1
|
Bartkowski M, Bincoletto V, Salaroglio IC, Ceccone G, Arenal R, Nervo S, Rolando B, Riganti C, Arpicco S, Giordani S. Enhancing pancreatic ductal adenocarcinoma (PDAC) therapy with targeted carbon nano-onion (CNO)-mediated delivery of gemcitabine (GEM)-derived prodrugs. J Colloid Interface Sci 2024; 659:339-354. [PMID: 38176243 DOI: 10.1016/j.jcis.2023.12.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Nanotechnology's potential in revolutionising cancer treatments is evident in targeted drug delivery systems (DDSs) engineered to optimise therapeutic efficacy and minimise toxicity. This study examines a novel nanocarrier constructed with carbon nano-onions (CNOs), engineered and evaluated for its ability to selectively target cancer cells overexpressing the hyaluronic acid receptor; CD44. Our results highlighted that the CNO-based nanocarrier coupled with hyaluronic acid as the targeting agent demonstrated effective uptake by CD44+ PANC-1 and MIA PaCa-2 cells, while avoiding CD44- Capan-1 cells. The CNO-based nanocarrier also exhibited excellent biocompatibility in all tested pancreatic ductal adenocarcinoma (PDAC) cells, as well as healthy cells. Notably, the CNO-based nanocarrier was successfully loaded with chemotherapeutic 4-(N)-acyl- sidechain-containing prodrugs derived from gemcitabine (GEM). These prodrugs alone exhibited remarkable efficacy in killing PDAC cells which are known to be GEM resistant, and their efficacy was amplified when combined with the CNO-based nanocarrier, particularly in targeting GEM-resistant CD44+ PDAC cells. These findings demonstrate the potential of CNOs as promising scaffolds in advancing targeted DDSs, signifying the translational potential of carbon nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Michał Bartkowski
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Valeria Bincoletto
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, Torino, Italy
| | | | | | - Raul Arenal
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-U. de Zaragoza, 50009 Zaragoza, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain; ARAID Foundation, 50018 Zaragoza, Spain
| | - Sara Nervo
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, Torino, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Nizza 44, Torino, Italy; Molecular Biotechnology Center "Guido Tarone", University of Torino, Italy
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, Torino, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
2
|
Zhou P, Shen T, Chen W, Sun J, Ling J. Biodegradable Polysarcosine with Inserted Alanine Residues: Synthesis and Enzymolysis. Biomacromolecules 2022; 23:1757-1764. [PMID: 35293717 DOI: 10.1021/acs.biomac.2c00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polysarcosine (PSar), a water-soluble polypeptoid, is gifted with biodegradability via the random ring-opening copolymerization of sarcosine- and alanine-N-thiocarboxyanhydrides catalyzed by acetic acid in controlled manners. Kinetic investigation reveals the copolymerization behavior of the two monomers. The random copolymers, named PaS, with high molecular weights between 5.3 and 43.6 kg/mol and tunable Ala molar fractions varying from 6 to 43% can be degraded by porcine pancreatic elastase within 50 days under mild conditions (pH = 8.0 at 37 °C). Both the biodegradation rate and water solubility of PaS depend on the content of Ala residues. PaS with Ala fractions below 43% are soluble in water, while the one with 43% Ala self-assembles in water into nanoparticles. Moreover, PaS are noncytotoxic at the concentration of 5 mg/mL. The biodegradability and biocompatibility endow the Ala-containing PSar with the potential to replace poly(ethylene glycol) as a protective shield in drug-delivery.
Collapse
Affiliation(s)
- Peng Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tianlun Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wanli Chen
- Center of Analysis & Measurement, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Salih M, Walvekar P, Omolo CA, Elrashedy AA, Devnarain N, Fasiku V, Waddad AY, Mocktar C, Govender T. A self-assembled polymer therapeutic for simultaneously enhancing solubility and antimicrobial activity and lowering serum albumin binding of fusidic acid. J Biomol Struct Dyn 2020; 39:6567-6584. [PMID: 32772814 DOI: 10.1080/07391102.2020.1803140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The global antimicrobial resistance crisis has prompted worldwide efforts to develop new and more efficient antimicrobial compounds, as well as to develop new drug delivery strategies and targeting mechanisms. This study aimed to synthesize a novel polyethylene glycol-fusidic acid (PEG-FA) conjugate for self-assembly into nano-sized structures and explore its potential for simultaneously enhancing aqueous solubility and antibacterial activity of FA. In addition, the ability of PEG-FA to bind to HSA with lower affinity than FA is also investigated. Haemolysis and in vitro cytotoxicity studies confirmed superior biosafety of the novel PEG-FA compared to FA. The water solubility of FA after PEG conjugation was increased by 25-fold compared to the bare drug. PEG-FA nanoparticles displayed particle size, polydispersity index and zeta potential of 149.3 ± 0.21 nm, 0.267 ± 0.01 and 5.97 ± 1.03 mV, respectively. Morphology studies using high-resolution transmission electron microscope revealed a homogenous spherical shape of the PEG-FA nanoparticles. In silico studies showed that Van der Waals forces facilitated PEG-FA self-assembly. HSA binding studies showed that PEG-FA had very weak or no interaction with HSA using in silico molecular docking (-2.93 kcal/mol) and microscale thermophoresis (Kd=14999 ± 1.36 µM), which may prevent bilirubin displacement. Conjugation with PEG did not inhibit the antibacterial activity of FA but rather enhanced it by 2.5-fold against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus, compared to the bare FA. These results show that PEG-FA can simultaneously enhance solubility and antibacterial activity of FA, whilst also reducing binding of HSA to decrease its side effects.
Collapse
Affiliation(s)
- Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Pavan Walvekar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Ahmed A Elrashedy
- School of Pharmacy and Health Sciences, United States International University, Nairobi, Kenya
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ayman Y Waddad
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
A Novel Star Like Eight-Arm Polyethylene Glycol-Deferoxamine Conjugate for Iron Overload Therapy. Pharmaceutics 2020; 12:pharmaceutics12040329. [PMID: 32272723 PMCID: PMC7238202 DOI: 10.3390/pharmaceutics12040329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 01/10/2023] Open
Abstract
The traditional iron chelator deferoxamine (DFO) has been widely used in the treatment of iron overload disease. However, DFO has congenital disadvantages, including a very short circular time and non-negligible toxicity. Herein, we designed a novel multi-arm conjugate for prolonging DFO duration in vivo and reducing cytotoxicity. The star-like 8-arm-polyethylene glycol (8-arm-PEG) was used as the macromolecular scaffold, and DFO molecules were bound to the terminals of the PEG branches via amide bonds. The conjugates displayed comparable iron binding ability to the free DFO. Furthermore, these macromolecule conjugates could significantly reduce the cytotoxicity of the free DFO, and showed satisfactory iron clearance capability in the iron overloaded macrophage RAW 246.7. The plasma half-life of the 8-arm-PEG-DFO conjugate was about 190 times than that of DFO when applied to an intravenously administered rat model. In conclusion, research indicated that these star-like PEG-based conjugates could be promising candidates as long circulating, less toxic iron chelators.
Collapse
|
5
|
Abstract
Amino-functional polyethers have emerged as a new class of “smart”, i.e. pH- and thermoresponsive materials. This review article summarizes the synthesis and applications of these materials, obtained from ring-opening of suitable epoxide monomers.
Collapse
Affiliation(s)
- Patrick Verkoyen
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Holger Frey
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
6
|
Complexation of nicotinic acid with first generation poly(amidoamine) dendrimers: A microscopic view from density functional theory. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.06.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Xie H, Wang B, Shen X, Qin J, Jiang L, Yu C, Geng D, Yuan T, Wu T, Cao X, Liu J. MMC controlled-release membranes attenuate epidural scar formation in rat models after laminectomy. Mol Med Rep 2017; 15:4162-4168. [PMID: 28487972 PMCID: PMC5436155 DOI: 10.3892/mmr.2017.6531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/27/2017] [Indexed: 11/28/2022] Open
Abstract
Epidural scar formation after laminectomy impede surgical outcomes of decompression. Mitomycin C (MMC) has been demonstrated to have significant inhibitory effects on epidural scar. This study was undertaken to develop an effective MMC controlled-release membrane and to investigate its effects on epidural scar in rat models of laminectomy. A total of 72 rats that underwent laminectomy were divided into three groups. Among them, 24 were treated with mitomycin C-polylactic acid (MMC-PLA) controlled-release membrane, 24 with mitomycin C-polyethylene glycol (MMC-PEG) controlled-release membrane, and no treatment was performed for the remaining 24 rats (control group). In the following 4 weeks, magnetic resonance image (MRI), macroscopic observation, histology and hydroxyproline (Hyp) concentration analysis were performed to explore the effects of these three therapies on epidural scar. MRI revealed a significant reduction of epidural fibrosis in MMC-PLA and MMC-PEG treatment groups, compared with the control group. Histological results also showed that collagen deposition was significantly reduced after being treated with MMC-PLA or MMC-PEG membranes. Likewise, Hyp concentrations of the epidural scar tissue in MMC-PLA and MMC-PEG groups were markedly lower than those in the control group. However, regarding the effects on reducing epidural scar, no significant difference was found between the MMC-PLA and MMC-PEG groups. In conclusion, MMC-PLA and MMC-PEG membranes are safe and effective in reducing fibrosis. Thus, MMC-controlled-release membranes promises to be a potential therapeutic in preventing epidural scar formation after laminectomy.
Collapse
Affiliation(s)
- Hao Xie
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Binbin Wang
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xun Shen
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jian Qin
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Longhai Jiang
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Chen Yu
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Dawei Geng
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Tangbo Yuan
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Tao Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xiaojian Cao
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jun Liu
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
8
|
Pasut G, Panisello A, Folch-Puy E, Lopez A, Castro-Benítez C, Calvo M, Carbonell T, García-Gil A, Adam R, Roselló-Catafau J. Polyethylene glycols: An effective strategy for limiting liver ischemia reperfusion injury. World J Gastroenterol 2016; 22:6501-6508. [PMID: 27605884 PMCID: PMC4968129 DOI: 10.3748/wjg.v22.i28.6501] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/04/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is an inherent feature of liver surgery and liver transplantation in which damage to a hypoxic organ (ischemia) is exacerbated following the return of oxygen delivery (reperfusion). IRI is a major cause of primary non-function after transplantation and may lead to graft rejection, regardless of immunological considerations. The immediate response involves the disruption of cellular mitochondrial oxidative phosphorylation and the accumulation of metabolic intermediates during the ischemic period, and oxidative stress during blood flow restoration. Moreover, a complex cascade of inflammatory mediators is generated during reperfusion, contributing to the extension of the damage and finally to organ failure. A variety of pharmacological interventions (antioxidants, anti-cytokines, etc.) have been proposed to alleviate graft injury but their usefulness is limited by the local and specific action of the drugs and by their potential undesirable toxic effects. Polyethylene glycols (PEGs), which are non-toxic water-soluble compounds approved by the FDA, have been widely used as a vehicle or a base in food, cosmetics and pharmaceuticals, and also as adjuvants for ameliorating drug pharmacokinetics. Some PEGs are also currently used as additives in organ preservation solutions prior to transplantation in order to limit the damage associated with cold ischemia reperfusion. More recently, the administration of PEGs of different molecular weights by intravenous injection has emerged as a new therapeutic tool to protect liver grafts from IRI. In this review, we summarize the current knowledge concerning the use of PEGs as a useful target for limiting liver IRI.
Collapse
|
9
|
Pasut G, Scaramuzza S, Schiavon O, Mendichi R, Veronese FM. PEG-epirubicin Conjugates with High Drug Loading. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911505053377] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PEG is used as a polymeric carrier for low molecular weight drugs, but limitations arise from the fact that only one or two hydroxyl residues are on each polymer. Therefore, the synthesis of dendrimeric structures, based on amino adipic acid or beta-glutamic acid, as a branching molecule, built on a PEG diol of Mw 10,000Da was investigated. The large polycyclic drug epirubicin molecule was chosen as a model to investigate the influence of structure branching and drug steric hindrance during coupling reactions. Several derivatives with increased numbers of drug molecules linked to each PEG chain were synthesized and their physical, chemical and biological properties were studied. The use of specific amino bicarboxylic acids (amino adipic acid or -glutamic acid), as the branching moiety for the dendrimer synthesis, allowed linking the hindered molecule epirubicin to multibranched PEG. Most drug loaded conjugates only dissolve in water following dissolution in DMSO. This solubility problem was solved by adding a hydrophilic peptide linker between the drug and the polymer. The conjugates, synthesized in good yield and purity, showed better stability than free epirubicin in different pH buffers and in plasma as well as prolonged residence time in blood. Dynamic light scattering investigation showed that these products have a high tendency to aggregate forming stable micelles.
Collapse
Affiliation(s)
- Gianfranco Pasut
- Department Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35143, Padova, Italy
| | - Silvia Scaramuzza
- Department Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35143, Padova, Italy
| | - Oddone Schiavon
- Department Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35143, Padova, Italy
| | - Roberto Mendichi
- Istituto per lo Studio delle Macromolecole (CNR), Via Bassini 15, 20133, Milano, Italy
| | - Francesco M. Veronese
- Department Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35143, Padova, Italy,
| |
Collapse
|
10
|
Zhang D, Li D, Shang L, He Z, Sun J. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption. Int J Pharm 2016; 511:161-169. [PMID: 27377011 DOI: 10.1016/j.ijpharm.2016.06.139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/17/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
Cytarabine has a poor oral absorption due to its rapid deamination and poor membrane permeability. Bile acid transporters are highly expressed both in enterocytes and hepatocytes and to increase the oral bioavailability and investigate the potential application of cytarabine for liver cancers, a transporter- recognizing prodrug strategy was applied to design and synthesize four conjugates of cytarabine with cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA). The anticancer activities against HepG2 cells were evaluated by MTT assay and the role of bile acid transporters during cellular transport was investigated in a competitive inhibition experiment. The in vitro and in vivo metabolic stabilities of these conjugates were studied in rat plasma and liver homogenates. Finally, an oral bioavailability study was conducted in rats. All the cholic acid-cytarabine conjugates (40μM) showed potent antiproliferative activities (up to 70%) against HepG2 cells after incubation for 48h. The addition of bile acids could markedly reduce the antitumor activities of these conjugates. The N(4)-ursodeoxycholic acid conjugate of cytarabine (compound 5) exhibited optimal stability (t1/2=90min) in vitro and a 3.9-fold prolonged half-life of cytarabine in vivo. More importantly, compound 5 increased the oral bioavailability 2-fold compared with cytarabine. The results of the present study suggest that the prodrug strategy based on the bile acid transporters is suitable for improving the oral absorption and the clinical application of cytarabine.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Dongpo Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China; State Key Lab of New-tech for Chinese Medicine Pharmaceutical Processes, Lianyungang, 222001, China
| | - Lei Shang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Zhonggui He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
11
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
12
|
|
13
|
Biodegradable Nanofiber for Delivery of Immunomodulating Agent in the Treatment of Basal Cell Carcinoma. FIBERS 2015. [DOI: 10.3390/fib3040478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Zhang H, Wang K, Cheng X, Lu Y, Zhang Q. Synthesis and In vitrocytotoxicity of poly(ethylene glycol)-epothilone B conjugates. J Appl Polym Sci 2014. [DOI: 10.1002/app.41123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haiyan Zhang
- School of Pharmacy; Central South University; Changsha People's Republic of China
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing 100850 People's Republic of China
| | - Kun Wang
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing 100850 People's Republic of China
| | - Xiaochen Cheng
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing 100850 People's Republic of China
| | - Yuxin Lu
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing 100850 People's Republic of China
| | - Qinglin Zhang
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing 100850 People's Republic of China
| |
Collapse
|
15
|
Minko T. Soluble polymer conjugates for drug delivery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 2:15-20. [PMID: 24981750 DOI: 10.1016/j.ddtec.2005.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.:
Collapse
Affiliation(s)
- Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
16
|
Khare V, Kour S, Alam N, Dubey RD, Saneja A, Koul M, Gupta AP, Singh D, Singh SK, Saxena AK, Gupta PN. Synthesis, characterization and mechanistic-insight into the anti-proliferative potential of PLGA-gemcitabine conjugate. Int J Pharm 2014; 470:51-62. [PMID: 24810239 DOI: 10.1016/j.ijpharm.2014.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 12/23/2022]
Abstract
Gemcitabine, a nucleoside analogue, is used in the treatment of various solid tumors, however, its efficacy is limited by rapid metabolism by cytidine deaminase and fast kidney excretion. In this study, a polymeric conjugate of gemcitabine was prepared by covalent coupling with poly(lactic-co-glycolic) acid (PLGA), in order to improve anticancer efficacy of the drug. The prepared conjugate was characterized by various analytical techniques including FTIR, NMR and mass spectroscopic analysis. The stability study indicated that the polymeric conjugate was more stable in plasma as compared to native gemcitabine. Further, in vitro cytotoxicity determined in a panel of cell lines including pancreatic cancer (MIAPaCa-2), breast cancer (MCF-7) and colon cancer (HCT-116), indicated that the cytotoxic activity of gemcitabine was retained following conjugation with polymeric carrier. In the nucleoside transportation inhibition assay, it was found that the prepared conjugate was not dependent on nucleoside transporter for entering into the cells and this, in turn, reflecting potential implication of this conjugate in the therapy of transporter- deficient resistance cancer. Further, the cell cycle analysis showed that the sub-G1 (G0) apoptotic population was 46.6% and 60.6% for gemcitabine and PLGA gemcitabine conjugate, respectively. The conjugate produced remarkable decrease in mitochondrial membrane potential, a marker of apoptosis. In addition, there was a marked increase in PARP cleavage and P-H2AX expression with PLGA gemcitabine conjugate as compared to native gemcitabine indicating improved apoptotic activity. The findings demonstrated the potential of PLGA gemcitabine conjugate to improve clinical outcome of gemcitabine based chemotherapy of cancer.
Collapse
Affiliation(s)
- Vaibhav Khare
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Smit Kour
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Noor Alam
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ravindra Dharr Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ankit Saneja
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Mytre Koul
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ajai Prakash Gupta
- Quality Control & Quality Assurance Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Deepika Singh
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Shashank K Singh
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Ajit K Saxena
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India.
| |
Collapse
|
17
|
Deng Q, Liu Y, Wang S, Xie M, Wu S, Chen A, Wu W. Construction of a Novel Magnetic Targeting Anti-Tumor Drug Delivery System: Cytosine Arabinoside-Loaded Bacterial Magnetosome. MATERIALS 2013; 6:3755-3763. [PMID: 28788304 PMCID: PMC5452655 DOI: 10.3390/ma6093755] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/29/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
To ease the side effects triggered by cytosine arabinoside (Ara-C) for acute leukemia treatment, a novel magnetic targeting anti-tumor drug delivery system was constructed through bacterial magnetosomes (BMs) from Magnetospirillum magneticum AMB-1 combined with Ara-C by crosslinking of genipin (GP). The results showed that Ara-C could be bonded onto the membrane surface of BMs effectively through chemical crosslinking induced by dual hand reagents GP. The average diameters of BMs and Ara-C-coupled BMs (ABMs) were 42.0 ± 8.6 and 72.7 ± 6.0 nm respectively, and the zeta potentials (−38.1 ± 9.1) revealed that these systems were stable, confirming the stability of the system. The optimal encapsulation efficiency and drug loading were 89.05% ± 2.33% and 47.05% ± 0.64% respectively when crosslinking reaction lasted for 72 h. The system also presented long-term stability and release behaviors without initial burst release (Ara-C could be released 80% within three months). Our results indicate that BMs have great potential in biomedical and clinical fields as a novel anti-tumor drug carrier.
Collapse
Affiliation(s)
- Qiongjia Deng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Institutes of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Shibin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Institutes of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Maobin Xie
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Shenjian Wu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Aizheng Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Institutes of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Wenguo Wu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Institutes of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
18
|
Sk UH, Kambhampati SP, Mishra MK, Lesniak WG, Zhang F, Kannan RM. Enhancing the Efficacy of Ara-C through Conjugation with PAMAM Dendrimer and Linear PEG: A Comparative Study. Biomacromolecules 2013; 14:801-10. [DOI: 10.1021/bm3018615] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ugir Hossain Sk
- Departments of Chemical
Engineering and Materials Science and Biomedical
Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Siva P. Kambhampati
- Departments of Chemical
Engineering and Materials Science and Biomedical
Engineering, Wayne State University, Detroit, Michigan 48202, United States
- Center for Nanomedicine/Wilmer
Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore,
Maryland 21287, United States
| | - Manoj K. Mishra
- Departments of Chemical
Engineering and Materials Science and Biomedical
Engineering, Wayne State University, Detroit, Michigan 48202, United States
- Center for Nanomedicine/Wilmer
Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore,
Maryland 21287, United States
| | - Wojciech G. Lesniak
- Departments of Chemical
Engineering and Materials Science and Biomedical
Engineering, Wayne State University, Detroit, Michigan 48202, United States
- Center for Nanomedicine/Wilmer
Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore,
Maryland 21287, United States
| | - Fan Zhang
- Departments of Chemical
Engineering and Materials Science and Biomedical
Engineering, Wayne State University, Detroit, Michigan 48202, United States
- Center for Nanomedicine/Wilmer
Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore,
Maryland 21287, United States
| | - Rangaramanujam M. Kannan
- Departments of Chemical
Engineering and Materials Science and Biomedical
Engineering, Wayne State University, Detroit, Michigan 48202, United States
- Center for Nanomedicine/Wilmer
Eye Institute, Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore,
Maryland 21287, United States
| |
Collapse
|
19
|
Site-Specific PEGylation of Therapeutic Proteins via Optimization of Both Accessible Reactive Amino Acid Residues and PEG Derivatives. BioDrugs 2012; 26:209-15. [DOI: 10.1007/bf03261880] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Patel J, Garala K, Basu B, Raval M, Dharamsi A. Solubility of aceclofenac in polyamidoamine dendrimer solutions. Int J Pharm Investig 2012; 1:135-8. [PMID: 23071935 PMCID: PMC3465132 DOI: 10.4103/2230-973x.85962] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the present study we investigated the effect of polyamidoamine (PAMAM) dendrimers on the aqueous solubility of aceclofenac. The aqueous solubility of aceclofenac was measured in the presence of dendrimers in distilled water. The effect of variables, such as pH condition, concentration, temperature and generation (molecule size) of dendrimer, has been investigated. Results showed that the solubility of aceclofenac in the dendrimer solutions was proportional to dendrimer concentration. The order in which the dendrimers increased the solubility at a constant pH condition was G3 > G0. The influence of dendrimer solution pH on the solubility enhancement of aceclofenac suggests that it involves an electrostatic interaction between the carboxyl group of the aceclofenac molecule and the amine groups of the dendrimer molecule. The solubility of aceclofenac was inversely proportional to the temperature of dendrimer solution.Different generation (G0 and G3) PAMAM dendrimers have the potential to significantly enhance the solubility of poor water-soluble drugs.
Collapse
Affiliation(s)
- Jaydeep Patel
- Department of Pharmaceutics, Atmiya Institute of Pharmacy, Kalawad Road, Rajkot, Gujarat, India
| | | | | | | | | |
Collapse
|
21
|
Moysan E, Bastiat G, Benoit JP. Gemcitabine versus Modified Gemcitabine: a review of several promising chemical modifications. Mol Pharm 2012; 10:430-44. [PMID: 22978251 DOI: 10.1021/mp300370t] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gemcitabine, an anticancer agent which acts against a wide range of solid tumors, is known to be rapidly deaminated in blood to the inactive metabolite 2',2'-difluorodeoxyuridine and to be rapidly excreted by the urine. Moreover, many cancers develop resistance against this drug, such as loss of transporters and kinases responsible for the first phosphorylation step. To increase its therapeutic levels, gemcitabine is administered at high doses (1000 mg/m(2)) causing side effects (neutropenia, nausea, and so forth). To improve its metabolic stability and cytotoxic activity and to limit the phenomena of resistance many alternatives have emerged, such as the synthesis of prodrugs. Modifying an anticancer agent is not new; paclitaxel or ara-C has been subjected to such changes. This review summarizes the various chemical modifications that can be found in the 4-(N)- and 5'-positions of gemcitabine. They can provide (i) a protection against deamination, (ii) a better storage and (iii) a prolonged release in the cell, (iv) a possible use in the case of deoxycytidine kinase deficiency, and (v) transporter deficiency. These new gemcitabine-based sysems have the potential to improve the clinical outcome of a chemotherapy strategy.
Collapse
Affiliation(s)
- Elodie Moysan
- LUNAM Université -Micro et Nanomédecines Biomimétiques, F-49933 Angers, France
| | | | | |
Collapse
|
22
|
Zhang C, Yang XL, Yuan YH, Pu J, Liao F. Site-specific PEGylation of therapeutic proteins via optimization of both accessible reactive amino acid residues and PEG derivatives. BioDrugs 2012. [PMID: 22721556 DOI: 10.2165/11633350-000000000-00000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modification of accessible amino acid residues with poly(ethylene glycol) [PEG] is a widely used technique for formulating therapeutic proteins. In practice, site-specific PEGylation of all selected/engineered accessible nonessential reactive residues of therapeutic proteins with common activated PEG derivatives is a promising strategy to concomitantly improve pharmacokinetics, allow retention of activity, alleviate immunogenicity, and avoid modification isomers. Specifically, through molecular engineering of a therapeutic protein, accessible essential residues reactive to an activated PEG derivative are substituted with unreactive residues provided that protein activity is retained, and a limited number of accessible nonessential reactive residues with optimized distributions are selected/introduced. Subsequently, all accessible nonessential reactive residues are completely PEGylated with the activated PEG derivative in great excess. Branched PEG derivatives containing new PEG chains with negligible metabolic toxicity are more desirable for site-specific PEGylation. Accordingly, for the successful formulation of therapeutic proteins, optimization of the number and distributions of accessible nonessential reactive residues via molecular engineering can be integrated with the design of large-sized PEG derivatives to achieve site-specific PEGylation of all selected/engineered accessible reactive residues.
Collapse
Affiliation(s)
- Chun Zhang
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, China
| | | | | | | | | |
Collapse
|
23
|
Poly(ethylene glycol)-Prodrug Conjugates: Concept, Design, and Applications. JOURNAL OF DRUG DELIVERY 2012; 2012:103973. [PMID: 22645686 PMCID: PMC3356704 DOI: 10.1155/2012/103973] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 02/07/2023]
Abstract
Poly(ethylene glycol) (PEG) is the most widely used polymer in delivering anticancer drugs clinically. PEGylation (i.e., the covalent attachment of PEG) of peptides proteins, drugs, and bioactives is known to enhance the aqueous solubility of hydrophobic drugs, prolong circulation time, minimize nonspecific uptake, and achieve specific tumor targetability through the enhanced permeability and retention effect. Numerous PEG-based therapeutics have been developed, and several have received market approval. A vast amount of clinical experience has been gained which has helped to design PEG prodrug conjugates with improved therapeutic efficacy and reduced systemic toxicity. However, more efforts in designing PEG-based prodrug conjugates are anticipated. In light of this, the current paper highlights the synthetic advances in PEG prodrug conjugation methodologies with varied bioactive components of clinical relevance. In addition, this paper discusses FDA-approved PEGylated delivery systems, their intended clinical applications, and formulations under clinical trials.
Collapse
|
24
|
Peters GJ, Adema AD, Bijnsdorp IV, Sandvold ML. Lipophilic prodrugs and formulations of conventional (deoxy)nucleoside and fluoropyrimidine analogs in cancer. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 30:1168-80. [PMID: 22132972 DOI: 10.1080/15257770.2011.607143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Many drugs that are currently used for the treatment of cancer have limitations, such as induction of resistance and/or poor biological half-life, which reduce their clinical efficacy. To overcome these limitations, several strategies have been explored. Chemical modification by the attachment of lipophilic moieties to (deoxy)nucleoside analogs should enhance the plasma half-life, change the biodistribution, and improve cellular uptake of the drug. Attachment of a lipophilic moiety to a phosphorylated (deoxy)nucleoside analog will improve the activity of the drugs by circumventing the rate-limiting activation step of (deoxy)nucleoside analogs. Encapsulating drugs in nanoparticles or liposomes protects the drug against enzymatic breakdown in the plasma and makes it possible to get lipophilic compounds to the tumor site. In this review, we discuss the considerable progress that has been made in increasing the efficacy of classic (deoxy)nucleoside and fluoropyrimidine compounds by chemical modifications and alternative delivery systems.
Collapse
Affiliation(s)
- Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
25
|
Wichitnithad W, Nimmannit U, Callery PS, Rojsitthisak P. Effects of Different Carboxylic Ester Spacers on Chemical Stability, Release Characteristics, and Anticancer Activity of Mono-PEGylated Curcumin Conjugates. J Pharm Sci 2011; 100:5206-18. [DOI: 10.1002/jps.22716] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/20/2011] [Accepted: 07/06/2011] [Indexed: 02/01/2023]
|
26
|
Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release 2011; 161:461-72. [PMID: 22094104 DOI: 10.1016/j.jconrel.2011.10.037] [Citation(s) in RCA: 544] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 12/15/2022]
Abstract
In the recent years, protein PEGylation has become an established and highly refined technology by moving forward from initial simple random coupling approaches based on conjugation at the level of lysine ε-amino group. Nevertheless, amino PEGylation is still yielding important conjugates, currently in clinical practice, where the degree of homogeneity was improved by optimizing the reaction conditions and implementing the purification processes. However, the current research is mainly focused on methods of site-selective PEGylation that allow the obtainment of a single isomer, thus highly increasing the degree of homogeneity and the preservation of bioactivity. Protein N-terminus and free cysteines were the first sites exploited for selective PEGylation but currently further positions can be addressed thanks to approaches like bridging PEGylation (disulphide bridges), enzymatic PEGylation (glutamines and C-terminus) and glycoPEGylation (sites of O- and N-glycosylation or the glycans of a glycoprotein). Furthermore, by combining the tools of genetic engineering with specific PEGylation approaches, the polymer can be basically coupled at any position on the protein surface, owing to the substitution of a properly chosen amino acid in the sequence with a natural or unnatural amino acid bearing an orthogonal reactive group. On the other hand, PEGylation has not achieved the same success in the delivery of small drugs, despite the large interest and several studies in this field. Targeted conjugates and PEGs for combination therapy might represent the promising answers for the so far unmet needs of PEG as carrier of small drugs. This review presents a thorough panorama of recent advances in the field of PEGylation.
Collapse
Affiliation(s)
- Gianfranco Pasut
- Department of Pharmaceutical Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy.
| | | |
Collapse
|
27
|
|
28
|
Obermeier B, Wurm F, Mangold C, Frey H. Multifunctional Poly(ethylene glycol)s. Angew Chem Int Ed Engl 2011; 50:7988-97. [DOI: 10.1002/anie.201100027] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Indexed: 11/10/2022]
|
29
|
Obermeier B, Wurm F, Mangold C, Frey H. Multifunktionelle Poly(ethylenglycole). Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Obermeier B, Frey H. Poly(ethylene glycol-co-allyl glycidyl ether)s: A PEG-Based Modular Synthetic Platform for Multiple Bioconjugation. Bioconjug Chem 2011; 22:436-44. [DOI: 10.1021/bc1004747] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Boris Obermeier
- Institute of Organic Chemistry, Organic and Macromolecular Chemistry, Duesbergweg 10-14, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Organic and Macromolecular Chemistry, Duesbergweg 10-14, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| |
Collapse
|
31
|
Cheng Y, Zhao L, Li Y, Xu T. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 2011; 40:2673-703. [PMID: 21286593 DOI: 10.1039/c0cs00097c] [Citation(s) in RCA: 367] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the past decade, nanomedicine with its promise of improved therapy and diagnostics has revolutionized conventional health care and medical technology. Dendrimers and dendrimer-based therapeutics are outstanding candidates in this exciting field as more and more biological systems have benefited from these starburst molecules. Anticancer agents can be either encapsulated in or conjugated to dendrimer and be delivered to the tumour via enhanced permeability and retention (EPR) effect of the nanoparticle and/or with the help of a targeting moiety such as antibody, peptides, vitamins, and hormones. Imaging agents including MRI contrast agents, radionuclide probes, computed tomography contrast agents, and fluorescent dyes are combined with the multifunctional nanomedicine for targeted therapy with simultaneous cancer diagnosis. However, an important question reported with dendrimer-based therapeutics as well as other nanomedicines to date is the long-term viability and biocompatibility of the nanotherapeutics. This critical review focuses on the design of biocompatible dendrimers for cancer diagnosis and therapy. The biocompatibility aspects of dendrimers such as nanotoxicity, long-term circulation, and degradation are discussed. The construction of novel dendrimers with biocompatible components, and the surface modification of commercially available dendrimers by PEGylation, acetylation, glycosylation, and amino acid functionalization have been proposed as available strategies to solve the safety problem of dendrimer-based nanotherapeutics. Also, exciting opportunities and challenges on the development of dendrimer-based nanoplatforms for targeted cancer diagnosis and therapy are reviewed (404 references).
Collapse
Affiliation(s)
- Yiyun Cheng
- School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.
| | | | | | | |
Collapse
|
32
|
Mehrotra S, Lynam D, Liu C, Shahriari D, Lee I, Tuszynski M, Sakamoto J, Chan C. Time controlled release of arabinofuranosylcytosine (Ara-C) from agarose hydrogels using layer-by-layer assembly: an in vitro study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2011; 23:439-63. [PMID: 21294967 PMCID: PMC3873741 DOI: 10.1163/092050610x552221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Experimentally induced axonal regeneration is compromised by glial scar formation arising from leptomeningeal fibroblasts cells in and around the hydrogel scaffold implanted for nerve repair. Strategies are needed to prevent such fibroblastic reactive cell layer formation for enhanced axonal regeneration. Here, we implement the technique of layer-by-layer assembled degradable, hydrogen bonded multilayers on agarose hydrogels to incorporate an anti-mitotic drug (1-β-D-arabinofuranosylcytosine (Ara-C)) within the agarose hydrogels. We show controlled release of Ara-C under physiological conditions over a period of days. The concentrations of Ara-C released from agarose at the different time points were sufficient to inhibit fibroblast growth in vitro, while not adversely affecting the viability of the neuronal cells.
Collapse
Affiliation(s)
- Sumit Mehrotra
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Lynam
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Chun Liu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Dena Shahriari
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Ilsoon Lee
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Mark Tuszynski
- Center for Neural Repair, Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - Jeffrey Sakamoto
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
33
|
Denora N, Laquintana V, Trapani A, Lopedota A, Latrofa A, Gallo JM, Trapani G. Translocator protein (TSPO) ligand-Ara-C (cytarabine) conjugates as a strategy to deliver antineoplastic drugs and to enhance drug clinical potential. Mol Pharm 2010; 7:2255-69. [PMID: 20958082 DOI: 10.1021/mp100235w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this work was to evaluate TSPO ligand-Ara-C conjugation as an approach for the selective delivery of the antineoplastic agent to brain tumors as well as for overcome P-gp resistance induction observed for the majority of cytotoxic agents, enhancing the drug clinical potential. To this end, the novel N-imidazopyridinacetyl-Ara-C conjugates 3a-c, 10 and 15 have been prepared and evaluated for their cytotoxicity against glioma cell lines. In contrast to that observed for 3a-c and 10, the conjugate 15 resulted stable in both phosphate buffer and physiological medium. In all cases, the release of free Ara-C from hydrolyzed conjugates was checked by HPLC and ESI-MS analysis. Conjugates 10 and 15 displayed very high in vitro TSPO affinity and selectivity, and, hence, they may possess potential for targeted brain delivery. Due to the favorable features displayed by the conjugate 15, it was further evaluated on glioma cell lines, expressing high levels of TSPO, in the presence and in the absence of specific nucleoside transport (NT) inhibitors. In contrast to that observed for the free Ara-C, the presence of NT inhibitors did not reduce the cytotoxic activity of 15. Moreover, conjugate 15, as N(4)-acyl derivative of Ara-C, should be resistant to inactivation by cytidine deaminase, and it may possess enhanced propensity to target brain tumor cells characterized by a reduced expression of NTs. In addition, this conjugate behaves as a clear P-gp modulator and thereby may be useful to reverse MDR. Transport studies across the MDCKII-MDR1 monolayer indicated that conjugate 15 should overcome the BBB by transcellular pathway. All these features may be useful for enhancing the clinical potential of the nucleoside drug Ara-C.
Collapse
Affiliation(s)
- Nunzio Denora
- Dipartimento Farmaco-Chimico, Facoltà di Farmacia, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Vandana M, Sahoo SK. Long circulation and cytotoxicity of PEGylated gemcitabine and its potential for the treatment of pancreatic cancer. Biomaterials 2010; 31:9340-56. [PMID: 20851464 DOI: 10.1016/j.biomaterials.2010.08.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/05/2010] [Indexed: 12/18/2022]
Abstract
Gemcitabine [2', 2'-difluoro-2'-deoxycytidine (dFdC)] is a low molecular weight, deoxycytidine analog inhibiting cellular DNA synthesis. Currently, it is the frontline drug approved by Food and Drug Administration (FDA) for the treatment of pancreatic cancer. However, efforts to use gemcitabine as an anti-cancer agent have been limited by its short circulation time and rapid metabolism that reflects in low tumor uptake and intracellular action. Polymer-drug conjugates, in this regard have spawned an approach to improve the cytotoxicity efficiency and bioavailability of gemcitabine by chemical modification. The present study describes the synthesis of a water soluble formulation of PEGylated gemcitabine characterized by FT IR, (1)H NMR and RP-HPLC chromatography. The PEGylated gemcitabine has a prolonged circulation time in plasma as studied in an animal model. This eventually caused a marked improvement in the cytotoxicity and apoptosis-inducing activity in pancreatic cancer cell lines (MIA PaCa 2 and PANC 1). Hence, these findings demonstrate the PEGylated gemcitabine is a desirable approach for therapy by intravenous administration. Successful clinical application of this approach can significantly contribute to the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Mallaredy Vandana
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekarpur, Bhubaneswar, Orissa, India
| | | |
Collapse
|
35
|
Pasut G, Veronese FM. Improvement of Drug Therapy by Covalent PEG Conjugation: An Overview From a Research Laboratory. Isr J Chem 2010. [DOI: 10.1002/ijch.201000019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
|
37
|
Mitomycin C-polyethylene glycol controlled-release film inhibits collagen secretion and induces apoptosis of fibroblasts in the early wound of a postlaminectomy rat model. Spine J 2010; 10:441-7. [PMID: 20421076 DOI: 10.1016/j.spinee.2010.02.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 09/27/2009] [Accepted: 02/18/2010] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Recovery from spine surgery is usually accompanied with the development of epidural scar adhesions from the abnormal proliferation of fibroblast and extracellular matrix-related metabolism. Polyethylene glycol (PEG) could alleviate the postsurgical adhesion formation with still leaving a gap between the sheet and the dura. However, PEG film could not function as a three-dimensional barrier to prevent adhesion completely. Mitomycin C (MMC) could also reduce the scar formation after surgery, but cytotoxicity and the administrative pathway prevent its application. PURPOSE Our purpose was to design and attest the role of new delivery system MMC-PEG controlled-release film in preventing the epidural scar adhesions after laminectomy in the rat model. STUDY DESIGN/SETTING A total laminectomy of L1 in the rat model was used to assess epidural fibrosis between and around the spinal nerves using a histochemistry assessment along with flow cytometry analysis. PATIENT SAMPLE The sample comprises 64 adult male Sprague-Dawley rats. OUTCOME MEASURES The outcome measures are macroscopic evaluation, histological analysis, and flow cytometry analysis. METHODS Lumbar laminectomies at L1 and L2 with a L1-L2 disc injury were performed on 64 adult male Sprague-Dawley rats. The rats were then randomized into four groups. In Group I, 25 mg PEG film was applied on the dura mater in the laminectomy area before the layers were sutured. In Group II, a cotton pad soaked with 0.05% MMC solution was kept on the laminectomy area for 5 minutes. In Group III, 25 mg PEG film containing 0.01% MMC was implanted on the laminectomy area. In Group IV, the laminectomy area was flushed with saline before wound closure. The rats were sacrificed 4 weeks after the operation. Macroscopic evaluation and histological analysis of epidural scar adhesion with the hematoxylin and eosin stain and Masson stain were used followed by the quantification of hydroxyproline (Hyp) and flow cytometry analysis of the apoptosis of fibroblasts in the scar tissues. RESULTS The recovery of all rats was uneventful after the operations. In the laminectomy sites of rats treated with MMC or MMC-PEG, the dura mater was clean without any evident adhesion or membrane. Collagen tissue hyperplasia significantly decreased in the MMC- or MMC-PEG-treated models. Accordingly, Hyp concentration was significantly reduced in these two groups compared with saline-control group. In addition, the apoptosis of fibroblasts, however, was significantly elevated in the MMC or MMC-PEG group compared with the saline-control group. CONCLUSIONS These results demonstrate that the treatment of postlaminectomy wounds with MMC-PEG film reduces the severity of adhesion by decreasing the concentration of Hyp and increasing the apoptosis of fibroblasts.
Collapse
|
38
|
Obermeier B, Wurm F, Frey H. Amino Functional Poly(ethylene glycol) Copolymers via Protected Amino Glycidol. Macromolecules 2010. [DOI: 10.1021/ma902245d] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Boris Obermeier
- Institute of Organic Chemistry, Organic and Macromolecular Chemistry, Duesbergweg 10-14, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Frederik Wurm
- Institute of Organic Chemistry, Organic and Macromolecular Chemistry, Duesbergweg 10-14, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Organic and Macromolecular Chemistry, Duesbergweg 10-14, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| |
Collapse
|
39
|
Peng HT, Huang Huang, Shek PN, Charbonneau S, Blostein MD. PEGylation of Melittin: Structural Characterization and Hemostatic Effects. J BIOACT COMPAT POL 2010. [DOI: 10.1177/0883911509354230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To promote and understand the structure—property relationship for hemostasis, we modified melittin (MLT) using a four-arm poly(ethylene glycol) (PEG) with N-hydroxysuccinimide ester. The PEGylation was characterized by FTIR, MALDI-MS, NMR, a bicinchoninic acid assay, circular dichroism, hemolysis assay, and thromboelastography. Changes in the reaction conditions affected the extent of the modification, the numbers of MLT conjugated to PEG arms, and possible PEGylation sites. The reaction at pH 9.2 with a high MLT/PEG ratio, resulted in the highest modification. Reactions in dimethylsulfoxide (DMSO) resulted in more multi-arm coupled MLT, reaching a maximum of four MLT per PEG. The helicity of the modified peptide, relative to the native peptide, was essentially maintained in DMSO, but substantially lost at pH 9.2. PEGylation reduced the hemolytic effects of MLT and subsequently changed its coagulation profiles. The overall hemostatic effects of MLT modified in DMSO indicate that this may be a convenient approach to the PEGylation of biomolecules for biomedical applications.
Collapse
Affiliation(s)
- Henry T. Peng
- Defence Research and Development Canada - Toronto, 1133 Sheppard Avenue West, P.O. Box 2000, Toronto, Ontario, Canada,
| | - Huang Huang
- Defence Research and Development Canada - Toronto, 1133 Sheppard Avenue West, P.O. Box 2000, Toronto, Ontario, Canada
| | - Pang N. Shek
- Defence Research and Development Canada - Toronto, 1133 Sheppard Avenue West, P.O. Box 2000, Toronto, Ontario, Canada
| | - Sophie Charbonneau
- Lady Davis Institute of Medical Research, Jewish General Hospital McGill University, Montreal, Quebec, Canada
| | - Mark D. Blostein
- Lady Davis Institute of Medical Research, Jewish General Hospital McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Mozafari MR, Pardakhty A, Azarmi S, Jazayeri JA, Nokhodchi A, Omri A. Role of nanocarrier systems in cancer nanotherapy. J Liposome Res 2010; 19:310-21. [PMID: 19863166 DOI: 10.3109/08982100902913204] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer continues to be a major cause of morbidity and mortality worldwide. While discovery of new drugs and cancer chemotherapy opened a new era for the treatment of tumors, optimized concentration of drug at the target site is only possible at the expense of severe side effects. Nanoscale carrier systems have the potential to limit drug toxicity and achieve tumor localization. When linked with tumor-targeting moieties, such as tumor-specific ligands or monoclonal antibodies, the nanocarriers can be used to target cancer-specific receptors, tumor antigens, and tumor vasculatures with high affinity and precision. This article is an overview of advances and prospects in the applications of nanocarrier technology in cancer therapy. Applications of nanoliposomes, dendrimers, and nanoparticles in cancer therapy are explained, along with their preparation methods and targeting strategies.
Collapse
Affiliation(s)
- M R Mozafari
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
41
|
Pasut G, Veronese FM. PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliv Rev 2009; 61:1177-88. [PMID: 19671438 DOI: 10.1016/j.addr.2009.02.010] [Citation(s) in RCA: 322] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/14/2009] [Indexed: 12/23/2022]
Abstract
During the almost forty years of PEGylation, several antitumour agents, either proteins, peptides or low molecular weight drugs, have been considered for polymer conjugation but only few entered clinical phase studies. The results from the first clinical trials have shared and improved the knowledge on biodistribution, clearance, mechanism of action and stability of a polymer conjugate in vivo. This has helped to design conjugates with improved features. So far, most of the PEG conjugates comprise of a protein, which in the native form has serious shortcomings that limit the full exploitation of its therapeutic action. The main issues can be short in vivo half-life, instability towards degrading enzymes or immunogenicity. PEGylation proved to be effective in shielding sensitive sites at the protein surface, such as antigenic epitopes and enzymatic degradable sequences, as well as in prolonging the drug half-life by decreasing the kidney clearance. In this review PEG conjugates of proteins or low molecular weight drugs, in clinical development or use as anticancer agents, will be taken into consideration. In the case of PEG-protein derivatives the most represented are depleting enzymes, which act by degrading amino acids essential for cancer cells. Interestingly, PEGylated conjugates have been also considered as adjuvant therapy in many standard anticancer protocols, in this regard the case of PEG-G-CSF and PEG-interferons will be presented.
Collapse
|
42
|
Stimuli-responsive star poly(ethylene glycol) drug conjugates for improved intracellular delivery of the drug in neuroinflammation. J Control Release 2009; 142:447-56. [PMID: 19896998 DOI: 10.1016/j.jconrel.2009.10.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 10/31/2009] [Indexed: 11/20/2022]
Abstract
N-Acetyl cysteine (NAC) is a vital drug currently under clinical trials for the treatment of neuroinflammation in maternal-fetal applications. The free sulfhydryl groups in NAC lead to high plasma protein binding, resulting in low bioavailability. Preparation and activity of conjugates of NAC with thiol terminated multi-arm (6 and 8) poly(ethylene-glycol) (PEG) with disulfide linkages involving sulfhydryls of NAC are reported. Multiple copies (5 and 7) of NAC were conjugated on 6 and 8-arm-PEG respectively. Both the conjugates released 74% of NAC within 2h by thiol exchange reactions in the redox environment provided by glutathione (GSH) intracellularly (2-10mM). At physiological extracellular glutathione concentration (2 microM) both the conjugates were stable and did not release NAC. MTT assay showed comparable cell viability for unmodified PEGs and both the PEG-S-S-NAC conjugates. The conjugates were readily endocytosed by cells, as confirmed by flow cytometry and confocal microscopy. Efficacy of 6 and 8-arm-PEG-S-S-NAC conjugates was evaluated on activated microglial cells (the target cells, in vivo) by monitoring cytokine release in lipopolysaccharide (LPS) induced inflammatory response in microglial cells using the reactive oxygen species (ROS), free radical nitrile (NO), anti-inflammatory activity and GSH depletion. The conjugates showed significant increase in antioxidant activity (more than a factor of 2) compared to free drug as seen from the inhibition of LPS induced ROS, NO, GSH and tumor necrosis factor-alpha (TNF-alpha) release in microglial cells.
Collapse
|
43
|
Pasut G, Greco F, Mero A, Mendichi R, Fante C, Green RJ, Veronese FM. Polymer−Drug Conjugates for Combination Anticancer Therapy: Investigating the Mechanism of Action. J Med Chem 2009; 52:6499-502. [DOI: 10.1021/jm900804m] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gianfranco Pasut
- Department of Pharmaceutical Sciences, Via F. Marzolo 5, University of Padua, 35100, Padova, Italy
| | - Francesca Greco
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Anna Mero
- Department of Pharmaceutical Sciences, Via F. Marzolo 5, University of Padua, 35100, Padova, Italy
| | - Raniero Mendichi
- Istituto per lo Studio delle Macromolecole (CNR), Via E. Bassini 15, I-20133, Milano, Italy
| | - Cristina Fante
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Rebecca J. Green
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Francesco M. Veronese
- Department of Pharmaceutical Sciences, Via F. Marzolo 5, University of Padua, 35100, Padova, Italy
| |
Collapse
|
44
|
Affiliation(s)
- Rakesh Kumar Tekade
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar-470 003, India
| | | | | |
Collapse
|
45
|
Jiang Y, Tang G, Hong M, Zhu S, Fang C, Shi B, Pei Y. Active tumor-targeted delivery of PEG-protein via transferrin–transferrin-receptor system. J Drug Target 2008; 15:672-83. [DOI: 10.1080/10611860701603414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Liu J, Zahedi P, Zeng F, Allen C. Nano-Sized Assemblies of a PEG-Docetaxel Conjugate as a Formulation Strategy for Docetaxel. J Pharm Sci 2008; 97:3274-90. [DOI: 10.1002/jps.21245] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Antitumoral activity of PEG–gemcitabine prodrugs targeted by folic acid. J Control Release 2008; 127:239-48. [DOI: 10.1016/j.jconrel.2008.02.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/01/2008] [Accepted: 02/10/2008] [Indexed: 11/17/2022]
|
48
|
Pan H, Kopecek J. Multifunctional Water-Soluble Polymers for Drug Delivery. MULTIFUNCTIONAL PHARMACEUTICAL NANOCARRIERS 2008. [DOI: 10.1007/978-0-387-76554-9_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Diab R, Degobert G, Hamoudeh M, Dumontet C, Fessi H. Nucleoside analogue delivery systems in cancer therapy. Expert Opin Drug Deliv 2007; 4:513-31. [PMID: 17880274 DOI: 10.1517/17425247.4.5.513] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nucleoside analogues (NAs) are important agents in the treatment of hematological malignancies. They are prodrugs that require activation by phosphorylation. Their rapid catabolism, cell resistance and overdistribution in the body jeopardize nucleoside analogue chemotherapy. Accordingly, therapeutic doses of NAs are particularly high and regularly have to be increased, resulting in severe toxicity and narrow therapeutic index. The major challenge is to concentrate the drug at the tumour site, avoiding its distribution to normal tissues. New drug carriers and biomaterials are being developed to overcome some of these obstacles. This review highlights novel NA delivery systems and discusses new technologies that could improve NA cancer therapy.
Collapse
Affiliation(s)
- Roudayna Diab
- School of Pharmacy, Université Lyon 1-ESCPE - UMR 5007, Laboratoire d'Automatique et de Génie des Procédés, Bât. 308 G, 43, Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | | | | | | | | |
Collapse
|
50
|
|