1
|
LaComb L, Ghosh A, Bonanno JB, Nilson DJ, Poppel AJ, Dada L, Cahill SM, Maianti JP, Kitamura S, Cowburn D, Almo SC. Insights into the Interaction Landscape of the EVH1 Domain of Mena. Biochemistry 2024; 63:2183-2195. [PMID: 39138154 DOI: 10.1021/acs.biochem.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The Enabled/VASP homology 1 (EVH1) domain is a small module that interacts with proline-rich stretches in its ligands and is found in various signaling and scaffolding proteins. Mena, the mammalian homologue of Ena, is involved in diverse actin-associated events, such as membrane dynamics, bacterial motility, and tumor intravasation and extravasation. Two-dimensional (2D) 1H-15N HSQC NMR was used to study Mena EVH1 binding properties, defining the amino acids involved in ligand recognition for the physiological ligands ActA and PCARE, and a synthetic polyproline-inspired small molecule (hereafter inhibitor 6c). Chemical shift perturbations indicated that proline-rich segments bind in the conserved EVH1 hydrophobic cleft. The PCARE-derived peptide elicited more perturbations compared to the ActA-derived peptide, consistent with a previous report of a structural alteration in the solvent-exposed β7-β8 loop. Unexpectedly, EVH1 and the proline-rich segment of PTP1B did not exhibit NMR chemical shift perturbations; however, the high-resolution crystal structure implicated the conserved EVH1 hydrophobic cleft in ligand recognition. Intrinsic steady-state fluorescence and fluorescence polarization assays indicate that residues outside the proline-rich segment enhance the ligand affinity for EVH1 (Kd = 3-8 μM). Inhibitor 6c displayed tighter binding (Kd ∼ 0.3 μM) and occupies the same EVH1 cleft as physiological ligands. These studies revealed that the EVH1 domain enhances ligand affinity through recognition of residues flanking the proline-rich segments. Additionally, a synthetic inhibitor binds more tightly to the EVH1 domain than natural ligands, occupying the same hydrophobic cleft.
Collapse
Affiliation(s)
- Lanette LaComb
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Daniel J Nilson
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Alex J Poppel
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Lucas Dada
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Sean M Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Juan Pablo Maianti
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Seiya Kitamura
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
2
|
Libby JR, Royce H, Walker SR, Li L. The role of extracellular matrix in angiogenesis: Beyond adhesion and structure. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100097. [PMID: 39129826 PMCID: PMC11315062 DOI: 10.1016/j.bbiosy.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 08/13/2024] Open
Abstract
While the extracellular matrix (ECM) has long been recognized for its structural contributions, anchoring cells for adhesion, providing mechanical support, and maintaining tissue integrity, recent efforts have elucidated its dynamic, reciprocal, and diverse properties on angiogenesis. The ECM modulates angiogenic signaling and mechanical transduction, influences the extent and degree of receptor activation, controls cellular behaviors, and serves as a reservoir for bioactive macromolecules. Collectively, these factors guide the formation, maturation, and stabilization of a functional vascular network. This review aims to shed light on the versatile roles of the ECM in angiogenesis, transcending its traditional functions as a mere structural material. We will explore its engagement and synergy in signaling modulation, interactions with various angiogenic factors, and highlight its importance in both health and disease. By capturing the essence of the ECM's diverse functionalities, we highlight the significance in the broader context of vascular biology, enabling the design of novel biomaterials to engineer vascularized tissues and their potential therapeutic implications.
Collapse
Affiliation(s)
- Jaxson R. Libby
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Haley Royce
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
| | - Sarah R. Walker
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Linqing Li
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
- Department of Chemistry, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
3
|
Mirshahidi S, Yuan IJ, Chen Z, Simental A, Lee SC, Andrade Filho PA, Murry T, Zeng F, Duerksen-Hughes P, Wang C, Yuan X. Tumor Cell Stemness and Stromal Cell Features Contribute to Oral Cancer Outcome Disparity in Black Americans. Cancers (Basel) 2024; 16:2730. [PMID: 39123459 PMCID: PMC11311411 DOI: 10.3390/cancers16152730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Black Americans (BAs) with head and neck cancer (HNC) have worse survival outcomes compared to the White patients. While HNC disparities in patient outcomes for BAs have been well recognized, the specific drivers of the inferior outcomes remain poorly understood. Here, we investigated the biologic features of patient tumor specimens obtained during the surgical treatment of oral cancers and performed a follow-up study of the patients' post-surgery recurrences and metastases with the aim to explore whether tumor biologic features could be associated with the poorer outcomes among BA patients compared with White American (WA) patients. We examined the tumor stemness traits and stromal properties as well as the post-surgery recurrence and metastasis of oral cancers among BA and WA patients. It was found that high levels of tumor self-renewal, invasion, tumorigenesis, metastasis, and tumor-promoting stromal characteristics were linked to post-surgery recurrence and metastasis. There were more BA than WA patients demonstrating high stemness traits and strong tumor-promoting stromal features in association with post-surgery tumor recurrences and metastases, although the investigated cases displayed clinically comparable TNM stages and histological grades. These findings demonstrated that the differences in tumor stemness and stromal property among cancers with comparable clinical diagnoses contribute to the outcome disparity in HNCs. More research is needed to understand the genetic and molecular basis of the biologic characteristics underlying the inferior outcomes among BA patients, so that targeting strategies can be developed to reduce HNC disparity.
Collapse
Affiliation(s)
- Saied Mirshahidi
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center Biospecimen Laboratory, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Isabella J. Yuan
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Zhong Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Alfred Simental
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Steve C. Lee
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Pedro A. Andrade Filho
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Thomas Murry
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Feng Zeng
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Penelope Duerksen-Hughes
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Charles Wang
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Xiangpeng Yuan
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
4
|
Murad M, Chen Y, Iaria J, Fonseca Teixeira A, Zhu HJ. A Novel Method for the Early Detection of Single Circulating, Metastatic and Self-Seeding Cancer Cells in Orthotopic Breast Cancer Mouse Models. Cells 2024; 13:1166. [PMID: 39056749 PMCID: PMC11275056 DOI: 10.3390/cells13141166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Metastasis is the main cause of cancer-related deaths, but efficient targeted therapies against metastasis are still missing. Major gaps exist in our understanding of the metastatic cascade, as existing methods cannot combine sensitivity, robustness, and practicality to dissect cancer progression. Addressing this issue requires improved strategies to distinguish early metastatic colonization from metastatic outgrowth. METHODS Luciferase-labelled MDA-MB-231, MCF7, and 4T1 breast cancer cells were spiked into samples from tumour-naïve mice to establish the limit of detection for disseminated tumour cells. Luciferase-labelled breast cancer cells (±unlabelled cancer-associated fibroblasts; CAFs) were orthotopically implanted in immunocompromised mice. An ex vivo luciferase assay was used to quantify tumour cell dissemination. RESULTS In vitro luciferase assay confirmed a linear and positive correlation between cancer cell numbers and the bioluminescence detected at single cell level in blood, brain, lung, liver, and mammary fat pad samples. Remarkably, single luciferase-labelled cancer cells were detectable in all of these sites, as the bioluminescence quantified in the analysed samples was substantially higher than background levels. Ex vivo, circulating tumour cells, metastasis, and tumour self-seeding were detected in all samples from animals implanted with highly metastatic luciferase-labelled MDA-MB-231 cells. In turn, detection of poorly metastatic luciferase-labelled MCF7 cells was scarce but significantly enhanced upon co-implantation with CAFs as early as 20 days after the experiment was initiated. CONCLUSIONS These results demonstrate the feasibility of using an ultrasensitive luciferase-based method to dissect the mechanisms of early metastatic colonization to improving the development of antimetastatic therapies.
Collapse
Affiliation(s)
- Muhammad Murad
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, 5th Floor Clinical Sciences Building, Parkville, VIC 3050, Australia; (M.M.); (Y.C.); (J.I.); (A.F.T.)
| | - Yanjiang Chen
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, 5th Floor Clinical Sciences Building, Parkville, VIC 3050, Australia; (M.M.); (Y.C.); (J.I.); (A.F.T.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Josephine Iaria
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, 5th Floor Clinical Sciences Building, Parkville, VIC 3050, Australia; (M.M.); (Y.C.); (J.I.); (A.F.T.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, 5th Floor Clinical Sciences Building, Parkville, VIC 3050, Australia; (M.M.); (Y.C.); (J.I.); (A.F.T.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, 5th Floor Clinical Sciences Building, Parkville, VIC 3050, Australia; (M.M.); (Y.C.); (J.I.); (A.F.T.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| |
Collapse
|
5
|
Neagu AN, Bruno P, Johnson KR, Ballestas G, Darie CC. Biological Basis of Breast Cancer-Related Disparities in Precision Oncology Era. Int J Mol Sci 2024; 25:4113. [PMID: 38612922 PMCID: PMC11012526 DOI: 10.3390/ijms25074113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Precision oncology is based on deep knowledge of the molecular profile of tumors, allowing for more accurate and personalized therapy for specific groups of patients who are different in disease susceptibility as well as treatment response. Thus, onco-breastomics is able to discover novel biomarkers that have been found to have racial and ethnic differences, among other types of disparities such as chronological or biological age-, sex/gender- or environmental-related ones. Usually, evidence suggests that breast cancer (BC) disparities are due to ethnicity, aging rate, socioeconomic position, environmental or chemical exposures, psycho-social stressors, comorbidities, Western lifestyle, poverty and rurality, or organizational and health care system factors or access. The aim of this review was to deepen the understanding of BC-related disparities, mainly from a biomedical perspective, which includes genomic-based differences, disparities in breast tumor biology and developmental biology, differences in breast tumors' immune and metabolic landscapes, ecological factors involved in these disparities as well as microbiomics- and metagenomics-based disparities in BC. We can conclude that onco-breastomics, in principle, based on genomics, proteomics, epigenomics, hormonomics, metabolomics and exposomics data, is able to characterize the multiple biological processes and molecular pathways involved in BC disparities, clarifying the differences in incidence, mortality and treatment response for different groups of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Kaya R Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Gabriella Ballestas
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
6
|
Arriaga JM, Ronaldson-Bouchard K, Picech F, Nunes de Almeida F, Afari S, Chhouri H, Vunjak-Novakovic G, Abate-Shen C. In vivo genome-wide CRISPR screening identifies CITED2 as a driver of prostate cancer bone metastasis. Oncogene 2024; 43:1303-1315. [PMID: 38454137 PMCID: PMC11101692 DOI: 10.1038/s41388-024-02995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Most cancer deaths are due to metastatic dissemination to distant organs. Bone is the most frequently affected organ in metastatic prostate cancer and a major cause of prostate cancer deaths. Yet, our partial understanding of the molecular factors that drive bone metastasis has been a limiting factor for developing preventative and therapeutic strategies to improve patient survival and well-being. Although recent studies have uncovered molecular alterations that occur in prostate cancer metastasis, their functional relevance for bone metastasis is not well understood. Using genome-wide CRISPR activation and inhibition screens we have identified multiple drivers and suppressors of prostate cancer metastasis. Through functional validation, including an innovative organ-on-a-chip invasion platform for studying bone tropism, our study identifies the transcriptional modulator CITED2 as a novel driver of prostate cancer bone metastasis and uncovers multiple new potential molecular targets for bone metastatic disease.
Collapse
Affiliation(s)
- Juan M Arriaga
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Oncological Sciences, Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | | | - Florencia Picech
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Francisca Nunes de Almeida
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Stephanie Afari
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Houssein Chhouri
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cory Abate-Shen
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Khan C, Rusan NM. Using Drosophila to uncover the role of organismal physiology and the tumor microenvironment in cancer. Trends Cancer 2024; 10:289-311. [PMID: 38350736 PMCID: PMC11008779 DOI: 10.1016/j.trecan.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Cancer metastasis causes over 90% of cancer patient fatalities. Poor prognosis is determined by tumor type, the tumor microenvironment (TME), organ-specific biology, and animal physiology. While model organisms do not fully mimic the complexity of humans, many processes can be studied efficiently owing to the ease of genetic, developmental, and cell biology studies. For decades, Drosophila has been instrumental in identifying basic mechanisms controlling tumor growth and metastasis. The ability to generate clonal populations of distinct genotypes in otherwise wild-type animals makes Drosophila a powerful system to study tumor-host interactions at the local and global scales. This review discusses advancements in tumor biology, highlighting the strength of Drosophila for modeling TMEs and systemic responses in driving tumor progression and metastasis.
Collapse
Affiliation(s)
- Chaitali Khan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Surve CR, Duran CL, Ye X, Chen X, Lin Y, Harney AS, Wang Y, Sharma VP, Stanley ER, Cox D, McAuliffe JC, Entenberg D, Oktay MH, Condeelis JS. Signaling events at TMEM doorways provide potential targets for inhibiting breast cancer dissemination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574676. [PMID: 38260319 PMCID: PMC10802469 DOI: 10.1101/2024.01.08.574676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Tumor cell intravasation is essential for metastatic dissemination, but its exact mechanism is incompletely understood. We have previously shown that in breast cancer, the direct and stable association of a tumor cell expressing Mena, a Tie2hi/VEGFhi macrophage, and a vascular endothelial cell, creates an intravasation portal, called a "tumor microenvironment of metastasis" (TMEM) doorway, for tumor cell intravasation, leading to dissemination to distant sites. The density of TMEM doorways, also called TMEM doorway score, is a clinically validated prognostic marker of distant metastasis in breast cancer patients. Although we know that tumor cells utilize TMEM doorway-associated transient vascular openings to intravasate, the precise signaling mechanisms involved in TMEM doorway function are only partially understood. Using two mouse models of breast cancer and an in vitro assay of intravasation, we report that CSF-1 secreted by the TMEM doorway tumor cell stimulates local secretion of VEGF-A from the Tie2hi TMEM doorway macrophage, leading to the dissociation of endothelial junctions between TMEM doorway associated endothelial cells, supporting tumor cell intravasation. Acute blockade of CSF-1R signaling decreases macrophage VEGF-A secretion as well as TMEM doorway-associated vascular opening, tumor cell trans-endothelial migration, and dissemination. These new insights into signaling events regulating TMEM doorway function should be explored further as treatment strategies for metastatic disease.
Collapse
Affiliation(s)
- Chinmay R. Surve
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Camille L. Duran
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Xianjun Ye
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Xiaoming Chen
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yu Lin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Allison S. Harney
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yarong Wang
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
| | - Ved P. Sharma
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Dianne Cox
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - John C. McAuliffe
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - David Entenberg
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Maja H. Oktay
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - John S. Condeelis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
9
|
Wolf B, Weydandt L, Dornhöfer N, Hiller GGR, Höhn AK, Nel I, Jain RK, Horn LC, Aktas B. Desmoplasia in cervical cancer is associated with a more aggressive tumor phenotype. Sci Rep 2023; 13:18946. [PMID: 37919378 PMCID: PMC10622496 DOI: 10.1038/s41598-023-46340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
In cancer of the uterine cervix, the role of desmoplasia, i.e., peritumoral stromal remodeling characterized by fibroblast activation and increased extracellular matrix deposition, is not established. We conducted a retrospective cohort study based on data from 438 patients who had undergone surgical treatment for cervical cancer as part of the prospective Leipzig Mesometrial Resection study between 1999 and 2021. Using non-parametric tests, Kaplan-Meier plotting, and Cox regression modeling, we calculated the prognostic impact of desmoplasia and its association with other risk factors. Desmoplasia was present in 80.6% of cases and was associated with a higher frequency of lymphovascular space involvement (76.5 vs. 56.5%, p < 0.001) and venous infiltration (14.4 vs. 2.4%, p < 0.001). Lymph node metastasis (23.0 vs. 11.8%, p < 0.05) and parametrial involvement (47.3 vs. 17.6%, p < 0.0001) were also more common in patients with desmoplasia. The presence of desmoplasia was associated with inferior overall (80.2% vs. 94.5% hazard ratio [HR] 3.8 [95% CI 1.4-10.4], p = 0.002) and recurrence-free survival (75.3% vs. 87.3%, HR 2.3 [95% CI 1.2-4.6], p = 0.008). In addition, desmoplasia was associated with significantly less peritumoral inflammation (rho - 0.43, p < 0.0001). In summary, we link desmoplasia to a more aggressive phenotype of cervical cancer, reduced peritumoral inflammation, and inferior survival.
Collapse
Affiliation(s)
- Benjamin Wolf
- Department of Gynecology, University Hospital Leipzig, Liebigstr. 20a, 04103, Leipzig, Germany.
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA.
- Harvard Medical School, Boston, USA.
| | - Laura Weydandt
- Department of Gynecology, University Hospital Leipzig, Liebigstr. 20a, 04103, Leipzig, Germany
| | - Nadja Dornhöfer
- Department of Gynecology, University Hospital Leipzig, Liebigstr. 20a, 04103, Leipzig, Germany
| | | | - Anne Kathrin Höhn
- Institute for Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Ivonne Nel
- Department of Gynecology, University Hospital Leipzig, Liebigstr. 20a, 04103, Leipzig, Germany
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| | | | - Bahriye Aktas
- Department of Gynecology, University Hospital Leipzig, Liebigstr. 20a, 04103, Leipzig, Germany
| |
Collapse
|
10
|
Torres-Sanchez A, Rivera-Robles M, Castillo-Pichardo L, Martínez-Ferrer M, Dorta-Estremera SM, Dharmawardhane S. Rac and Cdc42 inhibitors reduce macrophage function in breast cancer preclinical models. Front Oncol 2023; 13:1152458. [PMID: 37397366 PMCID: PMC10313121 DOI: 10.3389/fonc.2023.1152458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Background Metastatic disease lacks effective treatments and remains the primary cause of mortality from epithelial cancers, especially breast cancer. The metastatic cascade involves cancer cell migration and invasion and modulation of the tumor microenvironment (TME). A viable anti-metastasis strategy is to simultaneously target the migration of cancer cells and the tumor-infiltrating immunosuppressive inflammatory cells such as activated macrophages, neutrophils, and myeloid-derived suppressor cells (MDSC). The Rho GTPases Rac and Cdc42 are ideal molecular targets that regulate both cancer cell and immune cell migration, as well as their crosstalk signaling at the TME. Therefore, we tested the hypothesis that Rac and Cdc42 inhibitors target immunosuppressive immune cells, in addition to cancer cells. Our published data demonstrate that the Vav/Rac inhibitor EHop-016 and the Rac/Cdc42 guanine nucleotide association inhibitor MBQ-167 reduce mammary tumor growth and prevent breast cancer metastasis from pre-clinical mouse models without toxic effects. Methods The potential of Rac/Cdc42 inhibitors EHop-016 and MBQ-167 to target macrophages was tested in human and mouse macrophage cell lines via activity assays, MTT assays, wound healing, ELISA assays, and phagocytosis assays. Immunofluorescence, immunohistochemistry, and flow cytometry were used to identify myeloid cell subsets from tumors and spleens of mice following EHop-016 or MBQ-167 treatment. Results EHop-016 and MBQ-167 inhibited Rac and Cdc42 activation, actin cytoskeletal extensions, migration, and phagocytosis without affecting macrophage cell viability. Rac/Cdc42 inhibitors also reduced tumor- infiltrating macrophages and neutrophils in tumors of mice treated with EHop-016, and macrophages and MDSCs from spleens and tumors of mice with breast cancer, including activated macrophages and monocytes, following MBQ-167 treatment. Mice with breast tumors treated with EHop-016 significantly decreased the proinflammatory cytokine Interleukin-6 (IL-6) from plasma and the TME. This was confirmed from splenocytes treated with lipopolysaccharide (LPS) where EHop-016 or MBQ-167 reduced IL-6 secretion in response to LPS. Conclusion Rac/Cdc42 inhibition induces an antitumor environment via inhibition of both metastatic cancer cells and immunosuppressive myeloid cells in the TME.
Collapse
Affiliation(s)
- Anamaris Torres-Sanchez
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Michael Rivera-Robles
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Magaly Martínez-Ferrer
- Department of Pharmaceutical Sciences, School of Pharmacy, San Juan, Puerto Rico
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Stephanie M. Dorta-Estremera
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Department of Microbiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| |
Collapse
|
11
|
Almagro J, Messal HA. Volume imaging to interrogate cancer cell-tumor microenvironment interactions in space and time. Front Immunol 2023; 14:1176594. [PMID: 37261345 PMCID: PMC10228654 DOI: 10.3389/fimmu.2023.1176594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Volume imaging visualizes the three-dimensional (3D) complexity of tumors to unravel the dynamic crosstalk between cancer cells and the heterogeneous landscape of the tumor microenvironment (TME). Tissue clearing and intravital microscopy (IVM) constitute rapidly progressing technologies to study the architectural context of such interactions. Tissue clearing enables high-resolution imaging of large samples, allowing for the characterization of entire tumors and even organs and organisms with tumors. With IVM, the dynamic engagement between cancer cells and the TME can be visualized in 3D over time, allowing for acquisition of 4D data. Together, tissue clearing and IVM have been critical in the examination of cancer-TME interactions and have drastically advanced our knowledge in fundamental cancer research and clinical oncology. This review provides an overview of the current technical repertoire of fluorescence volume imaging technologies to study cancer and the TME, and discusses how their recent applications have been utilized to advance our fundamental understanding of tumor architecture, stromal and immune infiltration, vascularization and innervation, and to explore avenues for immunotherapy and optimized chemotherapy delivery.
Collapse
Affiliation(s)
- Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, United States
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands
| |
Collapse
|
12
|
Wakefield L, Agarwal S, Tanner K. Preclinical models for drug discovery for metastatic disease. Cell 2023; 186:1792-1813. [PMID: 37059072 DOI: 10.1016/j.cell.2023.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 04/16/2023]
Abstract
Despite many advances, metastatic disease remains essentially uncurable. Thus, there is an urgent need to better understand mechanisms that promote metastasis, drive tumor evolution, and underlie innate and acquired drug resistance. Sophisticated preclinical models that recapitulate the complex tumor ecosystem are key to this process. We begin with syngeneic and patient-derived mouse models that are the backbone of most preclinical studies. Second, we present some unique advantages of fish and fly models. Third, we consider the strengths of 3D culture models for resolving remaining knowledge gaps. Finally, we provide vignettes on multiplexed technologies to advance our understanding of metastatic disease.
Collapse
Affiliation(s)
- Lalage Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20007, USA.
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Genna A, Duran CL, Entenberg D, Condeelis JS, Cox D. Macrophages Promote Tumor Cell Extravasation across an Endothelial Barrier through Thin Membranous Connections. Cancers (Basel) 2023; 15:2092. [PMID: 37046751 PMCID: PMC10093384 DOI: 10.3390/cancers15072092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Macrophages are important players involved in the progression of breast cancer, including in seeding the metastatic niche. However, the mechanism by which macrophages in the lung parenchyma interact with tumor cells in the vasculature to promote tumor cell extravasation at metastatic sites is not clear. To mimic macrophage-driven tumor cell extravasation, we used an in vitro assay (eTEM) in which an endothelial monolayer and a matrigel-coated filter separated tumor cells and macrophages from each other. The presence of macrophages promoted tumor cell extravasation, while macrophage conditioned media was insufficient to stimulate tumor cell extravasation in vitro. This finding is consistent with a requirement for direct contact between macrophages and tumor cells. We observed the presence of Thin Membranous Connections (TMCs) resembling similar structures formed between macrophages and tumor cells called tunneling nanotubes, which we previously demonstrated to be important in tumor cell invasion in vitro and in vivo. To determine if TMCs are important for tumor cell extravasation, we used macrophages with reduced levels of endogenous M-Sec (TNFAIP2), which causes a defect in tunneling nanotube formation. As predicted, these macrophages showed reduced macrophage-tumor cell TMCs. In both, human and murine breast cancer cell lines, there was also a concomitant reduction in tumor cell extravasation in vitro when co-cultured with M-Sec deficient macrophages compared to control macrophages. We also detected TMCs formed between macrophages and tumor cells through the endothelial layer in the eTEM assay. Furthermore, tumor cells were more frequently found in pores under the endothelium that contain macrophage protrusions. To determine the role of macrophage-tumor cell TMCs in vivo, we generated an M-Sec deficient mouse. Using an in vivo model of experimental metastasis, we detected a significant reduction in the number of metastatic lesions in M-Sec deficient mice compared to wild type mice. There was no difference in the size of the metastases, consistent with a defect specific to tumor cell extravasation and not metastatic outgrowth. Additionally, with an examination of time-lapse intravital-imaging (IVI) data sets of breast cancer cell extravasation in the lungs, we could detect the presence of TMCs between extravascular macrophages and vascular tumor cells. Overall, our data indicate that macrophage TMCs play an important role in promoting the extravasation of circulating tumor cells in the lungs.
Collapse
Affiliation(s)
- Alessandro Genna
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Camille L. Duran
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John S. Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dianne Cox
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
14
|
Fitzgerald KN, Motzer RJ, Lee CH. Adjuvant therapy options in renal cell carcinoma - targeting the metastatic cascade. Nat Rev Urol 2023; 20:179-193. [PMID: 36369389 PMCID: PMC10921989 DOI: 10.1038/s41585-022-00666-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/13/2022]
Abstract
Localized renal cell carcinoma (RCC) is primarily managed with nephrectomy, which is performed with curative intent. However, disease recurs in ~20% of patients. Treatment with adjuvant therapies is used after surgery with the intention of curing additional patients by disrupting the establishment, maturation or survival of micrometastases, processes collectively referred to as the metastatic cascade. Immune checkpoint inhibitors and vascular endothelial growth factor receptor (VEGFR)-targeting tyrosine kinase inhibitors (TKIs) have shown efficacy in the treatment of metastatic RCC, increasing the interest in the utility of these agents in the adjuvant setting. Pembrolizumab, an inhibitor of the immune checkpoint PD1, is now approved by the FDA and is under review by European regulatory agencies for the adjuvant treatment of patients with localized resected clear cell RCC based on the results of the KEYNOTE-564 trial. However, the optimal use of immunotherapy and VEGFR-targeting TKIs for adjuvant treatment of RCC is not completely understood. These agents disrupt the metastatic cascade at multiple steps, providing biological rationale for further investigating the applications of these therapeutics in the adjuvant setting. Clinical trials to evaluate adjuvant therapeutics in RCC are ongoing, and clinical considerations must guide the practical use of immunotherapy and TKI agents for the adjuvant treatment of localized resected RCC.
Collapse
Affiliation(s)
- Kelly N Fitzgerald
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Genna A, Duran CL, Entenberg D, Condeelis J, Cox D. Macrophages Promote Tumor Cell Extravasation across an Endothelial Barrier through Thin Membranous Connections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528161. [PMID: 36824832 PMCID: PMC9948990 DOI: 10.1101/2023.02.16.528161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Macrophages are important players involved in the progression of breast cancer, including in seeding the metastatic niche. However, the mechanism by which macrophages in the lung parenchyma interact with tumor cells in the vasculature to promote tumor cell extravasation at metastatic sites is not clear. To mimic macrophage-driven tumor cell extravasation, we used an in vitro assay (eTEM) in which an endothelial monolayer and a matrigel-coated filter separated tumor cells and macrophages from each other. The presence of macrophages promoted tumor cell extravasation while macrophage conditioned media was insufficient to stimulate tumor cell extravasation in vitro . This finding is consistent with a requirement for direct contact between macrophages and tumor cells. We observed the presence of Thin Membranous Connections (TMCs) resembling similar structures formed between macrophages and tumor cells called tunneling nanotubes which we previously demonstrated to be important in tumor cell invasion in vitro and in vivo (Hanna 2019). To determine if TMCs are important for tumor cell extravasation, we used macrophages with reduced levels of endogenous M-Sec (TNFAIP2), which causes a defect in tunneling nanotube formation. As predicted, these macrophages showed reduced macrophage-tumor cell TMCs. In both, human and murine breast cancer cell lines, there was also a concomitant reduction in tumor cell extravasation in vitro when co-cultured with M-Sec deficient macrophages compared to control macrophages. We also detected TMCs formed between macrophages and tumor cells through the endothelial layer in the eTEM assay. Furthermore, tumor cells were more frequently found in pores under the endothelium that contain macrophage protrusions. To determine the role of macrophage-tumor cell TMCs in vivo , we generated an M-Sec deficient mouse. Using an in vivo model of experimental metastasis, we detected a significant reduction in the number of metastatic lesions in M-Sec deficient mice compared to wild type mice. There was no difference in the size of the metastases, consistent with a defect specific to tumor cell extravasation and not metastatic outgrowth. Additionally, examination of time-lapse intravital-imaging (IVI) data sets of breast cancer cell extravasation in the lung, we could detect the presence of TMCs between extravascular macrophages and vascular tumor cells. Overall, our data indicate that macrophage TMCs play an important role in promoting the extravasation of circulating tumor cells in the lung.
Collapse
|
16
|
Tang WC, Tsao SW, Jones GE, Liu X, Tsai MH, Delecluse HJ, Dai W, You C, Zhang J, Huang SCM, Leung MMH, Liu T, Ching YP, Chen H, Lo KW, Li X, Tsang CM. Latent membrane protein 1 and macrophage-derived TNFα synergistically activate and mobilize invadopodia to drive invasion of nasopharyngeal carcinoma. J Pathol 2023; 259:163-179. [PMID: 36420735 PMCID: PMC10108171 DOI: 10.1002/path.6036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Invadopodia are actin-rich membrane protrusions that digest the matrix barrier during cancer metastasis. Since the discovery of invadopodia, they have been visualized as localized and dot-like structures in different types of cancer cells on top of a 2D matrix. In this investigation of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), a highly invasive cancer frequently accompanied by neck lymph node and distal organ metastases, we revealed a new form of invadopodium with mobilizing features. Integration of live-cell imaging and molecular assays revealed the interaction of macrophage-released TNFα and EBV-encoded latent membrane protein 1 (LMP1) in co-activating the EGFR/Src/ERK/cortactin and Cdc42/N-WASP signaling axes for mobilizing the invadopodia with lateral movements. This phenomenon endows the invadopodia with massive degradative power, visualized as a shift of focal dot-like digestion patterns on a 2D gelatin to a dendrite-like digestion pattern. Notably, single stimulation of either LMP1 or TNFα could only enhance the number of ordinary dot-like invadopodia, suggesting that the EBV infection sensitizes the NPC cells to form mobilizing invadopodia when encountering a TNFα-rich tumor microenvironment. This study unveils the interplay of EBV and stromal components in driving the invasive potential of NPC via unleashing the propulsion of invadopodia in overcoming matrix hurdles. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Wing Chung Tang
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Gareth E Jones
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Xiong Liu
- Department of Otolaryngology - Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Ming Han Tsai
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Chanping You
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Jun Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.,Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University, School of Medicine, Shenzhen, PR China
| | - Shaina Chor Mei Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Manton Man-Hon Leung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Tengfei Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yick Pang Ching
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Honglin Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
17
|
Sikandar SS, Gulati GS, Antony J, Fetter I, Kuo AH, Ho WHD, Haro-Acosta V, Das S, Steen CB, Pereira TA, Qian D, Beachy PA, Dirbas FM, Red-Horse K, Rabbitts TH, Thiery JP, Newman AM, Clarke MF. Identification of a minority population of LMO2 + breast cancer cells that integrate into the vasculature and initiate metastasis. SCIENCE ADVANCES 2022; 8:eabm3548. [PMID: 36351009 PMCID: PMC10939096 DOI: 10.1126/sciadv.abm3548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Metastasis is responsible for most breast cancer-related deaths; however, identifying the cellular determinants of metastasis has remained challenging. Here, we identified a minority population of immature THY1+/VEGFA+ tumor epithelial cells in human breast tumor biopsies that display angiogenic features and are marked by the expression of the oncogene, LMO2. Higher abundance of LMO2+ basal cells correlated with tumor endothelial content and predicted poor distant recurrence-free survival in patients. Using MMTV-PyMT/Lmo2CreERT2 mice, we demonstrated that Lmo2 lineage-traced cells integrate into the vasculature and have a higher propensity to metastasize. LMO2 knockdown in human breast tumors reduced lung metastasis by impairing intravasation, leading to a reduced frequency of circulating tumor cells. Mechanistically, we find that LMO2 binds to STAT3 and is required for STAT3 activation by tumor necrosis factor-α and interleukin-6. Collectively, our study identifies a population of metastasis-initiating cells with angiogenic features and establishes the LMO2-STAT3 signaling axis as a therapeutic target in breast cancer metastasis.
Collapse
Affiliation(s)
- Shaheen S. Sikandar
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gunsagar S. Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Jane Antony
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Isobel Fetter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Angera H. Kuo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - William Hai Dang Ho
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Veronica Haro-Acosta
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Soumyashree Das
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Chloé B. Steen
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Thiago Almeida Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Philip A. Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Frederick M. Dirbas
- Department of Surgery, Stanford Cancer Institute, Stanford University School of Medicine, 875 Blake Wilbur Drive, Rm CC2235, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Terence H. Rabbitts
- Division of Cancer Therapeutics, Institute of Cancer Research, London SM2 5NG, UK
| | - Jean Paul Thiery
- Guangzhou Laboratory, International Biological Island, Guangzhou, Guangdong 510005, China
| | - Aaron M. Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Michael F. Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Assessment of MRI to estimate metastatic dissemination risk and prometastatic effects of chemotherapy. NPJ Breast Cancer 2022; 8:101. [PMID: 36056005 PMCID: PMC9440218 DOI: 10.1038/s41523-022-00463-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Metastatic dissemination in breast cancer is regulated by specialized intravasation sites called “tumor microenvironment of metastasis” (TMEM) doorways, composed of a tumor cell expressing the actin-regulatory protein Mena, a perivascular macrophage, and an endothelial cell, all in stable physical contact. High TMEM doorway number is associated with an increased risk of distant metastasis in human breast cancer and mouse models of breast carcinoma. Here, we developed a novel magnetic resonance imaging (MRI) methodology, called TMEM Activity-MRI, to detect TMEM-associated vascular openings that serve as the portal of entry for cancer cell intravasation and metastatic dissemination. We demonstrate that TMEM Activity-MRI correlates with primary tumor TMEM doorway counts in both breast cancer patients and mouse models, including MMTV-PyMT and patient-derived xenograft models. In addition, TMEM Activity-MRI is reduced in mouse models upon treatment with rebastinib, a specific and potent TMEM doorway inhibitor. TMEM Activity-MRI is an assay that specifically measures TMEM-associated vascular opening (TAVO) events in the tumor microenvironment, and as such, can be utilized in mechanistic studies investigating molecular pathways of cancer cell dissemination and metastasis. Finally, we demonstrate that TMEM Activity-MRI increases upon treatment with paclitaxel in mouse models, consistent with prior observations that chemotherapy enhances TMEM doorway assembly and activity in human breast cancer. Our findings suggest that TMEM Activity-MRI is a promising precision medicine tool for localized breast cancer that could be used as a non-invasive test to determine metastatic risk and serve as an intermediate pharmacodynamic biomarker to monitor therapeutic response to agents that block TMEM doorway-mediated dissemination.
Collapse
|
19
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
20
|
Zhang Z, Zhou X, Guo J, Zhang F, Qian Y, Wang G, Duan M, Wang Y, Zhao H, Yang Z, Liu Z, Jiang X. TA-MSCs, TA-MSCs-EVs, MIF: their crosstalk in immunosuppressive tumor microenvironment. J Transl Med 2022; 20:320. [PMID: 35842634 PMCID: PMC9287873 DOI: 10.1186/s12967-022-03528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
As an important component of the immunosuppressive tumor microenvironment (TME), it has been established that mesenchymal stem cells (MSCs) promote the progression of tumor cells. MSCs can directly promote the proliferation, migration, and invasion of tumor cells via cytokines and chemokines, as well as promote tumor progression by regulating the functions of anti-tumor immune and immunosuppressive cells. MSCs-derived extracellular vesicles (MSCs-EVs) contain part of the plasma membrane and signaling factors from MSCs; therefore, they display similar effects on tumors in the immunosuppressive TME. The tumor-promoting role of macrophage migration inhibitory factor (MIF) in the immunosuppressive TME has also been revealed. Interestingly, MIF exerts similar effects to those of MSCs in the immunosuppressive TME. In this review, we summarized the main effects and related mechanisms of tumor-associated MSCs (TA-MSCs), TA-MSCs-EVs, and MIF on tumors, and described their relationships. On this basis, we hypothesized that TA-MSCs-EVs, the MIF axis, and TA-MSCs form a positive feedback loop with tumor cells, influencing the occurrence and development of tumors. The functions of these three factors in the TME may undergo dynamic changes with tumor growth and continuously affect tumor development. This provides a new idea for the targeted treatment of tumors with EVs carrying MIF inhibitors.
Collapse
Affiliation(s)
- Zhenghou Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangyu Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinshuai Guo
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiping Qian
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiying Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zunpeng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
21
|
Drzał A, Jasiński K, Gonet M, Kowolik E, Bartel Ż, Elas M. MRI and US imaging reveal evolution of spatial heterogeneity of murine tumor vasculature. Magn Reson Imaging 2022; 92:33-44. [DOI: 10.1016/j.mri.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022]
|
22
|
Tan K, Naylor MJ. Tumour Microenvironment-Immune Cell Interactions Influencing Breast Cancer Heterogeneity and Disease Progression. Front Oncol 2022; 12:876451. [PMID: 35646658 PMCID: PMC9138702 DOI: 10.3389/fonc.2022.876451] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a complex, dynamic disease that acquires heterogeneity through various mechanisms, allowing cancer cells to proliferate, survive and metastasise. Heterogeneity is introduced early, through the accumulation of germline and somatic mutations which initiate cancer formation. Following initiation, heterogeneity is driven by the complex interaction between intrinsic cellular factors and the extrinsic tumour microenvironment (TME). The TME consists of tumour cells and the subsequently recruited immune cells, endothelial cells, fibroblasts, adipocytes and non-cellular components of the extracellular matrix. Current research demonstrates that stromal-immune cell interactions mediated by various TME components release environmental cues, in mechanical and chemical forms, to communicate with surrounding and distant cells. These interactions are critical in facilitating the metastatic process at both the primary and secondary site, as well as introducing greater intratumoral heterogeneity and disease complexity by exerting selective pressures on cancer cells. This can result in the adaptation of cells and a feedback loop to the cancer genome, which can promote therapeutic resistance. Thus, targeting TME and immune-stromal cell interactions has been suggested as a potential therapeutic avenue given that aspects of this process are somewhat conserved between breast cancer subtypes. This mini review will discuss emerging ideas on how the interaction of various aspects of the TME contribute to increased heterogeneity and disease progression, and the therapeutic potential of targeting the TME.
Collapse
|
23
|
Ertekin Ö, Monavari M, Krüger R, Fuentes-Chandía M, Parma B, Letort G, Tripal P, Boccaccini AR, Bosserhoff AK, Ceppi P, Kappelmann-Fenzl M, Leal-Egaña A. 3D hydrogel-based microcapsules as an in vitro model to study tumorigenicity, cell migration and drug resistance. Acta Biomater 2022; 142:208-220. [PMID: 35167953 DOI: 10.1016/j.actbio.2022.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023]
Abstract
In this work, we analyzed the reliability of alginate-gelatin microcapsules as artificial tumor model. These tumor-like scaffolds are characterized by their composition and stiffness (∼25 kPa), and their capability to restrict -but not hinder- cell migration, proliferation and release from confinement. Hydrogel-based microcapsules were initially utilized to detect differences in mechano-sensitivity between MCF7 and MDA-MB-231 breast cancer cells, and the endothelial cell line EA.hy926. Additionally, we used RNA-seq and transcriptomic methods to determine how the culture strategy (i.e. 2D v/s 3D) may pre-set the expression of genes involved in multidrug resistance, being then validated by performing cytotoxicological tests and assays of cell morphology. Our results show that both breast cancer cells can generate elongated multicellular spheroids inside the microcapsules, prior being released (mimicking intravasation stages), a behavior which was not observed in endothelial cells. Further, we demonstrate that cells isolated from 3D scaffolds show resistance to cisplatin, a process which seems to be strongly influenced by mechanical stress, instead of hypoxia. We finally discuss the role played by aneuploidy in malignancy and resistance to anticancer drugs, based on the increased number of polynucleated cells found within these microcapsules. Overall, our outcomes demonstrate that alginate-gelatin microcapsules represent a simple, yet very accurate tumor-like model, enabling us to mimic the most relevant malignant hints described in vivo, suggesting that confinement and mechanical stress need to be considered when studying pathogenicity and drug resistance of cancer cells in vitro. STATEMENT OF SIGNIFICANCE: In this work, we analyzed the reliability of alginate-gelatin microcapsules as an artificial tumor model. These scaffolds are characterized by their composition, elastic properties, and their ability to restrict cell migration, proliferation, and release from confinement. Our results demonstrate four novel outcomes: (i) studying cell migration and proliferation in 3D enabled discrimination between malignant and non-pathogenic cells, (ii) studying the cell morphology of cancer aggregates entrapped in alginate-gelatin microcapsules enabled determination of malignancy degree in vitro, (iii) determination that confinement and mechanical stress, instead of hypoxia, are required to generate clones resistant to anticancer drugs (i.e. cisplatin), and (iv) evidence that resistance to anticancer drugs could be due to the presence of polynucleated cells localized inside polymer-based artificial tumors.
Collapse
Affiliation(s)
- Özlem Ertekin
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany; Diagno Biotechnology, Marmara Technopark, Gebze, Kocaeli, Turkey
| | - Mahshid Monavari
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - René Krüger
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, and University Clinics Erlangen, Erlangen 91054, Germany
| | - Miguel Fuentes-Chandía
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany; Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH, USA
| | - Beatrice Parma
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander Universität Erlangen-Nürnberg Glueckstrasse 6, Erlangen 91054, Germany
| | - Gaelle Letort
- Center for Interdisciplinary Research in Biology, Collège de France UMR7241/U1050, 11, Place Marcelin Berthelot, Paris 75231 CEDEX 05, France
| | - Philipp Tripal
- Optical Imaging Centre Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 3, Erlangen 91058, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Fahrstraße 17, Erlangen 91054, Germany
| | - Paolo Ceppi
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander Universität Erlangen-Nürnberg Glueckstrasse 6, Erlangen 91054, Germany; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark
| | - Melanie Kappelmann-Fenzl
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Fahrstraße 17, Erlangen 91054, Germany; Faculty of Applied Informatics, University of Applied Science Deggendorf, Deggendorf 94469, Germany
| | - Aldo Leal-Egaña
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany; Institute for Molecular Systems Engineering, University of Heidelberg. INF 253, Heidelberg 69120, Germany.
| |
Collapse
|
24
|
Metastasis prevention: targeting causes and roots. Clin Exp Metastasis 2022; 39:505-519. [PMID: 35347574 DOI: 10.1007/s10585-022-10162-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
The spread of tumor cells from the primary focus, metastasis, is the main cause of cancer mortality. Therefore, anticancer therapy should be focused on the prevention of metastatic disease. Key targets can be conditions in the primary tumor that are favorable for the appearance of metastatic cells and the first steps of the metastatic cascade. Here, we discuss different approaches for targeting metastasis causes (hypoxia, metabolism changes, and tumor microenvironment) and roots (angiogenesis, epithelial-mesenchymal transition, migration, and invasion). Also, we emphasize the challenges of the existing approaches for metastasis prevention and suggest opportunities to overcome them. In conclusion, we highlight the importance of clinical evaluation of the agents showing antimetastatic effects in vivo, especially in patients with early-stage cancers, the identification of metastatic seeds, and the development of therapeutics for their eradication.
Collapse
|
25
|
Greaves D, Calle Y. Epithelial Mesenchymal Transition (EMT) and Associated Invasive Adhesions in Solid and Haematological Tumours. Cells 2022; 11:649. [PMID: 35203300 PMCID: PMC8869945 DOI: 10.3390/cells11040649] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
In solid tumours, cancer cells that undergo epithelial mesenchymal transition (EMT) express characteristic gene expression signatures that promote invasive migration as well as the development of stemness, immunosuppression and drug/radiotherapy resistance, contributing to the formation of currently untreatable metastatic tumours. The cancer traits associated with EMT can be controlled by the signalling nodes at characteristic adhesion sites (focal contacts, invadopodia and microtentacles) where the regulation of cell migration, cell cycle progression and pro-survival signalling converge. In haematological tumours, ample evidence accumulated during the last decade indicates that the development of an EMT-like phenotype is indicative of poor disease prognosis. However, this EMT phenotype has not been directly linked to the assembly of specific forms of adhesions. In the current review we discuss the role of EMT in haematological malignancies and examine its possible link with the progression towards more invasive and aggressive forms of these tumours. We also review the known types of adhesions formed by haematological malignancies and speculate on their possible connection with the EMT phenotype. We postulate that understanding the architecture and regulation of EMT-related adhesions will lead to the discovery of new therapeutic interventions to overcome disease progression and resistance to therapies.
Collapse
Affiliation(s)
| | - Yolanda Calle
- School of Life Sciences and Health, University of Roehampton, London SW15 4JD, UK;
| |
Collapse
|
26
|
Borriello L, Coste A, Traub B, Sharma VP, Karagiannis GS, Lin Y, Wang Y, Ye X, Duran CL, Chen X, Friedman M, Sosa MS, Sun D, Dalla E, Singh DK, Oktay MH, Aguirre-Ghiso JA, Condeelis JS, Entenberg D. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat Commun 2022; 13:626. [PMID: 35110548 PMCID: PMC8811052 DOI: 10.1038/s41467-022-28076-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Metastases are initiated by disseminated tumor cells (DTCs) that colonize distant organs. Growing evidence suggests that the microenvironment of the primary tumor primes DTCs for dormant or proliferative fates. However, the manner in which this occurs remains poorly understood. Here, using the Window for High-Resolution Intravital Imaging of the Lung (WHRIL), we study the live lung longitudinally and follow the fate of individual DTCs that spontaneously disseminate from orthotopic breast tumors. We find that spontaneously DTCs have increased levels of retention, increased speed of extravasation, and greater survival after extravasation, compared to experimentally metastasized tumor cells. Detailed analysis reveals that a subset of macrophages within the primary tumor induces a pro-dissemination and pro-dormancy DTC phenotype. Our work provides insight into how specific primary tumor microenvironments prime a subpopulation of cells for expression of proteins associated with dissemination and dormancy.
Collapse
Affiliation(s)
- Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Brian Traub
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - George S Karagiannis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Yu Lin
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xianjun Ye
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xiaoming Chen
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Madeline Friedman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Sun
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Erica Dalla
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepak K Singh
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Julio A Aguirre-Ghiso
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
27
|
Duran CL, Borriello L, Karagiannis GS, Entenberg D, Oktay MH, Condeelis JS. Targeting Tie2 in the Tumor Microenvironment: From Angiogenesis to Dissemination. Cancers (Basel) 2021; 13:cancers13225730. [PMID: 34830883 PMCID: PMC8616247 DOI: 10.3390/cancers13225730] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary The dissemination of cancer cells from their original location to distant organs where they grow, a process called metastasis, causes more than 90% of cancer deaths. The identification of the molecular mechanisms of metastasis and the development of anti-metastatic therapies are essential to increase patient survival. In recent years, targeting the tumor microenvironment has become a promising avenue to prevent both tumor growth and metastasis. As the tumor microenvironment contains not only cancer cells but also blood vessels, immune cells, and other non-cancerous cells, it is naïve to think that therapy only affects a single cell type in this complex environment. Here we review the importance, and ways to inhibit the function, of one therapeutic target: the receptor Tie2. Tie2 is a receptor present on the cell surface of several cell types within the tumor microenvironment and regulates tumor angiogenesis, growth, and metastasis to distant organs. Abstract The Tie2 receptor tyrosine kinase is expressed in vascular endothelial cells, tumor-associated macrophages, and tumor cells and has been a major focus of research in therapies targeting the tumor microenvironment. The most extensively studied Tie2 ligands are Angiopoietin 1 and 2 (Ang1, Ang2). Ang1 plays a critical role in vessel maturation, endothelial cell migration, and survival. Ang2, depending on the context, may function to disrupt connections between the endothelial cells and perivascular cells, promoting vascular regression. However, in the presence of VEGF-A, Ang2 instead promotes angiogenesis. Tie2-expressing macrophages play a critical role in both tumor angiogenesis and the dissemination of tumor cells from the primary tumor to secondary sites. Therefore, Ang-Tie2 signaling functions as an angiogenic switch during tumor progression and metastasis. Here we review the recent advances and complexities of targeting Tie2 signaling in the tumor microenvironment as a possible anti-angiogenic, and anti-metastatic, therapy and describe its use in combination with chemotherapy.
Collapse
Affiliation(s)
- Camille L. Duran
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Lucia Borriello
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
| | - George S. Karagiannis
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
- Department of Microbiology and Immunology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Maja H. Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - John S. Condeelis
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (C.L.D.); (L.B.); (D.E.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA;
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
28
|
Solomon J, Raškova M, Rösel D, Brábek J, Gil-Henn H. Are We Ready for Migrastatics? Cells 2021; 10:cells10081845. [PMID: 34440616 PMCID: PMC8392519 DOI: 10.3390/cells10081845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 01/14/2023] Open
Abstract
Metastasis accounts for the highest mortality rates in solid tumor cancer patients. However, research and development have neglected this most lethal characteristic and, instead, have concentrated on the hallmarks of cancer that make tumor cells highly proliferative and distinctive from nonmalignant cells. The concentration on invasion and metastasis can be one of the most meaningful advancements in cancer investigation. Importantly, metastasis-free survival (MFS) was recently approved by the Food and Drug Administration (FDA) as a novel primary endpoint in clinical trials and has been used to evaluate the prognosis of patients with nonmetastatic castration-resistant prostate cancer and soft tissue sarcoma. This new definition enables to shift the focus of research and development in cancer therapeutics toward metastasis and to change the emphasis from using tumor shrinkage as a benchmark for indicating the efficacy of treatment to using MFS as a more representative endpoint for antimetastatic drugs. This perspective outlines the possibility to use this novel endpoint in other solid cancers, and examples of large clinical trials are given in which MFS is defined as an endpoint and/or in which antimetastatic strategies are being examined. These advances now open the door for the rapid development of antimetastatic therapies, which could be used in combination with standard cytotoxic cancer therapies. With pioneer research on metastasis prevention on the rise and the underlying biomechanisms of tumor cell motility and invasion explored further than ever before, we believe an intensified focus on antimetastatic properties will shape this era of cancer translational research.
Collapse
Affiliation(s)
- Jonathan Solomon
- Cell Migration and Invasion Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Magdalena Raškova
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (M.R.); (D.R.)
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University (BIOCEV), Faculties of Charles University, Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
| | - Daniel Rösel
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (M.R.); (D.R.)
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University (BIOCEV), Faculties of Charles University, Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
| | - Jan Brábek
- Laboratory of Cancer Cell Invasion, Department of Cell Biology, Charles University, Viničná 7, 128 44 Prague, Czech Republic; (M.R.); (D.R.)
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University (BIOCEV), Faculties of Charles University, Průmyslová 595, 252 42 Vestec u Prahy, Czech Republic
- Correspondence: (J.B.); (H.G.-H.)
| | - Hava Gil-Henn
- Cell Migration and Invasion Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
- Correspondence: (J.B.); (H.G.-H.)
| |
Collapse
|
29
|
Breast Cancer Cell Re-Dissemination from Lung Metastases-A Mechanism for Enhancing Metastatic Burden. J Clin Med 2021; 10:jcm10112340. [PMID: 34071839 PMCID: PMC8199463 DOI: 10.3390/jcm10112340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Although metastatic disease is the primary cause of mortality in cancer patients, the mechanisms leading to overwhelming metastatic burden are still incompletely understood. Metastases are the endpoint of a series of multi-step events involving cancer cell intravasation, dissemination to distant organs, and outgrowth to metastatic colonies. Here we show, for the first-time, that breast cancer cells do not solely disseminate to distant organs from primary tumors and metastatic nodules in the lymph nodes, but also do so from lung metastases. Thus, our findings indicate that metastatic dissemination could continue even after the removal of the primary tumor. Provided that the re-disseminated cancer cells initiate growth upon arrival to distant sites, cancer cell re-dissemination from metastatic foci could be one of the crucial mechanisms leading to overt metastases and patient demise. Therefore, the development of new therapeutic strategies to block cancer cell re-dissemination would be crucial to improving survival of patients with metastatic disease.
Collapse
|
30
|
Asiry S, Kim G, Filippou PS, Sanchez LR, Entenberg D, Marks DK, Oktay MH, Karagiannis GS. The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy. Front Immunol 2021; 12:654877. [PMID: 33927723 PMCID: PMC8076861 DOI: 10.3389/fimmu.2021.654877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer immunotherapy has resulted in unpreceded survival benefits to subsets of oncology patients, accumulating evidence from preclinical animal models suggests that the immunosuppressive tumor microenvironment remains a detrimental factor limiting benefit for many patient subgroups. Recent efforts on lymphocyte-mediated immunotherapies are primarily focused on eliminating cancer foci at primary and metastatic sites, but few studies have investigated the impact of these therapies on the highly complex process of cancer cell dissemination. The metastatic cascade involves the directional streaming of invasive/migratory tumor cells toward specialized blood vessel intravasation gateways, called TMEM doorways, to the peripheral circulation. Importantly, this process occurs under the auspices of a specialized tumor microenvironment, herewith referred to as "Dissemination Trajectory", which is supported by an ample array of tumor-associated macrophages (TAMs), skewed towards an M2-like polarization spectrum, and which is also vital for providing microenvironmental cues for cancer cell invasion, migration and stemness. Based on pre-existing evidence from preclinical animal models, this article outlines the hypothesis that dissemination trajectories do not only support the metastatic cascade, but also embody immunosuppressive niches, capable of providing transient and localized immunosubversion cues to the migratory/invasive cancer cell subpopulation while in the act of departing from a primary tumor. So long as these dissemination trajectories function as "immune deserts", the migratory tumor cell subpopulation remains efficient in evading immunological destruction and seeding metastatic sites, despite administration of cancer immunotherapy and/or other cytotoxic treatments. A deeper understanding of the molecular and cellular composition, as well as the signaling circuitries governing the function of these dissemination trajectories will further our overall understanding on TAM-mediated immunosuppression and will be paramount for the development of new therapeutic strategies for the advancement of optimal cancer chemotherapies, immunotherapies, and targeted therapies.
Collapse
Affiliation(s)
- Saeed Asiry
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Gina Kim
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Panagiota S. Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - Douglas K. Marks
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY, United States
| | - Maja H. Oktay
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - George S. Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|