1
|
Yan C, Quan XJ, Feng YM. Nanomedicine for Gene Delivery for the Treatment of Cardiovascular Diseases. Curr Gene Ther 2020; 19:20-30. [PMID: 30280665 PMCID: PMC6751340 DOI: 10.2174/1566523218666181003125308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/21/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Background: Myocardial infarction (MI) is the most severe ischemic heart disease and di-rectly leads to heart failure till death. Target molecules have been identified in the event of MI including increasing angiogenesis, promoting cardiomyocyte survival, improving heart function and restraining inflammation and myocyte activation and subsequent fibrosis. All of which are substantial in cardiomy-ocyte protection and preservation of cardiac function. Methodology: To modulate target molecule expression, virus and non-virus-mediated gene transfer have been investigated. Despite successful in animal models of MI, virus-mediated gene transfer is hampered by poor targeting efficiency, low packaging capacity for large DNA sequences, immunogenicity induced by virus and random integration into the human genome. Discussion: Nanoparticles could be synthesized and equipped on purpose for large-scale production. They are relatively small in size and do not incorporate into the genome. They could carry DNA and drug within the same transfer. All of these properties make them an alternative strategy for gene transfer. In the review, we first introduce the pathological progression of MI. After concise discussion on the current status of virus-mediated gene therapy in treating MI, we overview the history and development of nanoparticle-based gene delivery system. We point out the limitations and future perspective in the field of nanoparticle vehicle. Conclusion: Ultimately, we hope that this review could help to better understand how far we are with nanoparticle-facilitated gene transfer strategy and what obstacles we need to solve for utilization of na-nomedicine in the treatment of MI.
Collapse
Affiliation(s)
- Cen Yan
- Beijing Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, China
| | - Xiao-Jiang Quan
- Laboratory of Brain Development, Institut du Cerveau et de la Moelle Epiniere- ICM, Hospital Pitie-Salpetriere, 75013 Paris, France
| | - Ying-Mei Feng
- Beijing Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
2
|
Zhao Z, Du S, Shen S, Wang L. microRNA‐132 inhibits cardiomyocyte apoptosis and myocardial remodeling in myocardial infarction by targeting IL‐1β. J Cell Physiol 2019; 235:2710-2721. [PMID: 31621911 DOI: 10.1002/jcp.29175] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Zonglei Zhao
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou China
| | - Song Du
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou China
| | - Shuxin Shen
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou China
| | - Lixia Wang
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou China
| |
Collapse
|
3
|
Lin Q, Wang DG, Zhang ZQ, Liu DP. Applications of Virus Vector-Mediated Gene Therapy in China. Hum Gene Ther 2019; 29:98-109. [PMID: 29284296 DOI: 10.1089/hum.2017.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the increased safety and efficiency of virus vectors, virus vector-mediated gene therapy is now widely used for various diseases, including monogenic diseases, complex disorders, and infectious diseases. Recent gene therapy trials have shown significant therapeutic benefits, and Chinese researchers have contributed significantly to this progress. This review highlights disease applications and strategies for virus vector-mediated gene therapy in preclinical studies and clinical trials in China.
Collapse
Affiliation(s)
- Qiong Lin
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deng-Gao Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhu-Qin Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Mesenchymal stem cell therapy associated with endurance exercise training: Effects on the structural and functional remodeling of infarcted rat hearts. J Mol Cell Cardiol 2016; 90:111-9. [DOI: 10.1016/j.yjmcc.2015.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 11/20/2015] [Accepted: 12/14/2015] [Indexed: 01/16/2023]
|
5
|
Zacchigna S, Zentilin L, Giacca M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res 2014; 114:1827-46. [PMID: 24855205 DOI: 10.1161/circresaha.114.302331] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of vectors based on the small parvovirus adeno-associated virus has gained significant momentum during the past decade. Their high efficiency of transduction of postmitotic tissues in vivo, such as heart, brain, and retina, renders these vectors extremely attractive for several gene therapy applications affecting these organs. Besides functional correction of different monogenic diseases, the possibility to drive efficient and persistent transgene expression in the heart offers the possibility to develop innovative therapies for prevalent conditions, such as ischemic cardiomyopathy and heart failure. Therapeutic genes are not only restricted to protein-coding complementary DNAs but also include short hairpin RNAs and microRNA genes, thus broadening the spectrum of possible applications. In addition, several spontaneous or engineered variants in the virus capsid have recently improved vector efficiency and expanded their tropism. Apart from their therapeutic potential, adeno-associated virus vectors also represent outstanding investigational tools to explore the function of individual genes or gene combinations in vivo, thus providing information that is conceptually similar to that obtained from genetically modified animals. Finally, their single-stranded DNA genome can drive homology-directed gene repair at high efficiency. Here, we review the main molecular characteristics of adeno-associated virus vectors, with a particular view to their applications in the cardiovascular field.
Collapse
Affiliation(s)
- Serena Zacchigna
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Lorena Zentilin
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Mauro Giacca
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.).
| |
Collapse
|
6
|
Zouein FA, Booz GW. AAV-mediated gene therapy for heart failure: enhancing contractility and calcium handling. F1000PRIME REPORTS 2013; 5:27. [PMID: 23967378 PMCID: PMC3732072 DOI: 10.12703/p5-27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heart failure is a progressive, debilitating disease that is characterized by inadequate contractility of the heart. With an aging population, the incidence and economic burden of managing heart failure are anticipated to increase substantially. Drugs for heart failure only slow its progression and offer no cure. However, results of recent clinical trials using recombinant adeno-associated virus (AAV) gene delivery offer the promise, for the first time, that heart failure can be reversed. The strategy is to improve contractility of cardiac muscle cells by enhancing their ability to store calcium through increased expression of the sarco(endo)plasmic reticulum Ca(2+)-ATPase pump (SERCA2a). Preclinical trials have also identified other proteins involved in calcium cycling in cardiac muscle that are promising targets for gene therapy in heart failure, including the following: protein phosphatase 1, adenylyl cyclase 6, G-protein-coupled receptor kinase 2, phospholamban, SUMO1, and S100A1. These preclinical and clinical trials represent a "quiet revolution" that may end up being one of the most significant and remarkable breakthroughs in modern medical practice. Of course, a number of uncertainties remain, including the long-term utility and wisdom of improving the contractile performance of "sick" muscle cells. In this regard, gene therapy may turn out to be a way of buying additional time for actual cardiac regeneration to occur using cardiac stem cells or induced pluripotent stem cells.
Collapse
Affiliation(s)
- Fouad A. Zouein
- Department of Pharmacology and Toxicology, School of Medicine and The Jackson Center for Heart ResearchJackson, MississippiUSA
- The Cardiovascular-Renal Research Center, The University of Mississippi Medical CenterJackson, MississippiUSA
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine and The Jackson Center for Heart ResearchJackson, MississippiUSA
- The Cardiovascular-Renal Research Center, The University of Mississippi Medical CenterJackson, MississippiUSA
| |
Collapse
|
7
|
Bish LT, Sleeper MM, Reynolds C, Gazzara J, Withnall E, Singletary GE, Buchlis G, Hui D, High KA, Gao G, Wilson JM, Sweeney HL. Cardiac gene transfer of short hairpin RNA directed against phospholamban effectively knocks down gene expression but causes cellular toxicity in canines. Hum Gene Ther 2011; 22:969-77. [PMID: 21542669 PMCID: PMC3159526 DOI: 10.1089/hum.2011.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/03/2011] [Indexed: 12/21/2022] Open
Abstract
Derangements in calcium cycling have been described in failing hearts, and preclinical studies have suggested that therapies aimed at correcting this defect can lead to improvements in cardiac function and survival. One strategy to improve calcium cycling would be to inhibit phospholamban (PLB), the negative regulator of SERCA2a that is upregulated in failing hearts. The goal of this study was to evaluate the safety and efficacy of using adeno-associated virus (AAV)-mediated cardiac gene transfer of short hairpin RNA (shRNA) to knock down expression of PLB. Six dogs were treated with self-complementary AAV serotype 6 (scAAV6) expressing shRNA against PLB. Three control dogs were treated with empty AAV6 capsid, and two control dogs were treated with scAAV6 expressing dominant negative PLB. Vector was delivered via a percutaneously inserted cardiac injection catheter. PLB mRNA and protein expression were analyzed in three of six shRNA dogs between days 16 and 26. The other three shRNA dogs and five control dogs were monitored long-term to assess cardiac safety. PLB mRNA was reduced 16-fold, and PLB protein was reduced 5-fold, with treatment. Serum troponin elevation and depressed cardiac function were observed in the shRNA group only at 4 weeks. An enzyme-linked immunospot assay failed to detect any T cells reactive to AAV6 capsid in peripheral blood mononuclear cells, heart, or spleen. Microarray analysis revealed alterations in cardiac expression of several microRNAs with shRNA treatment. AAV6-mediated cardiac gene transfer of shRNA effectively knocks down PLB expression but is associated with severe cardiac toxicity. Toxicity may result from dysregulation of endogenous microRNA pathways.
Collapse
Affiliation(s)
- Lawrence T Bish
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mou Y, Ye Y, Zhao XY, Yao L, Yan LP, Sun J, Zhu ZH, Hu SJ. Partial restoration of left ventricular systolic function by asPLB gene transfer using ultrasound-mediated microbubble destruction. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1638-1646. [PMID: 19616364 DOI: 10.1016/j.ultrasmedbio.2009.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 03/21/2009] [Accepted: 04/08/2009] [Indexed: 05/28/2023]
Abstract
In vitro and in vivo studies have demonstrated that inhibition of phospholamban (PLB) expression in myocardium can restore left ventricular systolic function in failing heart. Ultrasound mediated microbubble destruction provides a new option for noninvasive gene transfer in heart. In this study, we transferred pAAV-antisense phospholamban (pAAV-asPLB) to the hearts of myocardial infarction (MI) mice, using ultrasound mediated microbubble destruction. Then we estimated the protein levels of PLB, Ser16-PLB and cardiac sarcoplasmic reticulum Ca(2+) ATPase (SERCA). The left ventricular ejection fraction (LVEF), fraction shortening (FS) and SERCA activity were measured as well. MI mice were generated by ligating the left anterior descending coronary artery. Microbubbles were prepared by sonicated perfluorocarbon gas with dextrose and albumin. A mixture of pAAV-asPLB plasmid and microbubble was injected via tail vein while the heart was simultaneously exposed to ultrasound via transthoracic insonation. Three weeks later, LVEF (48.2+/-5.18% vs 39.1+/-5.38%, p<0.05), FS (19.6+/-2.59% vs 16.0+/-2.29%, p<0.05), SERCA activity (3.00+/-0.29 vs 2.12+/-0.30, p<0.05) and Ser16-PLB protein level (0.8+/-0.25 vs 0.46+/-0.18, p<0.05) were increased while PLB protein level (1.45+/-0.38 vs 2.05+/-0.31, p<0.05) was decreased compared with the MI mice with saline injection. The above parameters in MI mice with only pAAV-asPLB plasmid injection or pAAV-asPLB plasmid combined with ultrasound alone were not significantly improved. pAAV-LacZ was used as a reporter gene to determine the efficiency and localization of transfection. The expression of beta-galactosidase was not found in liver, lung and brain, but found only in tubular epithelial cells of kidney and found in heart. These results confirm that asPLB gene transfection can be achieved by ultrasound mediated microbubble destruction with organ specificity. The effective transfection can partly restore heart function in MI mice.
Collapse
Affiliation(s)
- Yun Mou
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Seong MH, Bae JW. Recent Advances in Gene Therapy Targeted to Intracellular Calcium Transport for Heart Failure. Chonnam Med J 2009. [DOI: 10.4068/cmj.2009.45.3.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mun Hyuk Seong
- Department of Internal Medicine, Chungbuk National University School of Medicine, Cheongju, Korea
| | - Jang-Whan Bae
- Chungbuk Regional Cardiac Disease Center, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|