sophia Antipolis, France.
| |
Collapse
|
18
|
Sirasoonthorn P, Kamiya K, Miura K. Antifungal roles of adult-specific cuticular protein genes of the red flour beetle, Tribolium castaneum. J Invertebr Pathol 2021; 186:107674. [PMID: 34606828 DOI: 10.1016/j.jip.2021.107674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/11/2021] [Accepted: 09/25/2021] [Indexed: 11/20/2022]
Abstract
The insect cuticle is a composite structure that can further be divided into a few sub-structural layers. Its large moiety comprises a lattice of chitin fibrils and structural proteins, both of which are stabilized by covalent bonding among them. The cuticle covers the whole surface of insect body, and thus has long been suggested for the involvement in defense against entomopathogens, especially entomopathogenic fungi that infect percutaneously. We have been addressing this issue in the past few years and have so far demonstrated experimentally that chitin synthase 1, laccase2 as well as benzoquinone synthesis-related genes of Tribolium castaneum have indispensable roles in the antifungal host defense. In the present study we focused on another major component of the insect cuticular integument, structural cuticular proteins. We chose three genes coding for adult-specific cuticular proteins, namely CPR4, CPR18 and CPR27, and examined their roles in forming immunologically sound adult cuticular integuments. Analyses of developmental expression revealed that the three genes showed high level expression in the pupal stage. These results are consistent with their proposed roles in constructing cuticle of adult beetles. The RNA interference-mediated gene knockdown was employed to silence these genes, and the administration of double strand RNAs in pupae resulted in the adults with malformed elytra. The single knockdown of the three genes attenuated somewhat the defense of the resulting adult beetles against Beauveria bassiana and Metarhizium anisopliae, but statistical analyses indicated no significant differences from controls. In contrast, the double or triple knockdown mutant beetles displayed a drastic disruption of the host defense against the two entomopathogenic fungal species irrespective of the combination of targeted cuticular protein genes, demonstrating the important roles of the three cuticular protein genes in conferring robust antifungal properties on the adult cuticle. Scanning electron microscopic observation revealed that the germination of conidia attached on the adult body surface was still suppressed after the gene knockdown as in the case of wild-type beetles, suggesting that the weakened antifungal phenotypes resulted from the combined knockdown of the adult-specific cuticular protein genes could not be accounted for by the disfunction of secretion/retention of fungistatic benzoquinone derivatives.
Collapse
Affiliation(s)
- Patchara Sirasoonthorn
- Applied Entomology Laboratory, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa, Nagoya 464-8601, Japan
| | - Katsumi Kamiya
- Applied Entomology Laboratory, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa, Nagoya 464-8601, Japan
| | - Ken Miura
- Applied Entomology Laboratory, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
19
|
Denecke S, Rankić I, Driva O, Kalsi M, Luong NBH, Buer B, Nauen R, Geibel S, Vontas J. Comparative and functional genomics of the ABC transporter superfamily across arthropods. BMC Genomics 2021; 22:553. [PMID: 34281528 PMCID: PMC8290562 DOI: 10.1186/s12864-021-07861-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The ATP-binding cassette (ABC) transporter superfamily is comprised predominantly of proteins which directly utilize energy from ATP to move molecules across the plasma membrane. Although they have been the subject of frequent investigation across many taxa, arthropod ABCs have been less well studied. While the manual annotation of ABC transporters has been performed in many arthropods, there has so far been no systematic comparison of the superfamily within this order using the increasing number of sequenced genomes. Furthermore, functional work on these genes is limited. RESULTS Here, we developed a standardized pipeline to annotate ABCs from predicted proteomes and used it to perform comparative genomics on ABC families across arthropod lineages. Using Kruskal-Wallis tests and the Computational Analysis of gene Family Evolution (CAFE), we were able to observe significant expansions of the ABC-B full transporters (P-glycoproteins) in Lepidoptera and the ABC-H transporters in Hemiptera. RNA-sequencing of epithelia tissues in the Lepidoptera Helicoverpa armigera showed that the 7 P-glycoprotein paralogues differ substantially in their tissue distribution, suggesting a spatial division of labor. It also seems that functional redundancy is a feature of these transporters as RNAi knockdown showed that most transporters are dispensable with the exception of the highly conserved gene Snu, which is probably due to its role in cuticular formation. CONCLUSIONS We have performed an annotation of the ABC superfamily across > 150 arthropod species for which good quality protein annotations exist. Our findings highlight specific expansions of ABC transporter families which suggest evolutionary adaptation. Future work will be able to use this analysis as a resource to provide a better understanding of the ABC superfamily in arthropods.
Collapse
Affiliation(s)
- Shane Denecke
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece.
| | - Ivan Rankić
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
| | - Olympia Driva
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Megha Kalsi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Ngoc Bao Hang Luong
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Benjamin Buer
- CropScience Division, Bayer AG, R&D Pest Control, D-40789, Monheim, Germany
| | - Ralf Nauen
- CropScience Division, Bayer AG, R&D Pest Control, D-40789, Monheim, Germany
| | - Sven Geibel
- CropScience Division, Bayer AG, R&D Pest Control, D-40789, Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece.,Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
20
|
He W, Wei DD, Xu HQ, Yang Y, Miao ZQ, Wang L, Wang JJ. Molecular Characterization and Transcriptional Expression Analysis of ABC Transporter H Subfamily Genes in the Oriental Fruit Fly. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1298-1309. [PMID: 33822985 DOI: 10.1093/jee/toab045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephretidae), is a serious pest of fruits and vegetables and has developed high levels of insecticide resistance. ATP-binding cassette transporter genes (ABC transporters) are involved in mediating the energy-driven transport of many substances across membranes and are closely associated with development and insecticide detoxification. In this study, three ABC transporters in the H subfamily were identified, and the possible roles of these genes in B. dorsalis are discussed. Bioinformatics analysis revealed that those genes are conserved, typical of half-transporters. The expression profiles of BdABCH genes (BdABCHs) in the developmental stages, tissues, and following insecticide exposure, extreme temperature, warm- and cold-acclimated strain, starvation, and desiccation stress were determined by quantitative real-time PCR. Expression of BdABCHs can be detected in various tissues and in different developmental stages. They were most highly expressed in the hindgut and in newly emerged adults. The mRNA levels of BdABCHs in males (including most tissues and body segments) were higher than in females. The expression of BdABCH1 was significantly upregulated 3.8-fold in the cold-acclimated strain, and was significantly upregulated by 1.9-, 3.8- and 4.1-fold in the 0°C, starvation, and desiccation treatments, respectively. Treatment with malathion and avermectin at LD20 and LD30 concentrations produced no obvious changes in the levels of BdABCHs. BdABCHs may be involved in the transport of related hormones during eclosion, as well as water and inorganic salts. BdABCH1 also demonstrated that it is related to the ability to cope with adverse environments.
Collapse
Affiliation(s)
- Wang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hui-Qian Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Ze-Qing Miao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Lei Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Rösner J, Tietmeyer J, Merzendorfer H. Functional analysis of ABCG and ABCH transporters from the red flour beetle, Tribolium castaneum. PEST MANAGEMENT SCIENCE 2021; 77:2955-2963. [PMID: 33620766 DOI: 10.1002/ps.6332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND ATP-binding cassette transporter (ABC transporter) subfamilies ABCA-C and ABCG-H have been implicated in insecticide detoxification, mostly based on findings of elevated gene expression in response to insecticide treatment. We previously characterized TcABCA-C genes from the model beetle and pest Tribolium castaneum and demonstrated that TcABCA and TcABCC genes are involved in the elimination of diflubenzuron, because RNA interference (RNAi)-mediated gene silencing increased susceptibility. In this study, we focused on the potential functions of TcABCG and TcABCH genes in insecticide detoxification. RESULTS When we silenced the expression of TcABCG-H genes using RNAi, we noticed a previously unreported developmental RNAi phenotype for TcABCG-4F, which is characterized by 50% mortality and ecdysial arrest during adult moult. When we knocked down the Drosophila brown orthologue TcABCG-XC, we did not obtain apparent eye colour phenotypes but did observe a loss of riboflavin uptake by Malpighian tubules. Next, we determined the expression profiles of all TcABCG-H genes in different tissues and developmental stages and analysed transcript levels in response to treatment with four chemically unrelated insecticides. We found that some genes were specifically upregulated after insecticide treatment. However, when we determined insecticide-induced mortalities in larvae that were treated by double-stranded RNA injection to silence those TcABCG-H genes that were upregulated, we did not observe a significant increase in susceptibility to insecticides. CONCLUSION Our findings suggest that the observed insecticide-dependent induction of TcABCG-H gene expression reflects an unspecific stress response, and hence underlines the significance of functional studies on insecticide detoxification. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Janin Rösner
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| | - Johanne Tietmeyer
- Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
22
|
Black WC, Snell TK, Saavedra-Rodriguez K, Kading RC, Campbell CL. From Global to Local-New Insights into Features of Pyrethroid Detoxification in Vector Mosquitoes. INSECTS 2021; 12:insects12040276. [PMID: 33804964 PMCID: PMC8063960 DOI: 10.3390/insects12040276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/04/2023]
Abstract
The threat of mosquito-borne diseases continues to be a problem for public health in subtropical and tropical regions of the world; in response, there has been increased use of adulticidal insecticides, such as pyrethroids, in human habitation areas over the last thirty years. As a result, the prevalence of pyrethroid-resistant genetic markers in natural mosquito populations has increased at an alarming rate. This review details recent advances in the understanding of specific mechanisms associated with pyrethroid resistance, with emphasis on features of insecticide detoxification and the interdependence of multiple cellular pathways. Together, these advances add important context to the understanding of the processes that are selected in resistant mosquitoes. Specifically, before pyrethroids bind to their targets on motoneurons, they must first permeate the outer cuticle and diffuse to inner tissues. Resistant mosquitoes have evolved detoxification mechanisms that rely on cytochrome P450s (CYP), esterases, carboxyesterases, and other oxidation/reduction (redox) components to effectively detoxify pyrethroids to nontoxic breakdown products that are then excreted. Enhanced resistance mechanisms have evolved to include alteration of gene copy number, transcriptional and post-transcriptional regulation of gene expression, as well as changes to cellular signaling mechanisms. Here, we outline the variety of ways in which detoxification has been selected in various mosquito populations, as well as key gene categories involved. Pathways associated with potential new genes of interest are proposed. Consideration of multiple cellular pathways could provide opportunities for development of new insecticides.
Collapse
|
23
|
Wang Y, Ferveur JF, Moussian B. Eco-genetics of desiccation resistance in Drosophila. Biol Rev Camb Philos Soc 2021; 96:1421-1440. [PMID: 33754475 DOI: 10.1111/brv.12709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.
Collapse
Affiliation(s)
- Yiwen Wang
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,Institute of Biology Valrose, Université Côte d'Azur, CNRS, Inserm, Parc Valrose, Nice CEDEX 2, 06108, France
| |
Collapse
|
24
|
Wang Y, Misto M, Yang J, Gehring N, Yu X, Moussian B. Toxicity of Dithiothreitol (DTT) to Drosophila melanogaster. Toxicol Rep 2020; 8:124-130. [PMID: 33425686 PMCID: PMC7782319 DOI: 10.1016/j.toxrep.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
The thiol-containing compound Dithiothreitol (DTT) has been shown to be toxic to cultured cells by inducing the generation of reactive oxygen species that ultimately cause cell death. However, its effects on multicellular organisms and the environment have not been investigated yet in detail. In this work, we tested the toxicity of DTT to the model insect Drosophila melanogaster. We show that DTT is lethal to D. melanogaster by topical application but not through feeding. DTT treatment triggers the transcription of the canonical apoptosis regulators grim, hid and rpr at low amounts. The amplitude of this induction declines with elevating DTT amounts. By live microscopy, we observe apoptotic cells especially in the gut of DTT treated flies. In parallel, low DTT amounts also activate the expression of the cuticle barrier component gene snsl. This indicates that a physical defence response is launched upon DTT contact. This combined measure is seemingly successful in preventing fly death. The expression of a number of known detoxification genes including cyp6a2, cyp6a8, cyp12d1 and GstD2 is also enhanced through DTT contact. The degree of upregulation of these genes is proportional to the applied DTT amounts. Despite this effort, flies exposed to high amounts of DTT eventually die. Together, D. melanogaster is able to sense DTT toxicity and adjust the defence response successfully at least at low concentrations. This is the first time to analyse the molecular consequences of DTT exposure in a multicellular organism. Our work provides a new model to discuss the physiological response of animals against thiol toxins and to resurvey the effect of redox agents on the environment.
Collapse
Affiliation(s)
- Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Maïlys Misto
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Jing Yang
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Nicole Gehring
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Xiaoyu Yu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Institut Biologie Valrose (iBV), Université Nice Sophia Antipolis, Parc Valrose, Nice Cedex, France
| |
Collapse
|
25
|
Li Zheng S, Adams JG, Chisholm AD. Form and function of the apical extracellular matrix: new insights from Caenorhabditis elegans, Drosophila melanogaster, and the vertebrate inner ear. Fac Rev 2020; 9:27. [PMID: 33659959 PMCID: PMC7886070 DOI: 10.12703/r/9-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apical extracellular matrices (aECMs) are the extracellular layers on the apical sides of epithelia. aECMs form the outer layer of the skin in most animals and line the luminal surface of internal tubular epithelia. Compared to the more conserved basal ECMs (basement membranes), aECMs are highly diverse between tissues and between organisms and have been more challenging to understand at mechanistic levels. Studies in several genetic model organisms are revealing new insights into aECM composition, biogenesis, and function and have begun to illuminate common principles and themes of aECM organization. There is emerging evidence that, in addition to mechanical or structural roles, aECMs can participate in reciprocal signaling with associated epithelia and other cell types. Studies are also revealing mechanisms underlying the intricate nanopatterns exhibited by many aECMs. In this review, we highlight recent findings from well-studied model systems, including the external cuticle and ductal aECMs of Caenorhabditis elegans, Drosophila melanogaster, and other insects and the internal aECMs of the vertebrate inner ear.
Collapse
Affiliation(s)
- Sherry Li Zheng
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Gotenstein Adams
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Lerch S, Zuber R, Gehring N, Wang Y, Eckel B, Klass KD, Lehmann FO, Moussian B. Resilin matrix distribution, variability and function in Drosophila. BMC Biol 2020; 18:195. [PMID: 33317537 PMCID: PMC7737337 DOI: 10.1186/s12915-020-00902-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022] Open
Abstract
Background Elasticity prevents fatigue of tissues that are extensively and repeatedly deformed. Resilin is a resilient and elastic extracellular protein matrix in joints and hinges of insects. For its mechanical properties, Resilin is extensively analysed and applied in biomaterial and biomedical sciences. However, there is only indirect evidence for Resilin distribution and function in an insect. Commonly, the presence of dityrosines that covalently link Resilin protein monomers (Pro-Resilin), which are responsible for its mechanical properties and fluoresce upon UV excitation, has been considered to reflect Resilin incidence. Results Using a GFP-tagged Resilin version, we directly identify Resilin in pliable regions of the Drosophila body, some of which were not described before. Interestingly, the amounts of dityrosines are not proportional to the amounts of Resilin in different areas of the fly body, arguing that the mechanical properties of Resilin matrices vary according to their need. For a functional analysis of Resilin matrices, applying the RNA interference and Crispr/Cas9 techniques, we generated flies with reduced or eliminated Resilin function, respectively. We find that these flies are flightless but capable of locomotion and viable suggesting that other proteins may partially compensate for Resilin function. Indeed, localizations of the potentially elastic protein Cpr56F and Resilin occasionally coincide. Conclusions Thus, Resilin-matrices are composite in the way that varying amounts of different elastic proteins and dityrosinylation define material properties. Understanding the biology of Resilin will have an impact on Resilin-based biomaterial and biomedical sciences.
Collapse
Affiliation(s)
- Steven Lerch
- Applied Zoology, Technical University of Dresden, Dresden, Germany.,Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,Senckenberg Natural History Collections, Dresden, Germany
| | - Renata Zuber
- Applied Zoology, Technical University of Dresden, Dresden, Germany
| | - Nicole Gehring
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Yiwen Wang
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Barbara Eckel
- Applied Zoology, Technical University of Dresden, Dresden, Germany
| | | | | | - Bernard Moussian
- Applied Zoology, Technical University of Dresden, Dresden, Germany. .,Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany. .,CNRS, Inserm Institute of Biology Valrose, Université Côte d'Azur, Nice, France.
| |
Collapse
|
27
|
Zuber R, Wang Y, Gehring N, Bartoszewski S, Moussian B. Tweedle proteins form extracellular two-dimensional structures defining body and cell shape in Drosophila melanogaster. Open Biol 2020; 10:200214. [PMID: 33292106 PMCID: PMC7776580 DOI: 10.1098/rsob.200214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tissue function and shape rely on the organization of the extracellular matrix (ECM) produced by the respective cells. Our understanding of the underlying molecular mechanisms is limited. Here, we show that extracellular Tweedle (Twdl) proteins in the fruit fly Drosophila melanogaster form two adjacent two-dimensional sheets underneath the cuticle surface and above a distinct layer of dityrosinylated and probably elastic proteins enwrapping the whole body. Dominant mutations in twdl genes cause ectopic spherical aggregation of Twdl proteins that recruit dityrosinylated proteins at their periphery within lower cuticle regions. These aggregates perturb parallel ridges at the surface of epidermal cells that have been demonstrated to be crucial for body shaping. In one scenario, hence, this disorientation of epidermal ridges may explain the squatty phenotype of Twdl mutant larvae. In an alternative scenario, this phenotype may be due to the depletion of the dityrosinylated and elastic layer, and the consequent weakening of cuticle resistance against the internal hydrostatic pressure. According to Barlow's formula describing the distribution of internal pressure forces in pipes in dependence of pipe wall material properties, it follows that this reduction in turn causes lateral expansion at the expense of the antero-posterior elongation of the body.
Collapse
Affiliation(s)
- Renata Zuber
- Applied Zoology, Technical University of Dresden, Zellescher Weg 20b, 01062 Dresden, Germany.,Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Yiwen Wang
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Nicole Gehring
- Interfaculty Institute for Cell Biology (Ifiz), University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Slawomir Bartoszewski
- Department of Biochemistry and Cell Biology, Rzeszow University, ul. Zelwerowicza 4, 35-601 Rzeszów, Poland
| | - Bernard Moussian
- Applied Zoology, Technical University of Dresden, Zellescher Weg 20b, 01062 Dresden, Germany.,CNRS, Inserm, Institute of Biology Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice CEDEX 2, France
| |
Collapse
|
28
|
Wang Y, Farine JP, Yang Y, Yang J, Tang W, Gehring N, Ferveur JF, Moussian B. Transcriptional Control of Quality Differences in the Lipid-Based Cuticle Barrier in Drosophila suzukii and Drosophila melanogaster. Front Genet 2020; 11:887. [PMID: 32849846 PMCID: PMC7423992 DOI: 10.3389/fgene.2020.00887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022] Open
Abstract
Cuticle barrier efficiency in insects depends largely on cuticular lipids. To learn about the evolution of cuticle barrier function, we compared the basic properties of the cuticle inward and outward barrier function in adults of the fruit flies Drosophila suzukii and Drosophila melanogaster that live on fruits sharing a similar habitat. At low air humidity, D. suzukii flies desiccate faster than D. melanogaster flies. We observed a general trend indicating that in this respect males are less robust than females in both species. Xenobiotics penetration occurs at lower temperatures in D. suzukii than in D. melanogaster. Likewise, D. suzukii flies are more susceptible to contact insecticides than D. melanogaster flies. Thus, both the inward and outward barriers of D. suzukii are less efficient. Consistently, D. suzukii flies have less cuticular hydrocarbons (CHC) that participate as key components of the cuticle barrier. Especially, the relative amounts of branched and desaturated CHCs, known to enhance desiccation resistance, show reduced levels in D. suzukii. Moreover, the expression of snustorr (snu) that encodes an ABC transporter involved in barrier construction and CHC externalization, is strongly suppressed in D. suzukii. Hence, species-specific genetic programs regulate the quality of the lipid-based cuticle barrier in these two Drosophilae. Together, we conclude that the weaker inward and outward barriers of D. suzukii may be partly explained by differences in CHC composition and by a reduced Snu-dependent transport rate of CHCs to the surface. In turn, this suggests that snu is an ecologically adjustable and therefore relevant gene in cuticle barrier efficiency.
Collapse
Affiliation(s)
- Yiwen Wang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, Dijon, France
| | - Yang Yang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Jing Yang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Weina Tang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Nicole Gehring
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, Dijon, France
| | - Bernard Moussian
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Nice, France
| |
Collapse
|
29
|
Zhao X, Yang Y, Niu N, Zhao Y, Liu W, Ma E, Moussian B, Zhang J. The fatty acid elongase gene LmELO7 is required for hydrocarbon biosynthesis and cuticle permeability in the migratory locust, Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104052. [PMID: 32259526 DOI: 10.1016/j.jinsphys.2020.104052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Insect cuticular lipids are a complex cocktail of highly diverse cuticular hydrocarbons (CHCs), which form a hydrophobic surface coat to maintain water balance and to prevent desiccation and penetration of exogenous substances. Fatty acid elongases (ELOs) are key enzymes that participate in a common CHC synthesis pathway in insects. However, the importance of ELOs for CHC synthesis and function remains understudied. Using transcriptomic data, we have identified seven ELO genes (LmELO1-7) in the migratory locust Locusta migratoria. We determined their tissue-specific and temporal expression profiles in fifth instar nymphs. As we are interested in cuticle barrier formation, we performed RNA interference against LmELO7, which is mainly expressed in the integument. Suppression of LmELO7 significantly decreased its expression and caused lethality during or shortly after molting. CHC quantification by GC-MS analysis indicated that suppression of LmELO7 resulted in a decrease in total CHC amounts. By consequence, CHC deficiency reduced desiccation resistance and enhanced cuticle permeability in LmELO7-suppressed L. migratoria. Interestingly, LmELO7 expression is induced at low air humidity. Our results indicate that LmELO7 plays a vital role in the production of CHCs and, hence, cuticle permeability. Induction of LmELO7 expression in drought conditions suggests a key role of this gene in regulating desiccation resistance. This work is expected to help developing new strategies for insect pest management based on CHC function.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yang Yang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Niu Niu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yiyan Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Weimin Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice CEDEX 2, France
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
30
|
Brückner A, Parker J. Molecular evolution of gland cell types and chemical interactions in animals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb211938. [PMID: 32034048 DOI: 10.1242/jeb.211938] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Across the Metazoa, the emergence of new ecological interactions has been enabled by the repeated evolution of exocrine glands. Specialized glands have arisen recurrently and with great frequency, even in single genera or species, transforming how animals interact with their environment through trophic resource exploitation, pheromonal communication, chemical defense and parental care. The widespread convergent evolution of animal glands implies that exocrine secretory cells are a hotspot of metazoan cell type innovation. Each evolutionary origin of a novel gland involves a process of 'gland cell type assembly': the stitching together of unique biosynthesis pathways; coordinated changes in secretory systems to enable efficient chemical release; and transcriptional deployment of these machineries into cells constituting the gland. This molecular evolutionary process influences what types of compound a given species is capable of secreting, and, consequently, the kinds of ecological interactions that species can display. Here, we discuss what is known about the evolutionary assembly of gland cell types and propose a framework for how it may happen. We posit the existence of 'terminal selector' transcription factors that program gland function via regulatory recruitment of biosynthetic enzymes and secretory proteins. We suggest ancestral enzymes are initially co-opted into the novel gland, fostering pleiotropic conflict that drives enzyme duplication. This process has yielded the observed pattern of modular, gland-specific biosynthesis pathways optimized for manufacturing specific secretions. We anticipate that single-cell technologies and gene editing methods applicable in diverse species will transform the study of animal chemical interactions, revealing how gland cell types are assembled and functionally configured at a molecular level.
Collapse
Affiliation(s)
- Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
31
|
Wang Y, Norum M, Oehl K, Yang Y, Zuber R, Yang J, Farine JP, Gehring N, Flötenmeyer M, Ferveur JF, Moussian B. Dysfunction of Oskyddad causes Harlequin-type ichthyosis-like defects in Drosophila melanogaster. PLoS Genet 2020; 16:e1008363. [PMID: 31929524 PMCID: PMC6980720 DOI: 10.1371/journal.pgen.1008363] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/24/2020] [Accepted: 12/17/2019] [Indexed: 01/04/2023] Open
Abstract
Prevention of desiccation is a constant challenge for terrestrial organisms. Land insects have an extracellular coat, the cuticle, that plays a major role in protection against exaggerated water loss. Here, we report that the ABC transporter Oskyddad (Osy)-a human ABCA12 paralog-contributes to the waterproof barrier function of the cuticle in the fruit fly Drosophila melanogaster. We show that the reduction or elimination of Osy function provokes rapid desiccation. Osy is also involved in defining the inward barrier against xenobiotics penetration. Consistently, the amounts of cuticular hydrocarbons that are involved in cuticle impermeability decrease markedly when Osy activity is reduced. GFP-tagged Osy localises to membrane nano-protrusions within the cuticle, likely pore canals. This suggests that Osy is mediating the transport of cuticular hydrocarbons (CHC) through the pore canals to the cuticle surface. The envelope, which is the outermost cuticle layer constituting the main barrier, is unaffected in osy mutant larvae. This contrasts with the function of Snu, another ABC transporter needed for the construction of the cuticular inward and outward barriers, that nevertheless is implicated in CHC deposition. Hence, Osy and Snu have overlapping and independent roles to establish cuticular resistance against transpiration and xenobiotic penetration. The osy deficient phenotype parallels the phenotype of Harlequin ichthyosis caused by mutations in the human abca12 gene. Thus, it seems that the cellular and molecular mechanisms of lipid barrier assembly in the skin are conserved during evolution.
Collapse
Affiliation(s)
- Yiwen Wang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Michaela Norum
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Kathrin Oehl
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Yang Yang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Renata Zuber
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Applied Zoology, Technical University of Dresden, Dresden, Germany
| | - Jing Yang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, Dijon, France
| | - Nicole Gehring
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Matthias Flötenmeyer
- Microscopy Unit, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, Dijon, France
| | - Bernard Moussian
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Institute of Biology Valrose, CNRS, Inserm, Université Côte d’Azur, Nice, France
- * E-mail:
| |
Collapse
|
32
|
Identification of candidate ATP-binding cassette transporter gene family members in Diaphorina citri (Hemiptera: Psyllidae) via adult tissues transcriptome analysis. Sci Rep 2019; 9:15842. [PMID: 31676883 PMCID: PMC6825165 DOI: 10.1038/s41598-019-52402-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters exist in all living organisms and play major roles in various biological functions by transporting a wide variety of substrates across membranes. The functions of ABC transporters in drug resistance have been extensively studied in vertebrates; however, they are rarely characterized in agricultural pests. The Asian citrus psyllid, Diaphorina citri, is one of the most damaging pests of the Citrus genus because of its transmission of Huanglongbing, also known as Yellow Dragon disease. In this study, the next-generation sequencing technique was applied to research the ABC transporters of D. citri. Fifty-three ABC transporter genes were found in the RNA-Seq data, and among these ABC transporters, 4, 4, 5, 2, 1, 4, 18 and 15 ABC proteins belonged to the ABCA-ABCH subfamilies, respectively. Different expression profiles of 52 genes between imidacloprid-resistant and imidacloprid-susceptible strains were studied by qRT-PCR; 5 ABCGs and 4 ABCHs were significantly upregulated in the imidacloprid-resistant strain. In addition, five of the nine upregulated genes were widely expressed in adult tissues in spatial expression analysis. The results suggest that these genes may play key roles in this phenotype. In general, this study contributed to our current understanding of D. citri resistance to insecticides.
Collapse
|
33
|
Dong W, Dobler R, Dowling DK, Moussian B. The cuticle inward barrier in Drosophila melanogaster is shaped by mitochondrial and nuclear genotypes and a sex-specific effect of diet. PeerJ 2019; 7:e7802. [PMID: 31592352 PMCID: PMC6779114 DOI: 10.7717/peerj.7802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/31/2019] [Indexed: 01/23/2023] Open
Abstract
An important role of the insect cuticle is to prevent wetting (i.e., permeation of water) and also to prevent penetration of potentially harmful substances. This barrier function mainly depends on the hydrophobic cuticle surface composed of lipids including cuticular hydrocarbons (CHCs). We investigated to what extent the cuticle inward barrier function depends on the genotype, comprising mitochondrial and nuclear genes in the fruit fly Drosophila melanogaster, and investigated the contribution of interactions between mitochondrial and nuclear genotypes (mito-nuclear interactions) on this function. In addition, we assessed the effects of nutrition and sex on the cuticle barrier function. Based on a dye penetration assay, we find that cuticle barrier function varies across three fly lines that were captured from geographically separated regions in three continents. Testing different combinations of mito-nuclear genotypes, we show that the inward barrier efficiency is modulated by the nuclear and mitochondrial genomes independently. We also find an interaction between diet and sex. Our findings provide new insights into the regulation of cuticle inward barrier function in nature.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Ralph Dobler
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Damian K. Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Bernard Moussian
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
- Université Côte d’Azur, CNRS—Inserm, iBV, Parc Valrose, Nice, France
| |
Collapse
|
34
|
Balabanidou V, Kefi M, Aivaliotis M, Koidou V, Girotti JR, Mijailovsky SJ, Juárez MP, Papadogiorgaki E, Chalepakis G, Kampouraki A, Nikolaou C, Ranson H, Vontas J. Mosquitoes cloak their legs to resist insecticides. Proc Biol Sci 2019; 286:20191091. [PMID: 31311476 PMCID: PMC6661348 DOI: 10.1098/rspb.2019.1091] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Malaria incidence has halved since the year 2000, with 80% of the reduction attributable to the use of insecticides. However, insecticide resistance is now widespread, is rapidly increasing in spectrum and intensity across Africa, and may be contributing to the increase of malaria incidence in 2018. The role of detoxification enzymes and target site mutations has been documented in the major malaria vector Anopheles gambiae; however, the emergence of striking resistant phenotypes suggests the occurrence of additional mechanisms. By comparing legs, the most relevant insect tissue for insecticide uptake, we show that resistant mosquitoes largely remodel their leg cuticles via enhanced deposition of cuticular proteins and chitin, corroborating a leg-thickening phenotype. Moreover, we show that resistant female mosquitoes seal their leg cuticles with higher total and different relative amounts of cuticular hydrocarbons, compared with susceptible ones. The structural and functional alterations in Anopheles female mosquito legs are associated with a reduced uptake of insecticides, substantially contributing to the resistance phenotype.
Collapse
Affiliation(s)
- Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Mary Kefi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, Greece
| | - Venetia Koidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - Juan R Girotti
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas-Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Sergio J Mijailovsky
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas-Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - M Patricia Juárez
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas-Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Eva Papadogiorgaki
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - George Chalepakis
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - Anastasia Kampouraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Christoforos Nikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
35
|
Wu C, Chakrabarty S, Jin M, Liu K, Xiao Y. Insect ATP-Binding Cassette (ABC) Transporters: Roles in Xenobiotic Detoxification and Bt Insecticidal Activity. Int J Mol Sci 2019; 20:ijms20112829. [PMID: 31185645 PMCID: PMC6600440 DOI: 10.3390/ijms20112829] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
ATP-binding cassette (ABC) transporters, a large class of transmembrane proteins, are widely found in organisms and play an important role in the transport of xenobiotics. Insect ABC transporters are involved in insecticide detoxification and Bacillus thuringiensis (Bt) toxin perforation. The complete ABC transporter is composed of two hydrophobic transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). Conformational changes that are needed for their action are mediated by ATP hydrolysis. According to the similarity among their sequences and organization of conserved ATP-binding cassette domains, insect ABC transporters have been divided into eight subfamilies (ABCA–ABCH). This review describes the functions and mechanisms of ABC transporters in insecticide detoxification, plant toxic secondary metabolites transport and insecticidal activity of Bt toxin. With improved understanding of the role and mechanisms of ABC transporter in resistance to insecticides and Bt toxins, we can identify valuable target sites for developing new strategies to control pests and manage resistance and achieve green pest control.
Collapse
Affiliation(s)
- Chao Wu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Swapan Chakrabarty
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Minghui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
36
|
Wang Y, Maier A, Gehring N, Moussian B. Inhibition of fatty acid desaturation impairs cuticle differentiation in Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21535. [PMID: 30672604 DOI: 10.1002/arch.21535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Previously, we showed that inhibition of the activity of fatty acid desaturases (Desat) perturbs signalling of the developmental timing hormone ecdysone in the fruit fly Drosophila melanogaster. To understand the impact of this effect on cuticle differentiation, a process regulated by ecdysone, we analysed the cuticle of D. melanogaster larvae fed with the Desat inhibitor CA10556. In these larvae, the expression of most of the key cuticle genes is normal or slightly elevated at day one of CA10556 feeding. As an exception, expression of twdlM coding for a yet uncharacterised cuticle protein is completely suppressed. The cuticle of these larvae appears to be normal at the morphological level. However, these animals are sensitive to desiccation, a trait that according to our data, among others, may be associated with reduced TwdlM amounts. At day two of CA10556 feeding, expression of most of the cuticle genes tested including twdlM is suppressed. Expression of cpr47Eb coding for a chitin-binding protein is, by contrast, highly elevated suggesting that Cpr47Eb participates at a specific compensation program. Overall, the cuticle of these larvae is thinner than the cuticle of control larvae. Taken together, lipid desaturation is necessary for a coordinated deployment of a normal cuticle differentiation program.
Collapse
Affiliation(s)
- Yiwen Wang
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Annette Maier
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Nicole Gehring
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Tübingen, Germany
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Nice, France
| |
Collapse
|
37
|
Zuber R, Shaik KS, Meyer F, Ho HN, Speidel A, Gehring N, Bartoszewski S, Schwarz H, Moussian B. The putative C-type lectin Schlaff ensures epidermal barrier compactness in Drosophila. Sci Rep 2019; 9:5374. [PMID: 30926832 PMCID: PMC6440989 DOI: 10.1038/s41598-019-41734-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/14/2019] [Indexed: 01/22/2023] Open
Abstract
The stability of extracellular matrices is in general ensured by cross-linking of its components. Previously, we had shown that the integrity of the layered Drosophila cuticle relies on the presence of a covalent cuticular dityrosine network. Production and composition of this structure remained unstudied. In this work, we present our analyses of the schlaff (slf) gene coding for a putative C-type lectin that is needed for the adhesion between the horizontal cuticle layers. The Slf protein mainly localizes between the two layers called epicuticle and procuticle that separate from each other when the function of Slf is reduced or eliminated paralleling the phenotype of a cuticle with reduced extracellular dityrosine. Localisation of the dityrosinylated protein Resilin to the epicuticle-procuticle interface suggests that the dityrosine network mediates the adhesion of the epicuticle to the procuticle. Ultimately, compromised Slf function is associated with massive water loss. In summary, we propose that Slf is implied in the stabilisation of a dityrosine layer especially between the epicuticle and the procuticle that in turn constitutes an outward barrier against uncontrolled water flow.
Collapse
Affiliation(s)
- Renata Zuber
- Applied Zoology, Technical University of Dresden, Zellescher Weg 20b, 01217, Dresden, Germany.,University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Khaleelulla Saheb Shaik
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Frauke Meyer
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Hsin-Nin Ho
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Anna Speidel
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Nicole Gehring
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Slawomir Bartoszewski
- Rzeszow University, Department of Biochemistry and Cell Biology, ul. Zelwerowicza 4, 35-601, Rzeszów, Poland
| | - Heinz Schwarz
- Max-Planck-Institut für Entwicklungsbiologie, Microscopy Unit, Spemannstr. 35, 72076, Tübingen, Germany
| | - Bernard Moussian
- University of Tübingen, Interfaculty Institute of Cell Biology, Section Animal Genetics, Auf der Morgenstelle 15, 72076, Tübingen, Germany. .,Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108, Nice CEDEX 2, France.
| |
Collapse
|
38
|
Itakura Y, Inagaki S, Wada H, Hayashi S. Trynity controls epidermal barrier function and respiratory tube maturation in Drosophila by modulating apical extracellular matrix nano-patterning. PLoS One 2018; 13:e0209058. [PMID: 30576352 PMCID: PMC6303098 DOI: 10.1371/journal.pone.0209058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/12/2018] [Indexed: 11/18/2022] Open
Abstract
The outer surface of insects is covered by the cuticle, which is derived from the apical extracellular matrix (aECM). The aECM is secreted by epidermal cells during embryogenesis. The aECM exhibits large variations in structure, function, and constituent molecules, reflecting the enormous diversity in insect appearances. To investigate the molecular principles of aECM organization and function, here we studied the role of a conserved aECM protein, the ZP domain protein Trynity, in Drosophila melanogaster. We first identified trynity as an essential gene for epidermal barrier function. trynity mutation caused disintegration of the outermost envelope layer of the cuticle, resulting in small-molecule leakage and in growth and molting defects. In addition, the tracheal tubules of trynity mutants showed defects in pore-like structures of the cuticle, and the mutant tracheal cells failed to absorb luminal proteins and liquid. Our findings indicated that trynity plays essential roles in organizing nano-level structures in the envelope layer of the cuticle that both restrict molecular trafficking through the epidermis and promote the massive absorption pulse in the trachea.
Collapse
Affiliation(s)
- Yuki Itakura
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan
| | - Sachi Inagaki
- Biosignal Research Center, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Housei Wada
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan
- Department of Biology, Kobe University Graduate School of Science, Nada-ku, Kobe, Hyogo, Japan
- * E-mail:
| |
Collapse
|