1
|
Pattanaik S, Ghose A, Pakeeraiah K, Paidesetty SK, Prusty SK, Sahu PK. Repurposing Drugs: A Promising Therapeutic Approach against Alzheimer's Disease. Ageing Res Rev 2025:102698. [PMID: 39993451 DOI: 10.1016/j.arr.2025.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Alzheimer's disease (AD) is an insidious, irreversible, complex neurodegenerative disorder characterized by progressive cognitive decline and memory loss; affecting millions worldwide. Despite decades of research, no effective disease-modifying treatment exists. However, drug repurposing is a progressive step in identifying new therapeutic uses of existing drugs. It has emerged as a promising strategy in the quest to combat AD. Various classes of repurposed drugs, such as antidiabetic, antihypertensive, antimicrobial, and anti-inflammatory, have shown potential neuroprotective effects in preclinical and clinical studies. These drugs act by combating free radicals generation, neuroinflammation, amyloid-beta aggregation, and tau hyper-phosphorylation. Furthermore, repurposing offers several advantages, including reduced time and cost compared to de novo drug development. It holds immense promise as a complementary approach to traditional drug discovery. Future research efforts should focus on elucidating the underlying mechanisms of repurposed drugs in AD, optimizing drug combinations, and conducting large-scale clinical trials to validate their efficacy and safety profiles. This review overviews recent advancements and findings in preclinical and clinical fields of different repurposed drugs for AD treatment.
Collapse
Affiliation(s)
- Swagata Pattanaik
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Aruna Ghose
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India.
| | - Shakti Ketan Prusty
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India.
| | - Pratap Kumar Sahu
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
2
|
Al Amin M, Dehbia Z, Nafady MH, Zehravi M, Kumar KP, Haque MA, Baig MS, Farhana A, Khan SL, Afroz T, Koula D, Tutone M, Nainu F, Ahmad I, Emran TB. Flavonoids and Alzheimer's disease: reviewing the evidence for neuroprotective potential. Mol Cell Biochem 2025; 480:43-73. [PMID: 38568359 DOI: 10.1007/s11010-023-04922-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2025]
Abstract
Neurodegeneration, which manifests as several chronic and incurable diseases, is an age-related condition that affects the central nervous system (CNS) and poses a significant threat to the public's health for the elderly. Recent decades have experienced an alarming increase in the incidence of neurodegenerative disorders (NDDs), a severe public health issue due to the ongoing development of people living in modern civilizations. Alzheimer's disease (AD) is a leading trigger of age-related dementia. Currently, there are no efficient therapeutics to delay, stop, or reverse the disease's course development. Several studies found that dietary bioactive phytochemicals, primarily flavonoids, influence the pathophysiological processes underlying AD. Flavonoids work well as a supplement to manufactured therapies for NDDs. Flavonoids are effective in complementing synthetic approaches to treat NDDs. They are biologically active phytochemicals with promising pharmacological activities, for instance, antiviral, anti-allergic, antiplatelet, anti-inflammatory, antitumor, anti-apoptotic, and antioxidant effects. The production of nitric oxide (NO), tumor necrosis factor (TNF-α), and oxidative stress (OS) are downregulated by flavonoids, which slow the course of AD. Hence, this research turned from preclinical evidence to feasible clinical applications to develop newer therapeutics, focusing on the therapeutic potential of flavonoids against AD.
Collapse
Affiliation(s)
- Md Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of Agro-Biotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Kusuma Pravin Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Govt. of N.C.T. of Delhi, Pushpvihar, New Delhi, 110017, India
| | - M Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Ghatkesar, Hyderabad, 500088, India
| | - Mirza Shahed Baig
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Aurangabad, 431001, India
| | - Azmath Farhana
- Department of Pharmacology, School of Pharmacy, Anurag University, Hyderabad, TS, India
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Tahmina Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Doukani Koula
- Department of Biology, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, 90123, Italy
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
3
|
Liu LC, Liang JY, Liu YH, Liu B, Dong XH, Cai WH, Zhang N. The Intersection of cerebral cholesterol metabolism and Alzheimer's disease: Mechanisms and therapeutic prospects. Heliyon 2024; 10:e30523. [PMID: 38726205 PMCID: PMC11079309 DOI: 10.1016/j.heliyon.2024.e30523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly, the exact pathogenesis of which remains incompletely understood, and effective preventive and therapeutic drugs are currently lacking. Cholesterol plays a vital role in cell membrane formation and neurotransmitter synthesis, and its abnormal metabolism is associated with the onset of AD. With the continuous advancement of imaging techniques and molecular biology methods, researchers can more accurately explore the relationship between cholesterol metabolism and AD. Elevated cholesterol levels may lead to vascular dysfunction, thereby affecting neuronal function. Additionally, abnormal cholesterol metabolism may affect the metabolism of β-amyloid protein, thereby promoting the onset of AD. Brain cholesterol levels are regulated by multiple factors. This review aims to deepen the understanding of the subtle relationship between cholesterol homeostasis and AD, and to introduce the latest advances in cholesterol-regulating AD treatment strategies, thereby inspiring readers to contemplate deeply on this complex relationship. Although there are still many unresolved important issues regarding the risk of brain cholesterol and AD, and some studies may have opposite conclusions, further research is needed to enrich our understanding. However, these findings are expected to deepen our understanding of the pathogenesis of AD and provide important insights for the future development of AD treatment strategies targeting brain cholesterol homeostasis.
Collapse
Affiliation(s)
- Li-cheng Liu
- Pharmaceutical Branch, Harbin Pharmaceutical Group Co., Harbin, Heilongjiang Province, China
| | - Jun-yi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Yan-hong Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-hong Dong
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Wen-hui Cai
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
4
|
Caligiore D, Giocondo F, Silvetti M. The Neurodegenerative Elderly Syndrome (NES) hypothesis: Alzheimer and Parkinson are two faces of the same disease. IBRO Neurosci Rep 2022; 13:330-343. [PMID: 36247524 PMCID: PMC9554826 DOI: 10.1016/j.ibneur.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence suggests that Alzheimer's disease (AD) and Parkinson's disease (PD) share monoamine and alpha-synuclein (αSyn) dysfunctions, often beginning years before clinical manifestations onset. The triggers for these impairments and the causes leading these early neurodegenerative processes to become AD or PD remain unclear. We address these issues by proposing a radically new perspective to frame AD and PD: they are different manifestations of one only disease we call "Neurodegenerative Elderly Syndrome (NES)". NES goes through three phases. The seeding stage, which starts years before clinical signs, and where the part of the brain-body affected by the initial αSyn and monoamine dysfunctions, influences the future possible progression of NES towards PD or AD. The compensatory stage, where the clinical symptoms are still silent thanks to compensatory mechanisms keeping monoamine concentrations homeostasis. The bifurcation stage, where NES becomes AD or PD. We present recent literature supporting NES and discuss how this hypothesis could radically change the comprehension of AD and PD comorbidities and the design of novel system-level diagnostic and therapeutic actions.
Collapse
Affiliation(s)
- Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, Rome 00199, Italy
| | - Flora Giocondo
- Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council (LENAI-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
| | - Massimo Silvetti
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, Rome 00185, Italy
| |
Collapse
|
5
|
Rudajev V, Novotny J. Cholesterol as a key player in amyloid β-mediated toxicity in Alzheimer’s disease. Front Mol Neurosci 2022; 15:937056. [PMID: 36090253 PMCID: PMC9453481 DOI: 10.3389/fnmol.2022.937056] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that is one of the most devastating and widespread diseases worldwide, mainly affecting the aging population. One of the key factors contributing to AD-related neurotoxicity is the production and aggregation of amyloid β (Aβ). Many studies have shown the ability of Aβ to bind to the cell membrane and disrupt its structure, leading to cell death. Because amyloid damage affects different parts of the brain differently, it seems likely that not only Aβ but also the nature of the membrane interface with which the amyloid interacts, helps determine the final neurotoxic effect. Because cholesterol is the dominant component of the plasma membrane, it plays an important role in Aβ-induced toxicity. Elevated cholesterol levels and their regulation by statins have been shown to be important factors influencing the progression of neurodegeneration. However, data from many studies have shown that cholesterol has both neuroprotective and aggravating effects in relation to the development of AD. In this review, we attempt to summarize recent findings on the role of cholesterol in Aβ toxicity mediated by membrane binding in the pathogenesis of AD and to consider it in the broader context of the lipid composition of cell membranes.
Collapse
|
6
|
The Neuroprotection of Verbascoside in Alzheimer’s Disease Mediated through Mitigation of Neuroinflammation via Blocking NF-κB-p65 Signaling. Nutrients 2022; 14:nu14071417. [PMID: 35406030 PMCID: PMC9003273 DOI: 10.3390/nu14071417] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/30/2023] Open
Abstract
Verbascoside (VB) is a phenylethanoid glycoside extracted from the herbaceous plant Verbascum sinuatum and plays a neuroprotective role in Alzheimer’s disease (AD). The goal of this study was to explore the neuroprotective mechanism of VB. Based on the proteomics analysis, immunohistochemistry, immunofluorescence, Western blot, and ELISA were utilized to explore the neuroprotective mechanism of VB in context of neuroinflammation in APP/PS1 mice, LPS-induced BV2 cells, and/or Aβ1-42-stimulated N2a cells. Proteomic analysis demonstrated that the neuroprotection of VB correlated closely to its anti-inflammatory effect. VB significantly blocked microglia and astrocyte against activation in brains of APP/PS1 mice, suppressed the generation of IL-1β as well as IL-6, and boosted that of IL-4, IL-10 and TGF-β in vivo, which were analogous to results acquired in vitro. Furthermore, VB effectively restrained the phosphorylation of IKKα+β, IκBα, and NF-κB-p65 in APP/PS1 mice; LPS-induced BV2 cells, and Aβ1-42-stimulated N2a cells and lowered the tendency of NF-κB-p65 translocation towards nucleus in vitro. These results demonstrate that the neuroprotective effect of VB correlates to the modulation of neuroinflammation via NF-κB-p65 pathway, making VB as a hopeful candidate drug for the prevention and treatment of AD.
Collapse
|
7
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
8
|
Association between Previous Statin Use and Alzheimer's Disease: A Nested Case-Control Study Using a National Health Screening Cohort. Brain Sci 2021; 11:brainsci11030396. [PMID: 33804752 PMCID: PMC8003839 DOI: 10.3390/brainsci11030396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
A number of studies report the incidence of Alzheimer’s disease (AD) in patients taking statins, but the results are inconsistent. (1) Background: The present study investigated the cross-sectional association between previous statin use and the risk of AD development in Korean residents. (2) Methods: We used the Korean National Health Insurance Service-National Sample Cohort; 17,172 AD patients were matched by age, gender, income, and region of residence with 68,688 control participants at a ratio of 1:4. We used a multiple conditional logistic regression model to analyse the association between the number of days of statin use and AD occurrence. Further analyses were performed to identify whether this association is maintained for different ages, genders, socioeconomic status groups, and covariates. (3) Results: The odds ratio, which was adjusted for potential confounders, for the days of statin use per year in the AD group compared to the control group was 0.95 (95% confidence interval = 0.92–0.98; p = 0.003). The number of days of statin use in the AD group was significantly smaller in the subgroups of non-smokers and individuals with normal weight, alcohol consumption less than once a week, total cholesterol level below 200 mg/dL, systolic blood pressure below 140, diastolic blood pressure below 90, and fasting blood glucose below 100 mg/dL. (4) Conclusions: Our results suggest that statin use prevents the occurrence of AD. The effects of statin use in preventing AD may be greater in individuals at relatively low risk.
Collapse
|
9
|
Noori T, Dehpour AR, Sureda A, Sobarzo-Sanchez E, Shirooie S. Role of natural products for the treatment of Alzheimer's disease. Eur J Pharmacol 2021; 898:173974. [PMID: 33652057 DOI: 10.1016/j.ejphar.2021.173974] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Negative psychological and physiological consequences of neurodegenerative disorders represent a high social and health cost. Among the neurodegenerative disorders Alzheimer's disease (AD) is recognized as a leading neurodegenerative condition and a primary cause of dementia in the elderlys. AD is considered as neurodegenerative disorder that progressively impairs cognitive function and memory. According to current epidemiological data, about 50 milLion people worldwide are suffering from AD. The primary symptoms of AD are almost inappreciable and usually comprise forgetfulness of recent events. Numerous processes are involved in the development of AD, for example oxidative stress (OS) mainly due to mitochondrial dysfunction, intracellular the accumulation of hyperphosphorylated tau (τ) proteins in the form of neurofibrillary tangles, excessive the accumulation of extracellular plaques of beta-amyloid (Aβ), genetic and environmental factors. Running treatments only attenuate symptoms and temporarily reduce the rate of cognitive progression associated with AD. This means that most treatments focus only on controlLing symptoms, particularly in the initial stages of the disease. In the past, the first choice of treatment was based on natural ingredients. In this sense, diverse natural products (NPs) are capable to decrease the symptoms and alleviate the development of several diseases including AD attracting the attention of the scientific community and the pharmaceutical industry. Specifically, numerous NPs including flavonoids, gingerols, tannins, anthocyanins, triterpenes and alkaloids have been shown anti-inflammatory, antioxidant, anti-amyloidogenic, and anti-choLinesterase properties. This review provide a summary of the pathogenesis and the therapeutic goals of AD. It also discusses the available data on various plants and isolated natural compounds used to prevent and diminish the symptoms of AD.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, TUMS, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), University Research Institute of Health Sciences (IUNICS), and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile; Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
Rahman SO, Hussain S, Alzahrani A, Akhtar M, Najmi AK. Effect of statins on amyloidosis in the rodent models of Alzheimer's disease: Evidence from the preclinical meta-analysis. Brain Res 2020; 1749:147115. [PMID: 32918868 DOI: 10.1016/j.brainres.2020.147115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Previous studies have shown contrasting results in determining efficacy of statins against amyloid beta accumulation. The aim of this study was to assess the impact of statin in AD. METHOD We searched PubMed and Embase for relevant preclinical studies. A meta-analysis of the statin's efficacy on amyloidosis and cognitive impairment was performed. Also, stratified analysis was performed on several covariates including the type of statin used, gender and age of rodents and duration of statin therapy, to account for the reported heterogeneity in the results obtained. The study protocol was registered in PROSPERO (CRD42018102557). RESULT 17 studies including 22 comparisons, containing a sample size of 446 rodents, participated in the meta-analysis of statin's effect on overall Aβ deposition. Although the effect of statin on overall Aβ deposition was found to be protective (p < 0.00001) but as we categorized the efficacy of statin on different Aβ species (soluble and insoluble Aβ40/42) and Aβ plaque load, we found that significance in the protection decreased. A stratified meta-analysis demonstrated a significant role in the duration of statin supplements and rodent's age on the heterogeneity of the results. Statin administered to rodents for the longest duration (>6 months) and younger rodents (<6 months of age) demonstrated significant efficacy of statin on Aβ deposition. CONCLUSION Statin showed reduction in Aβ level but stratified analysis revealed that this effect of statin was dependent on rodent's age and duration of the treatment.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Salman Hussain
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulaziz Alzahrani
- Department of Pharmacology, College of Clinical Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
11
|
Torrandell‐Haro G, Branigan GL, Vitali F, Geifman N, Zissimopoulos JM, Brinton RD. Statin therapy and risk of Alzheimer's and age-related neurodegenerative diseases. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12108. [PMID: 33283039 PMCID: PMC7687291 DOI: 10.1002/trc2.12108] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Establishing efficacy of and molecular pathways for statins has the potential to impact incidence of Alzheimer's and age-related neurodegenerative diseases (NDD). METHODS This retrospective cohort study surveyed US-based Humana claims, which includes prescription and patient records from private-payer and Medicare insurance. Claims from 288,515 patients, aged 45 years and older, without prior history of NDD or neurological surgery, were surveyed for a diagnosis of NDD starting 1 year following statin exposure. Patients were required to be enrolled with claims data for at least 6 months prior to first statin prescription and at least 3 years thereafter. Computational system biology analysis was conducted to determine unique target engagement for each statin. RESULTS Of the 288,515 participants included in the study, 144,214 patients (mean [standard deviation (SD)] age, 67.22 [3.8] years) exposed to statin therapies, and 144,301 patients (65.97 [3.2] years) were not treated with statins. The mean (SD) follow-up time was 5.1 (2.3) years. Exposure to statins was associated with a lower incidence of Alzheimer's disease (1.10% vs 2.37%; relative risk [RR], 0.4643; 95% confidence interval [CI], 0.44-0.49; P < .001), dementia 3.03% vs 5.39%; RR, 0.56; 95% CI, 0.54-0.58; P < .001), multiple sclerosis (0.08% vs 0.15%; RR, 0.52; 95% CI, 0.41-0.66; P < .001), Parkinson's disease (0.48% vs 0.92%; RR, 0.53; 95% CI, 0.48-0.58; P < .001), and amyotrophic lateral sclerosis (0.02% vs 0.05%; RR, 0.46; 95% CI, 0.30-0.69; P < .001). All NDD incidence for all statins, except for fluvastatin (RR, 0.91; 95% CI, 0.65-1.30; P = 0.71), was reduced with variances in individual risk profiles. Pathway analysis indicated unique and common profiles associated with risk reduction efficacy. DISCUSSION Benefits and risks of statins relative to neurological outcomes should be considered when prescribed for at-risk NDD populations. Common statin activated pathways indicate overarching systems required for risk reduction whereas unique targets could advance a precision medicine approach to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Georgina Torrandell‐Haro
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- Department of PharmacologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Gregory L. Branigan
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- Department of PharmacologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- MD‐PhD Training ProgramUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Francesca Vitali
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- Department of NeurologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Center for Biomedical Informatics and BiostatisticsUniversity of ArizonaTucsonArizonaUSA
| | - Nophar Geifman
- Division of Informatics, Imaging & Data SciencesUniversity of ManchesterTucsonArizonaUSA
| | - Julie M. Zissimopoulos
- Sol Price School of Public PolicySchaeffer Center for Health Policy and EconomicsUniversity of Southern CaliforniaTucsonArizonaUSA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- Department of PharmacologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Department of NeurologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| |
Collapse
|
12
|
Kumar S, Peterson TR. Moonshots for aging. ACTA ACUST UNITED AC 2020; 5:239-246. [PMID: 33344796 PMCID: PMC7740370 DOI: 10.3233/nha-190064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As the global population ages, there is increased interest in living longer and improving one’s quality of life in later years. However, studying aging – the decline in body function – is expensive and time-consuming. And despite research success to make model organisms live longer, there still aren’t really any feasible solutions for delaying aging in humans. With space travel, scientists and engineers couldn’t know what it would take to get to the moon. They had to extrapolate from theory and shorter-range tests. Perhaps with aging, we need a similar moonshot philosophy. And though “shot” might imply medicine, perhaps we need to think beyond medical interventions. Like the moon once was, we seem a long way away from provable therapies to increase human healthspan (the healthy period of one’s life) or lifespan (how long one lives). This review therefore focuses on radical proposals. We hope it might stimulate discussion on what we might consider doing significantly differently than ongoing aging research.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Department of Genetics, Institute for Public Health, Washington University School of Medicine, BJC Institute of Health, MO, USA
| | - Timothy R Peterson
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Department of Genetics, Institute for Public Health, Washington University School of Medicine, BJC Institute of Health, MO, USA
| |
Collapse
|
13
|
Alavez-Rubio JS, Juarez-Cedillo T. ACAT1 as a Therapeutic Target and its Genetic Relationship with Alzheimer's Disease. Curr Alzheimer Res 2020; 16:699-709. [PMID: 31441726 DOI: 10.2174/1567205016666190823125245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/14/2019] [Accepted: 08/08/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Alzheimer´s disease (AD) is a chronic and progressive disease which impacts caregivers, families and societies physically, psychologically and economically. Currently available drugs can only improve cognitive symptoms, have no impact on progression and are not curative, so identifying and studying new drug targets is important. There are evidences which indicate disturbances in cholesterol homeostasis can be related with AD pathology, especially the compartmentation of intracellular cholesterol and cytoplasmic cholesterol esters formed by acyl-CoA: cholesterol acyltransferase 1 (ACAT1) can be implicated in the regulation of amyloid-beta (Aβ) peptide, involved in AD. Blocking ACAT1 activity, beneficial effects are obtained, so it has been suggested that ACAT1 can be a potential new therapeutic target. The present review discusses the role of cholesterol homeostasis in AD pathology, especially with ACAT inhibitors, and how they have been raised as a therapeutic approach. In addition, the genetic relationship of ACAT and AD is discussed. CONCLUSION Although there are several lines of evidence from cell-based and animal studies that suggest that ACAT inhibition is an effective way of reducing cerebral Aβ, there is still an information gap in terms of mechanisms and concerns to cover before passing to the next level. Additionally, an area of interest that may be useful in understanding AD to subsequently propose new therapeutic approaches is pharmacogenetics; however, there is still a lot of missing information in this area.
Collapse
Affiliation(s)
| | - Teresa Juarez-Cedillo
- Unidad de Investigacion Epidemiologica y en Servicios de Salud, Area Envejecimiento, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (Actualmente comisionada en la Unidad de Investigacion en Epidemiologia, Clínica, Hospital Regional, Num. 1 Dr. Carlos MacGregor Sanchez Navarro IMSS), Mexico
| |
Collapse
|
14
|
Xuan K, Zhao T, Qu G, Liu H, Chen X, Sun Y. The efficacy of statins in the treatment of Alzheimer's disease: a meta-analysis of randomized controlled trial. Neurol Sci 2020; 41:1391-1404. [PMID: 31930449 DOI: 10.1007/s10072-020-04243-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a common type of dementia, which has caused heavy global economic and health burden, and the using of statins to treat AD has caused widely debated. The purpose of this meta-analysis is to explore the effect of statins in the treatment of Alzheimer's disease. METHODS Studies were retrieved by searching PubMed, Embase, Cochrane library, OvisdSP, Web of Science, Chinese Nation Knowledge Infrastructure (CNKI) and Chinese Biomedical Database (CBM) databases before March 31, 2019. We extracted the Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-cognitive (ADAS-Cog), Neuropsychiatric Inventory (NPI), Activities of Daily Living (ADL) scale score, and other information. The pooled Weighted Mean Difference (WMD) and their 95% confidence intervals (95% CI) were calculated with random effect model or fixed random effect model. RESULTS A total of nine randomized controlled trials were included that contained 1489 patients; of them, 742 patients in the statins group, 747 patients in the control group. There were nine studies used the MMSE scale, five studies used the ADAS-Cog scale, four studies used the NPI scale, and six studies used the ADL scale. Meta-analysis of the nine studies that reported the MMSE scale scores indicated that there is no significant effect of statins as compared with control group (the pooled WMD = 1.09, 95% CI, - 0.00, 2.18, p = 0.05, I2 = 87.9%). Meta-analysis of the five studies that reported the ADAS-Cog scale scores also indicated that there is no significant effect of statins as compared with control group (the pooled WMD = - 0.16, 95% CI, - 2.67, 2.36, p = 0.90, I2 = 80.1%). Meta-analysis of the four studies that reported the NPI scale scores indicated that treatment with statins could slow the rise in the NPI scale scores (the pooled WMD = - 1.16, 95% CI, - 1.88, - 0.44, p = 0.002, I2 = 45.4%). Meta-analysis of the six studies that reported the ADL scale scores indicated that treatment with statins could improve patients' daily living ability (the pooled WMD = - 4.06, 95% CI, - 6.88, - 1.24, p = 0.005, I2 = 86.7%). Results of subgroup analysis indicated that the use of statins in the short term (≤ 12 months) associated with the change of the MMSE scale scores (the pooled WMD = 1.78, 95% CI, 0.53, 3.04, p = 0.005, I2 = 79.6%). Sensitivity analysis and publication bias test were both negative, and the results were relatively reliable and stable. CONCLUSION Statins used in AD patients had beneficial effects on the scores of MMSE scale in the short term (≤ 12 months), and statins could slow the deterioration of neuropsychiatric status and significantly improve activities of daily living ability in AD patients, but statins did not show an advantage in the change of the ADAS-Cog scale scores.
Collapse
Affiliation(s)
- Kun Xuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tianming Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xin Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
- Center for Evidence-Based Practice, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
15
|
Peppas S, Piovani D, Peyrin-Biroulet L, Danese S, Bonovas S. Statins and inflammatory bowel disease: Where do we stand? Eur J Intern Med 2020; 75:10-14. [PMID: 32151491 DOI: 10.1016/j.ejim.2020.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/08/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease is a chronic autoimmune disorder of the western world that is rapidly expanding in newly industrialized countries. Novel strategies are urgently needed to prevent and improve the treatment of this costly and disabling disease. Statins are the most commonly prescribed drugs worldwide. Besides their lipid-lowering effects, statins may exert complex immunomodulatory properties and multiple pleiotropic effects including the inhibition of T-cell activation, antigen-presenting function and leukocyte infiltration of target organs which might render statins as beneficial agents for inflammatory and autoimmune conditions. In this review, we summarize the experimental findings on the topic, and critically appraise the epidemiological evidence regarding the value of statins as a potential strategy for preventing and treating inflammatory bowel disease. Several experimental studies have shown that statins reduce inflammation in animal models of colitis; however, clinical studies investigating their disease-modifying and preventive potential in IBD have demonstrated some limitations and conflicting results. The available epidemiological evidence is not yet sufficient to support the use of statin for preventing or treating inflammatory bowel disease. Additional high-quality research is warranted.
Collapse
Affiliation(s)
- Spyros Peppas
- Gastroenterology Department, Naval Hospital of Athens, Athens, Greece
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IBD Center, Humanitas Clinical and Research Center - IRCCS, Milan, Italy.
| | - Laurent Peyrin-Biroulet
- Department of Hepato-Gastroenterology and Inserm U954, University Hospital of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IBD Center, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IBD Center, Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| |
Collapse
|
16
|
Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S. Alterations in cholesterol metabolism as a risk factor for developing Alzheimer's disease: Potential novel targets for treatment. J Steroid Biochem Mol Biol 2019; 190:104-114. [PMID: 30878503 DOI: 10.1016/j.jsbmb.2019.03.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and it is characterized by the deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain. However, the complete pathogenesis of the disease is still unknown. High level of serum cholesterol has been found to positively correlate with an increased risk of dementia and some studies have reported a decreased prevalence of AD in patients taking cholesterol-lowering drugs. Years of research have shown a strong correlation between blood hypercholesterolemia and AD, however cholesterol is not able to cross the Blood Brain Barrier (BBB) into the brain. Cholesterol lowering therapies have shown mixed results in cognitive performance in AD patients, raising questions of whether brain cholesterol metabolism in the brain should be studied separately from peripheral cholesterol metabolism and what their relationship is. Unlike cholesterol, oxidized cholesterol metabolites known as oxysterols are able to cross the BBB from the circulation into the brain and vice-versa. The main oxysterols present in the circulation are 24S-hydroxycholesterol and 27-hydroxycholesterol. These oxysterols and their catalysing enzymes have been found to be altered in AD brains and there is evidence indicating their influence in the progression of the disease. This review gives a broad perspective on the relationship between hypercholesterolemia and AD, cholesterol lowering therapies for AD patients and the role of oxysterols in pathological and non-pathological conditions. Also, we propose cholesterol metabolites as valuable targets for prevention and alternative AD treatments.
Collapse
Affiliation(s)
- Raúl Loera-Valencia
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden.
| | - Julen Goikolea
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Cristina Parrado-Fernandez
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden; Institute of Molecular Biology and Genetics-IBGM, (University of Valladolid-CSIC), Valladolid, Spain
| | - Paula Merino-Serrais
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden; Instituto Cajal (CSIC), Laboratorio Cajal de Circuitos Corticales, Madrid, Spain
| | - Silvia Maioli
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden.
| |
Collapse
|
17
|
Ermilova I, Lyubartsev AP. Cholesterol in phospholipid bilayers: positions and orientations inside membranes with different unsaturation degrees. SOFT MATTER 2018; 15:78-93. [PMID: 30520494 DOI: 10.1039/c8sm01937a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cholesterol is an essential component of all animal cell membranes and plays an important role in maintaining the membrane structure and physical-chemical properties necessary for correct cell functioning. The presence of cholesterol is believed to be responsible for domain formation (lipid rafts) due to different interactions of cholesterol with saturated and unsaturated lipids. In order to get detailed atomistic insight into the behaviour of cholesterol in bilayers composed of lipids with varying degrees of unsaturation, we have carried out a series of molecular dynamics simulations of saturated and polyunsaturated lipid bilayers with different contents of cholesterol, as well as well-tempered metadynamics simulations with a single cholesterol molecule in these bilayers. From these simulations we have determined distributions of cholesterol across the bilayer, its orientational properties, free energy profiles, and specific interactions of molecular groups able to form hydrogen bonds. Both molecular dynamics and metadynamics simulations showed that the most unsaturated bilayer with 22:6 fatty acid chains shows behaviour which is most different from other lipids. In this bilayer, cholesterol is relatively often found in a "flipped" configuration with the hydroxyl group oriented towards the membrane middle plane. This bilayer has also the highest (least negative) binding free energy among liquid phase bilayers, and the lowest reorientation barrier. Furthermore, cholesterol molecules in this bilayer are often found to form head-to-tail contacts which may lead to specific clustering behaviour. Overall, our simulations support ideas that there can be a subtle interconnection between the contents of highly unsaturated fatty acids and cholesterol, deficiency or excess of each of them is related to many human afflictions and diseases.
Collapse
Affiliation(s)
- Inna Ermilova
- Department of Materials and Environmental Chemistry, Stockholm Universtity, Stockholm, Sweden.
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm Universtity, Stockholm, Sweden.
| |
Collapse
|
18
|
Shakour N, Bianconi V, Pirro M, Barreto GE, Hadizadeh F, Sahebkar A. In silico evidence of direct interaction between statins and β‐amyloid. J Cell Biochem 2018; 120:4710-4715. [DOI: 10.1002/jcb.27761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/06/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine University of Perugia Perugia Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine University of Perugia Perugia Italy
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile Santiago Chile
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
19
|
Cacabelos R. Pleiotropy and promiscuity in pharmacogenomics for the treatment of Alzheimer's disease and related risk factors. FUTURE NEUROLOGY 2018. [DOI: 10.2217/fnl-2017-0038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with Alzheimer's disease are current consumers of polypharmacy with a high risk for drug–drug interactions. Antidementia drugs and other pharmacological treatments for vascular risk factors associated with dementia exert pleiotropic effects which are promiscuously regulated by different gene products. The aim of this review is to highlight the influence of genes involved in pharmacogenetics (i.e., pathogenic, mechanistic, metabolic, transporter and pleiotropic genes) as major determinants of response to treatment in Alzheimer's disease. Patients harboring poor or ultrarapid geno-phenotypes display more irregular profiles in drug efficacy and safety than extensive or intermediate metabolizers. Polymorphic variants of genes associated with lipid metabolism influence the therapeutic response to hypolipemic agents. Understanding these effects is very useful for optimizing polytherapy in dementia.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
- Chair of Genomic Medicine, Continental University Medical School, Huancayo, Peru
| |
Collapse
|
20
|
Cacabelos R, Meyyazhagan A, Carril JC, Cacabelos P, Teijido Ó. Pharmacogenetics of Vascular Risk Factors in Alzheimer's Disease. J Pers Med 2018; 8:jpm8010003. [PMID: 29301387 PMCID: PMC5872077 DOI: 10.3390/jpm8010003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a polygenic/complex disorder in which genomic, epigenomic, cerebrovascular, metabolic, and environmental factors converge to define a progressive neurodegenerative phenotype. Pharmacogenetics is a major determinant of therapeutic outcome in AD. Different categories of genes are potentially involved in the pharmacogenetic network responsible for drug efficacy and safety, including pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes. However, most drugs exert pleiotropic effects that are promiscuously regulated for different gene products. Only 20% of the Caucasian population are extensive metabolizers for tetragenic haplotypes integrating CYP2D6-CYP2C19-CYP2C9-CYP3A4/5 variants. Patients harboring CYP-related poor (PM) and/or ultra-rapid (UM) geno-phenotypes display more irregular profiles in drug metabolism than extensive (EM) or intermediate (IM) metabolizers. Among 111 pentagenic (APOE-APOB-APOC3-CETP-LPL) haplotypes associated with lipid metabolism, carriers of the H26 haplotype (23-TT-CG-AG-CC) exhibit the lowest cholesterol levels, and patients with the H104 haplotype (44-CC-CC-AA-CC) are severely hypercholesterolemic. Furthermore, APOE, NOS3, ACE, AGT, and CYP variants influence the therapeutic response to hypotensive drugs in AD patients with hypertension. Consequently, the implementation of pharmacogenetic procedures may optimize therapeutics in AD patients under polypharmacy regimes for the treatment of concomitant vascular disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, 15165 La Coruña, Spain.
| | - Arun Meyyazhagan
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, 15165 La Coruña, Spain.
- Chair of Genomic Medicine, Continental University Medical School, Huancayo 12000, Peru.
| | - Juan C Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, 15165 La Coruña, Spain.
- Chair of Genomic Medicine, Continental University Medical School, Huancayo 12000, Peru.
| | - Pablo Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, 15165 La Coruña, Spain.
- Chair of Genomic Medicine, Continental University Medical School, Huancayo 12000, Peru.
| | - Óscar Teijido
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, 15165 La Coruña, Spain.
- Chair of Genomic Medicine, Continental University Medical School, Huancayo 12000, Peru.
| |
Collapse
|
21
|
Saeedi Saravi SS, Saeedi Saravi SS, Arefidoust A, Dehpour AR. The beneficial effects of HMG-CoA reductase inhibitors in the processes of neurodegeneration. Metab Brain Dis 2017; 32:949-965. [PMID: 28578514 DOI: 10.1007/s11011-017-0021-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 04/28/2017] [Indexed: 12/13/2022]
Abstract
Statins, cholesterol lowering drugs, have been demonstrated to exert beneficial effects in other conditions such as primary and progressing neurodegenerative diseases beyond their original role. Observation that statins ameliorate the neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS) and cerebral ischemic stroke, the neuroprotective effects of these drugs are thought to be linked to their anti-inflammatory, anti-oxidative, and anti-excitotoxic properties. Despite the voluminous literature on the clinical advantages of 3-hydroxy-3-methylglutaryl Co-enzyme A reductase (HMGCR) inhibitors (statins) in cardiovascular system, the neuroprotective effects and the underlying mechanisms are little understood. Hence, the present review tries to provide a critical overview on the statin-induced neuroprotection, which are presumed to be associated with the ability to reduce cholesterol, Amyloid-β and apolipoprotein E (ApoE) levels, decrease reactive oxygen and nitrogen species (ROS and RNS) formation, inhibit excitotoxicity, modulate matrix metalloproteinases (MMPs), stimulate endothelial nitric oxide synthase (eNOS), and increase cerebral blood perfusion. This review is also aimed to illustrate that statins protect neurons against the neuro-inflammatory processes through balancing pro-inflammatory/anti-inflammatory cytokines. Ultimately, the beneficial role of statins in ameliorating the development of PD, AD, MS and cerebral ischemic stroke has been separately reviewed.
Collapse
Affiliation(s)
- Seyed Soheil Saeedi Saravi
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Sobhan Saeedi Saravi
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Arefidoust
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Rahman MR, Tajmim A, Ali M, Sharif M. Overview and Current Status of Alzheimer's Disease in Bangladesh. J Alzheimers Dis Rep 2017; 1:27-42. [PMID: 30480227 PMCID: PMC6159651 DOI: 10.3233/adr-170012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex neurological disorder with economic, social, and medical burdens which is acknowledged as leading cause of dementia marked by the accumulation and aggregation of amyloid-β peptide and phosphorylated tau (p-tau) protein and concomitant dementia, neuron loss and brain atrophy. AD is the most prevalent neurodegenerative brain disorder with sporadic etiology, except for a small fraction of cases with familial inheritance where familial forms of AD are correlated to mutations in three functionally related genes: the amyloid-β protein precursor and presenilins 1 and 2, two key γ-secretase components. The common clinical features of AD are memory impairment that interrupts daily life, difficulty in accomplishing usual tasks, confusion with time or place, trouble understanding visual images and spatial relationships. Age is the most significant risk factor for AD, whereas other risk factors correlated with AD are hypercholesterolemia, hypertension, atherosclerosis, coronary heart disease, smoking, obesity, and diabetes. Despite decades of research, there is no satisfying therapy which will terminate the advancement of AD by acting on the origin of the disease process, whereas currently available therapeutics only provide symptomatic relief but fail to attain a definite cure and prevention. This review also represents the current status of AD in Bangladesh.
Collapse
Affiliation(s)
- Md Rashidur Rahman
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Afsana Tajmim
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mohammad Ali
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Mostakim Sharif
- Department of Pharmacy, Jessore University of Science and Technology, Jessore, Bangladesh
| |
Collapse
|
23
|
Karlsson IK, Ploner A, Song C, Gatz M, Pedersen NL, Hägg S. Genetic susceptibility to cardiovascular disease and risk of dementia. Transl Psychiatry 2017; 7:e1142. [PMID: 28556832 PMCID: PMC5534941 DOI: 10.1038/tp.2017.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 11/22/2022] Open
Abstract
Several studies have shown cardiovascular disease (CVD) to be associated with dementia, but it is not clear whether CVD per se increases the risk of dementia or whether the association is due to shared risk factors. We tested how a genetic risk score (GRS) for coronary artery disease (CAD) affects dementia risk after CVD in 13 231 Swedish twins. We also utilized summarized genome-wide association data to study genetic overlap between CAD and Alzheimer´s disease (AD), and additionally between shared risk factors and each disease. There was no direct effect of a CAD GRS on dementia (hazard ratio 0.99, 95% confidence interval (CI): 0.98-1.01). However, the GRS for CAD modified the association between CVD and dementia within 3 years of CVD diagnosis, ranging from a hazard ratio of 1.59 (95% CI: 1.05-2.41) in the first GRS quartile to 1.91 (95% CI: 1.28-2.86) in the fourth GRS quartile. Using summary statistics, we found no genetic overlap between CAD and AD. We did, however, find that both AD and CAD share a significant genetic overlap with lipids, but that the overlap arose from clearly distinct gene clusters. In conclusion, genetic susceptibility to CAD was found to modify the association between CVD and dementia, most likely through associations with shared risk factors.
Collapse
Affiliation(s)
- I K Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, SE 171-77 Stockholm, Sweden. E-mail:
| | - A Ploner
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - C Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - M Gatz
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - N L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - S Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Longitudinal lipid profile variations and clinical change in Alzheimer's disease dementia. Neurosci Lett 2017; 646:36-42. [PMID: 28274859 DOI: 10.1016/j.neulet.2017.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/19/2017] [Accepted: 03/02/2017] [Indexed: 01/04/2023]
Abstract
Hypercholesterolemia and statin use have been unevenly associated with clinical change in Alzheimer's disease dementia. In this longitudinal study, 192 consecutive outpatients with late-onset Alzheimer's disease dementia were stratified according to APOE haplotypes, and followed for one year to investigate associations of lipid profile variations and lipophilic statin therapy with changes in cognition, caregiver burden, basic and instrumental functionality. Overall, 102 patients (53.1%) carried APOE4+ haplotypes and 90 (46.9%) carried APOE4- haplotypes; 189 patients (98.4%) used either a cholinesterase inhibitor, or Memantine, or both; 144 patients had dyslipidemias and 143 of them received statin therapy. Total cholesterol, LDL-cholesterol, Mini-Mental State Examination scores, and functional independence scores were significantly lower at the end of the follow-up, while Clinical Dementia Rating sum-of-boxes scores were higher. Exclusively for APOE4- carriers, rising LDL-cholesterol levels were associated with a trend toward improvements in the Index of Independence in Activities of Daily Living (β=0.010; ρ=0.16), whereas rising HDL-cholesterol levels were associated with lowered scores (β=-0.051; ρ=0.04). Lipophilic statin therapy had non-significant protective effects over Clinical Dementia Rating sum-of-boxes score variations only for APOE4- carriers. APOE4- haplotypes might enhance lipid availability to protect neuronal membranes, thus overcoming their supposed dysfunction in cholesterol metabolism, while APOE4+ carriers have inefficient neural repair mechanisms. In conclusion, APOE haplotypes seem to influence the protective effects of lipid profile variations for patients with Alzheimer's disease dementia, but current evidence is insufficient to propose lipid-lowering drugs as specific anti-dementia therapy.
Collapse
|
25
|
Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol 2017; 35:441-468. [PMID: 28226226 DOI: 10.1146/annurev-immunol-051116-052358] [Citation(s) in RCA: 1633] [Impact Index Per Article: 204.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microglia are resident cells of the brain that regulate brain development, maintenance of neuronal networks, and injury repair. Microglia serve as brain macrophages but are distinct from other tissue macrophages owing to their unique homeostatic phenotype and tight regulation by the central nervous system (CNS) microenvironment. They are responsible for the elimination of microbes, dead cells, redundant synapses, protein aggregates, and other particulate and soluble antigens that may endanger the CNS. Furthermore, as the primary source of proinflammatory cytokines, microglia are pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Alterations in microglia functionality are implicated in brain development and aging, as well as in neurodegeneration. Recent observations about microglia ontogeny combined with extensive gene expression profiling and novel tools to study microglia biology have allowed us to characterize the spectrum of microglial phenotypes during development, homeostasis, and disease. In this article, we review recent advances in our understanding of the biology of microglia, their contribution to homeostasis, and their involvement in neurodegeneration. Moreover, we highlight the complexity of targeting microglia for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
26
|
Affiliation(s)
- Silvia Duong
- Herzl Family Medicine Centre (Duong), Jewish General Hospital, Montreal, Quebec
| | - Tejal Patel
- Herzl Family Medicine Centre (Duong), Jewish General Hospital, Montreal, Quebec
| | - Feng Chang
- Herzl Family Medicine Centre (Duong), Jewish General Hospital, Montreal, Quebec
| |
Collapse
|
27
|
Nutrition and AGE-ing: Focusing on Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7039816. [PMID: 28168012 PMCID: PMC5266861 DOI: 10.1155/2017/7039816] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023]
Abstract
Recently, the role of food and nutrition in preventing or delaying chronic disability in the elderly population has received great attention. Thanks to their ability to influence biochemical and biological processes, bioactive nutrients are considered modifiable factors capable of preserving a healthy brain status. A diet rich in vitamins and polyphenols and poor in saturated fatty acids has been recommended. In the prospective of a healthy diet, cooking methods should be also considered. In fact, cooking procedures can modify the original dietary content, contributing not only to the loss of healthy nutrients, but also to the formation of toxins, including advanced glycation end products (AGEs). These harmful compounds are adsorbed at intestinal levels and can contribute to the ageing process. The accumulation of AGEs in ageing (“AGE-ing”) is further involved in the exacerbation of neurodegenerative and many other chronic diseases. In this review, we discuss food's dual role as both source of bioactive nutrients and reservoir for potential toxic compounds—paying particular attention to the importance of proper nutrition in preventing/delaying Alzheimer's disease. In addition, we focus on the importance of a good education in processing food in order to benefit from the nutritional properties of an optimal diet.
Collapse
|
28
|
Cruz JND, Magro DDD, Lima DDD, Cruz JGPD. Simvastatin treatment reduces the cholesterol content of membrane/lipid rafts, implicating the N -methyl-D-aspartate receptor in anxiety: a literature review. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000116102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
29
|
Mancini GJ, Baker S, Bergeron J, Fitchett D, Frohlich J, Genest J, Gupta M, Hegele RA, Ng D, Pearson GJ, Pope J, Tashakkor AY. Diagnosis, Prevention, and Management of Statin Adverse Effects and Intolerance: Canadian Consensus Working Group Update (2016). Can J Cardiol 2016; 32:S35-65. [DOI: 10.1016/j.cjca.2016.01.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 12/24/2022] Open
|