1
|
El Faydy M, Lakhrissi L, Dahaieh N, Ounine K, Tüzün B, Chahboun N, Boshaala A, AlObaid A, Warad I, Lakhrissi B, Zarrouk A. Synthesis, Biological Properties, and Molecular Docking Study of Novel 1,2,3-Triazole-8-quinolinol Hybrids. ACS OMEGA 2024; 9:25395-25409. [PMID: 38882066 PMCID: PMC11170742 DOI: 10.1021/acsomega.4c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
A new series of 1,2,3-triazole-8-quinolinol hybrids were synthesized in good yields using monosubstituted acetonitriles and 5-azidomethyl-8-quinolinol as the starting reagents via a one-step protocol. The structures of 1,2,3-triazole-8-quinolinol hybrids were characterized by nuclear magnetic resonance (1H and 13C NMR) spectroscopy and elemental analysis. Antibacterial activity in vitro of all the synthesized hybrids was investigated against Escherichia coli (E. coli), Xanthomonas fragariae (X. fragariae), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis) applying the methods of disk diffusion and minimal inhibition concentration (MIC). Hybrid 7 exhibited excellent antibacterial capacity, with an MIC value of 10 μg/mL against S. aureus and 20 μg/mL against B. subtilis, E. coli, and X. fragariae, which were comparable to those that of the standard antibiotic nitroxoline. A structure-activity relationship (SAR) study of 1,2,3-triazole-8-quinolinol hybrids showed that introducing electron-donating substituents in the 1,2,3-triazole ring at the 4-position is important for activity. Quantum chemical calculations have been undertaken to employ the Gaussian software in the B3LYP, HF, and M062X basis sets using 3-21g, 6-31g, and SDD levels to further explain linkages within the antibacterial findings. Furthermore, molecular docking investigations were also conducted to investigate the binding affinities as well as the interactions of some hybrids with the target proteins. An absorption, distribution, metabolism, excretion, and toxicity (ADME/T) investigation was carried out to scrutinize the viability of employing the 1,2,3-triazole-8-quinolinol hybrids as medicines.
Collapse
Affiliation(s)
- Mohamed El Faydy
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
| | - Loubna Lakhrissi
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
- Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University, PO Box 1014 Agdal, Rabat 10500, Morocco
| | - Naoufel Dahaieh
- Laboratory of Nutrition, Health, and Environment, Department of Biology, Faculty of Sciences, Ibn Tofaïl University, PO Box 133, Kenitra 14000, Morocco
| | - Khadija Ounine
- Laboratory of Nutrition, Health, and Environment, Department of Biology, Faculty of Sciences, Ibn Tofaïl University, PO Box 133, Kenitra 14000, Morocco
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Nabila Chahboun
- Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, Ibn Tofail University, PO Box 242, Kenitra 14000, Morocco
- Institute of Nursing Professions and Health Techniques, Annex, Kenitra 14000, Morocco
- Laboratory of Materials, Nanotechnology, and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta PO Box 1014 Agdal, Rabat 10500, Morocco
| | - Ahmed Boshaala
- Libyan Authority for Scientific Research, P O Box 80045, Tripoli Libya
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
| | - Abeer AlObaid
- Department of Chemistry, College of Science, King Saud University, P O Box 2455, Riyadh 11451, Saudi Arabia
| | - Ismail Warad
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
- Department of Chemistry, AN-Najah National University, PO Box 7, Nablus 00970, Palestine
| | - Brahim Lakhrissi
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
| | - Abdelkader Zarrouk
- Laboratory of Materials, Nanotechnology, and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta PO Box 1014 Agdal, Rabat 10500, Morocco
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
| |
Collapse
|
2
|
Ashraf R, Zahoor AF, Ali KG, Nazeer U, Saif MJ, Mansha A, Chaudhry AR, Irfan A. Development of novel transition metal-catalyzed synthetic approaches for the synthesis of a dihydrobenzofuran nucleus: a review. RSC Adv 2024; 14:14539-14581. [PMID: 38708111 PMCID: PMC11066739 DOI: 10.1039/d4ra01830c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
The synthesis of dihydrobenzofuran scaffolds bears pivotal significance in the field of medicinal chemistry and organic synthesis. These heterocyclic scaffolds hold immense prospects owing to their significant pharmaceutical applications as they are extensively employed as essential precursors for constructing complex organic frameworks. Their versatility and importance make them an interesting subject of study for researchers in the scientific community. While exploring their synthesis, researchers have unveiled various novel and efficient pathways for assembling the dihydrobenzofuran core. In the wake of extensive data being continuously reported each year, we have outlined the recent updates (post 2020) on novel methodological accomplishments employing the efficient catalytic role of several transition metals to forge dihydrobenzofuran functionalities.
Collapse
Affiliation(s)
- Rabia Ashraf
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P. O. Box 551 Bisha 61922 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
3
|
Dhandabani GK, Jeyakannu P, Shih CL, Abraham AM, Senadi GC, Wang JJ. A Regioselective [3 + 2] Cycloaddition of Alkynols and Ketones To Access Diverse 1,3-Dioxolane Scaffolds. J Org Chem 2024; 89:719-724. [PMID: 38149308 DOI: 10.1021/acs.joc.3c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
This study presents a stepwise exoselective [3 + 2] cycloaddition reaction of alkynols with ketones, leading to the synthesis of 4-methylene-1,3-dioxolane derivatives. Remarkably, without any Thorpe-Ingold induced effect, the cyclization reaction was demonstrated with complete regio- and chemoselectivity, which was solely promoted by cesium carbonate. A wide range of unactivated ketones are viable under these mild reaction conditions, and both primary and tertiary alkynols are compatible with these cyclization reactions. We have prepared a diverse array of highly dense exomethylene 1,3-dioxolane rings demonstrating a remarkable tolerance for various functional groups.
Collapse
Affiliation(s)
- Ganesh Kumar Dhandabani
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Road, Zhongzheng Dist., Taipei City 100025, Taiwan
| | - Palaniraja Jeyakannu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Chia-Ling Shih
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Road, Zhongzheng Dist., Taipei City 100025, Taiwan
| | - Aksa Mariyam Abraham
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Gopal Chandru Senadi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science & Technology, SRM Nagar, Kattankulathur-603203, Chengalpattu District, Tamil Nadu, India
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou First Road, Sanmin District, Kaohsiung City 807, Taiwan
| |
Collapse
|
4
|
Synthesis and antimalarial activity of 7-chloroquinoline-tethered sulfonamides and their [1,2,3]-triazole hybrids. Future Med Chem 2022; 14:1725-1739. [PMID: 36453182 DOI: 10.4155/fmc-2022-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Aim & background: Drugs with multiple bioactive moieties have the advantages of multiple modes of action and fewer chances of drug resistance. In continuation of our previous work of developing hybrid antimalarials, we present herein the synthesis and antimalarial activity of two different series of 7-chloroquinoline-sulfonamide hybrids. Materials & methods: The first series of compounds were synthesized by using p-dodecylbenzenesulfonic acid as a Bronsted acid catalyst in ethanol. The second series' compounds were synthesized by 1,3-dipolar cycloaddition of azides and alkynes under click reaction conditions. Results & conclusion: The majority of these compounds demonstrated noncytotoxicity and significant antimalarial activity against Plasmodium falciparum (3D7) with IC50 values in the range of 1.49-13.49 μM. The most promising hybrids (12d, 13a and 13c) may be good starting points for next-generation antimalarials.
Collapse
|
5
|
Hariprasad S, Sreenatha N, Suchithra B, Nageshbabu R, Suman G, Lakshminarayana B, Chakravarthy ASJ. Synthesis, Structural and Computational Studies of a novel anionic synthon and its derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Jaithum K, Thongsornkleeb C, Tummatorn J, Ruchirawat S. Synergistic Lewis–Brønsted Acid Catalysis in Cascade Cyclization of ortho-Alkynylaryl Cyclopropylketones for the Synthesis of 2,3-Dihydronaphtho[1,2- b]furans. J Org Chem 2022; 87:15358-15379. [DOI: 10.1021/acs.joc.2c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kanokwan Jaithum
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| |
Collapse
|
7
|
Syed RU, Moni SS, Alfaisal RH, Alrashidi RH, Alrashidi NF, Wadeed KM, Alshammary FN, Habib AM, Alharbi FM, ur Rehman Z, Shamsher Alam M, Basode VK, Abdulhaq AA. Spectral characterization of the bioactive principles and antibacterial properties of cold methanolic extract of Olea europaea from the Hail region of Saudi Arabia. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
8
|
Cao Y, Yang Y, Ampomah-Wireko M, Obaid Arhema Frejat F, Zhai H, Zhang S, Wang H, Yang P, Yuan Q, Wu G, Wu C. Novel indazole skeleton derivatives containing 1,2,3-triazole as potential anti-prostate cancer drugs. Bioorg Med Chem Lett 2022; 64:128654. [PMID: 35259487 DOI: 10.1016/j.bmcl.2022.128654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022]
Abstract
In this study, a novel batch of indazole containing 1,2,3-triazole agents were designed and synthesized. The antiproliferative activity of target compounds in four human cancer cells, PC-3 (human prostate cancer cell), MCF-7 (human breast cancer cell), HepG-2 (human hepatoma cell) and MGC-803 (human gastric cancer cell), was evaluated by thiazole blue (MTT). In the antiproliferative activity screening, we were surprised to find that most compounds have specific cytotoxicity to PC-3 cancer cells. In particular, 9a has an IC50 value of 4.42 ± 0.06 μmol/L against PC-3 cell. Cloning experiments showed that 9a could inhibit the formation of PC-3 cancer cell clone in a dose-dependent manner. Through cell cycle arrest experiment, we found that compound 9a can block the cell cycle in G2/M phase and inhibit cell proliferation. Finally, by evaluating the safety of compound 9a, we noticed that it showed fairly good safety both in vivo and in vitro. Overall, based on the biological activity evaluation and safety, analogue 9a can be viewed as a potential lead compound for further development of novel anti-prostate cancer drug.
Collapse
Affiliation(s)
- Yaquan Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, PR China
| | - Yingxue Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, PR China
| | - Firas Obaid Arhema Frejat
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, PR China
| | - Hongjin Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, PR China
| | - Shuo Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, PR China
| | - Huanhuan Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, PR China
| | - Pu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, PR China
| | - Qingyan Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, PR China; Henan Qunbo Pharmaceutical Research Institute Co. LTD, Zhengzhou 450001, PR China
| | - Guanlian Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, PR China; Henan Qunbo Pharmaceutical Research Institute Co. LTD, Zhengzhou 450001, PR China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, PR China; Henan Qunbo Pharmaceutical Research Institute Co. LTD, Zhengzhou 450001, PR China.
| |
Collapse
|
9
|
Benzi A, Bianchi L, Giorgi G, Maccagno M, Petrillo G, Spinelli D, Tavani C. An Easy Access to Furan-Fused Polyheterocyclic Systems. Molecules 2022; 27:molecules27103147. [PMID: 35630623 PMCID: PMC9143548 DOI: 10.3390/molecules27103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Nitrostilbenes characterized by two different or differently substituted aryl moieties can be obtained from the initial ring-opening of 3-nitrobenzo[b]thiophene with amines. Such versatile building blocks couple the well-recognized double electrophilic reactivity of the nitrovinyl moiety (addition to the double bond, followed by, e.g., intramolecular replacement of the nitro group) with the possibility to exploit a conjugated system of double bonds within an electrocyclization process. Herein, nitrostilbenes are reacted with different aromatic enols provided by a double (carbon and oxygen) nucleophilicity, leading to novel, interesting naphthodihydrofurans. From these, as a viable application, aromatization and electrocyclization lead in turn to valuable polycondensed, fully aromatic O-heterocycles.
Collapse
Affiliation(s)
- Alice Benzi
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (A.B.); (L.B.); (M.M.); (G.P.)
| | - Lara Bianchi
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (A.B.); (L.B.); (M.M.); (G.P.)
| | - Gianluca Giorgi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro, 53100 Siena, Italy;
| | - Massimo Maccagno
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (A.B.); (L.B.); (M.M.); (G.P.)
| | - Giovanni Petrillo
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (A.B.); (L.B.); (M.M.); (G.P.)
| | - Domenico Spinelli
- Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum-University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy;
| | - Cinzia Tavani
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (A.B.); (L.B.); (M.M.); (G.P.)
- Correspondence:
| |
Collapse
|
10
|
Emerging impact of triazoles as anti-tubercular agent. Eur J Med Chem 2022; 238:114454. [PMID: 35597009 DOI: 10.1016/j.ejmech.2022.114454] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
Tuberculosis, a disease of poverty is a communicable infection with a reasonably high mortality rate worldwide. 10 Million new cases of TB were reported with approx 1.4 million deaths in the year 2019. Due to the growing number of drug-sensitive and drug-resistant tuberculosis cases, there is a vital need to develop new and effective candidates useful to combat this deadly disease. Despite tremendous efforts to identify a mechanism-based novel antitubercular agent, only a few have entered into clinical trials in the last six decades. In recent years, triazoles have been well explored as the most valuable scaffolds in drug discovery and development. Triazole framework possesses favorable properties like hydrogen bonding, moderate dipole moment, enhanced water solubility, and also the ability to bind effectively with biomolecular targets of M. tuberculosis and therefore this scaffold displayed excellent potency against TB. This review is an endeavor to summarize an up-to-date innovation of triazole-appended hybrids during the last 10 years having potential in vitro and in vivo antitubercular activity with structure activity relationship analysis. This review may help medicinal chemists to explore the triazole scaffolds for the rational design of potent drug candidates having better efficacy, improved selectivity and minimal toxicity so that these hybrid NCEs can effectively be explored as potential lead to fight against M. tuberculosis.
Collapse
|
11
|
Kim YN, Sim KS, Park S, Sohn HY, Kim T, Kim JH. In Vitro and In Vivo Anti-Inflammatory Effects of Cannabis sativa Stem Extract. J Med Food 2022; 25:408-417. [PMID: 35438555 DOI: 10.1089/jmf.2021.k.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With growing scientific interest in cannabinoids, a number of studies have focused on biological activities of cannabidiol and its major source, inflorescence and leaf of Cannabis sativa plant. However, recent analytical chemistry studies have reported the pharmacological significance of non-cannabinoid phytochemicals that are rich in other parts of the plant. Thus, the objective of this study was to investigate the anti-inflammatory effects of Cannabis extracts from plant parts of shelled seeds, roots, and stems containing no or trace amounts of cannabinoids. Among water and ethanol extracts from three plant parts, Cannabis stem ethanol extract (CSE) had the most potent free radical scavenging activities and suppressive effects on the production of nitric oxide from macrophages. In further studies using macrophages, CSE effectively inhibited lipopolysaccharide (LPS)-induced inflammatory responses by suppressing proinflammatory cytokines, nuclear factor-κB and mitogen-activated protein kinase phosphorylations, and cellular accumulation of reactive oxygen species. Moreover, in mice exposed to LPS, CSE reduced tumor necrosis factor-α production and normalized activations of proapoptotic proteins in the liver, kidney, and spleen. Gas chromatography/mass spectrometry analyses of CSE showed several active compounds that might be associated with its antioxidant and anti-inflammatory effects. Collectively, these findings indicate that CSE counteracts LPS-induced acute inflammation and apoptosis, suggesting pharmaceutical applications for the stem part of C. sativa.
Collapse
Affiliation(s)
- Ye Na Kim
- Department of Vaccine Development, Gyeongbuk Institute for Bio-industry, Andong, Republic of Korea
| | - Kyu Sang Sim
- Biomaterials Research Institute, Kyochon F&B, Andong, Republic of Korea
| | - Song Park
- Department of Food Science and Biotechnology, Andong National University, Andong, Republic of Korea
| | - Ho-Yong Sohn
- Department of Food and Nutrition, Andong National University, Andong, Republic of Korea
| | - Taewan Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, Republic of Korea
| | - Jun Ho Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, Republic of Korea
| |
Collapse
|
12
|
Quantum Computational Investigation of (E)-1-(4-methoxyphenyl)-5-methyl-N′-(3-phenoxybenzylidene)-1H-1,2,3-triazole-4-carbohydrazide. Molecules 2022; 27:molecules27072193. [PMID: 35408592 PMCID: PMC9000758 DOI: 10.3390/molecules27072193] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
The title compound was synthesized and structurally characterized. Theoretical IR, NMR (with the GIAO technique), UV, and nonlinear optical properties (NLO) in four different solvents were calculated for the compound. The calculated HOMO–LUMO energies using time-dependent (TD) DFT revealed that charge transfer occurs within the molecule, and probable transitions in the four solvents were identified. The in silico absorption, distribution, metabolism, and excretion (ADME) analysis was performed in order to determine some physicochemical, lipophilicity, water solubility, pharmacokinetics, drug-likeness, and medicinal properties of the molecule. Finally, molecular docking calculation was performed, and the results were evaluated in detail.
Collapse
|
13
|
2-Bromo-3-((1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl)-methoxy)-benzaldehyde. MOLBANK 2022. [DOI: 10.3390/m1351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The 1,2,3-triazole ring system can be easily obtained by copper-catalyzed click reaction of azides with alkynes. 1,2,3-Triazole exhibits a myriad of biological activities, including antimalarial, antibacterial, and antiviral activities. We herein reported the synthesis of quinoline-based [1,2,3]-triazole hybrid via Cu(I)-catalyzed click reaction of 4-azido-7-chloroquinoline with alkyne derivative of 2-bromobenzaldehyde. The compound was fully characterized by proton nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR), heteronuclear single quantum coherence (HSQC), ultraviolet (UV), and high-resolution mass spectroscopies (HRMS). This compound was screened in vitro against two different normal cell lines. Preliminary studies attempted to evaluate its interaction with Delta RBD of spike protein of SARS-CoV-2 by bio-layer interferometry. Finally, the drug-likeness of the compound was also investigated by predicting its pharmacokinetic properties.
Collapse
|
14
|
Huang J, Chen JF, Cui X, Zhao JZ, Tang Z, Li GX. Preparation of Dihydronaphthofurans from α-Hydroxyl Ketones via a One-Pot Multicomponent Reaction Based on Heyns Rearrangement. J Org Chem 2022; 87:3311-3318. [PMID: 35166530 DOI: 10.1021/acs.joc.1c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polysubstituted 1,2-dihydronaphthofurans were efficiently obtained in high yields and good diastereoselectivities with readily available substrates. The reaction proceeds smoothly via a series of tandem reactions, including Heyns rearrangement, oxidation, Friedel-Crafts reaction, and cyclization. The high stereoselectivity of the reaction is ascribed to the activation of the imine via an intramolecular hydrogen bond. Air is directly used as the oxidation medium, which makes the reaction safe and easy to perform. Moreover, the reaction features multiple components, which ensures the diversity of products.
Collapse
Affiliation(s)
- Jin Huang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Jin-Fang Chen
- College of Art and Sciences, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Jin-Zhong Zhao
- College of Art and Sciences, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-Xun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
Wu C, Ma B, Chen GQ, Zhang X. Highly efficient and enantioselective synthesis of β-heteroaryl amino alcohols via Ru-catalyzed asymmetric hydrogenation. Chem Commun (Camb) 2022; 58:12696-12699. [DOI: 10.1039/d2cc03701g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report a highly enantioselective hydrogenation of α-N-heteroaryl ketones catalyzed by chiral ruthenium catalysts, furnishing β-heteroaryl amino alcohols in superb yields and enantioselectivities (up to 99% yield and up to 99% ee).
Collapse
Affiliation(s)
- Chao Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Baode Ma
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China
| | - Xumu Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
16
|
Guan C, Ji J, Li Z, Wei Q, Wu X, Liu S. Facile synthesis of N2-substituted-1,2,3-triazole from aryl ethynylene and azide via a one-pot two-step strategy. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Hellwig PS, Barcellos AM, Furst CG, Alberto EE, Perin G. Oxyselenocyclization of 2‐Allylphenols for the Synthesis of 2,3‐Dihydrobenzofuran Selenides. ChemistrySelect 2021. [DOI: 10.1002/slct.202104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Paola S. Hellwig
- Laboratório de Síntese Orgânica Limpa – LASOL CCQFA Universidade Federal de Pelotas – UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Angelita M. Barcellos
- Laboratório de Síntese Orgânica Limpa – LASOL CCQFA Universidade Federal de Pelotas – UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Carolina G. Furst
- Department of Chemistry Universidade Federal de Minas Gerais - UFMG Belo Horizonte MG Brazil
| | - Eduardo E. Alberto
- Department of Chemistry Universidade Federal de Minas Gerais - UFMG Belo Horizonte MG Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa – LASOL CCQFA Universidade Federal de Pelotas – UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| |
Collapse
|
18
|
Design of pyrene functionalized triazole linked organosilane for specific detection of Ce3+ ions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Nath A, Kumer A, Zaben F, Khan MW. Investigating the binding affinity, molecular dynamics, and ADMET properties of 2,3-dihydrobenzofuran derivatives as an inhibitor of fungi, bacteria, and virus protein. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00117-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
2,3-Dihydrobenzofurans (DHB) have proposed as advantages structures, and used as chemical entresol to design small compound libraries. The present study illustrates to explore 2,3-dihydrobenzofurans(DHB) in comparison to selected some derivatives drugs by using molecular docking and molecular dynamics, as well as ADMET studies. The online database “Molinspiration online server” was used to detect the physicochemical pharmacokinetics and drug likeness score of DHB drugs. For estimation of molecular docking, six pathogens, such as Aspergillus niger (PDB id: 1kum), Candida albicans (3dra), Escherichia coli (6og7), Salmonella typhi (4k6l), Influenza (1ru7), and Hepatitis C (4tyd), were chosen due to close biological studies.
Results
From Molinspiration online server has showed that DHB did not violate the “Lipinski five rule” as drugs, leading compound for molecular docking exhibited the potential interaction to the active residue. The binding affinity of DHB2 (−7.00 kcal/mol) against 3dra was higher than DHB8 (−6.40 kcal/mol) and DHB (5.70 kcal/mol) for compounds. The results of molecular docking show that the compounds mentioned in this study are not equally effective against pathogens, such as fungi, viruses, and bacteria. However, DHB2, DHB3, and DHB 8 compounds can work against almost given pathogens which results are derived from auto dock vina in terms of binding affinity around 6.00 kcal/mol, and Fire Dock has values from about 38.0 to 42.0 kcal/mol. To explore the dynamic nature of the interaction, 50 ns molecular dynamics (MD) simulation was performed on the selected protein-DHB complexes. Thus, DHB 8 has greater potential to interact for further for fungi.
Conclusion
Finding from this study can play an effective role as a drug in any biological system. This study as well recommends to researchers to synthesize these DHBs for evaluation of its biological activity.
Graphical abstract
Collapse
|
20
|
Abstract
The 1,2,3-triazole is a well-known biologically active pharmacophore constructed by the copper-catalyzed azide–alkyne cycloaddition. We herein reported the synthesis of 4-amino-7-chloro-based [1,2,3]-triazole hybrids via Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition of 4-azido-7-chloroquinoline with an alkyne derivative of acetaminophen. The compound was fully characterized by Fourier-transform infrared (FTIR), proton nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR), heteronuclear single quantum coherence (HSQC), ultraviolet (UV) and high-resolution mass spectroscopies (HRMS). This compound was screened in vitro with different normal and cancer cell lines. The drug likeness of the compound was also investigated by predicting its pharmacokinetic properties.
Collapse
|
21
|
Bagdi AK, Pattanayak P, Paul S, Mitra M, Choudhuri T, Sheikh AS. Application of Conjugated Carbonyls in the Synthesis of Heterocycles via Oxidative Cycloaddition and Cyclization Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Avik Kumar Bagdi
- Department of Chemistry University of Kalyani Kalyani 741235 India
| | | | - Suvam Paul
- Department of Chemistry University of Kalyani Kalyani 741235 India
| | - Mousree Mitra
- Department of Chemistry University of Kalyani Kalyani 741235 India
| | | | | |
Collapse
|
22
|
A molecular electron density theory study of the [3 + 2] cycloaddition reaction of 1,4-diphosphorinium-3-olates with methyl acrylate and methyl methacrylate. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02637-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Banerjee B, Kaur G. Microwave Assisted Catalyst-free Synthesis of Bioactive Heterocycles. CURRENT MICROWAVE CHEMISTRY 2020. [DOI: 10.2174/2213335607666200226102010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review deals with the recent advances on the microwave-assisted synthesis of bioactive heterocycles without using any catalyst under various reaction conditions. Synthesis of various biologically promising N-heterocycles, O-heterocycles, S-heterocycles, N as well as O- or S-heterocycles reported so far under catalyst-free microwave-irradiated conditions are discussed in this review.
Collapse
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh 174301, India
| | - Gurpreet Kaur
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh 174301, India
| |
Collapse
|
24
|
Batra N, Rajendran V, Wadi I, Lathwal A, Dutta RK, Ghosh PC, Gupta RD, Nath M. Synthesis, characterization, and antiplasmodial efficacy of sulfonamide‐appended [1,2,3]‐triazoles. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Neha Batra
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| | - Vinoth Rajendran
- Department of BiochemistryUniversity of Delhi South Campus New Delhi India
| | - Ishan Wadi
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| | - Ankit Lathwal
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| | - Roshan Kumar Dutta
- Faculty of Life Sciences and BiotechnologySouth Asian University New Delhi India
| | - Prahlad C. Ghosh
- Department of BiochemistryUniversity of Delhi South Campus New Delhi India
| | - Rinkoo D. Gupta
- Faculty of Life Sciences and BiotechnologySouth Asian University New Delhi India
| | - Mahendra Nath
- Department of ChemistryUniversity of Delhi Delhi 110 007 India
| |
Collapse
|
25
|
Olyaei A, Sadeghpour M. Dihydronaphthofurans: synthetic strategies and applications. RSC Adv 2020; 10:5794-5826. [PMID: 35497409 PMCID: PMC9049295 DOI: 10.1039/c9ra09987e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Dihydronaphthofurans (DHNs) are an important class of arene ring-fused furans which are widely found in many natural and non-natural products and drug candidates with relevant biological and pharmacological activities. Furthermore, vinylidene-naphthofurans exhibit photochromic properties when exposed to UV or sun light at room temperature. For these reasons, a vast array of synthetic procedures for the preparation of dihydronaphthofurans including annulation of naphthols with various reagents, cycloaddition reactions ([3 + 2], [4 + 1] and Diels-Alder), intramolecular transannulation, Friedel-Crafts, Wittig, Claisen rearrangement, neophyl rearrangement and other reactions under various conditions have been developed over the past decades. This review aims to describe the different strategies developed so far for the synthesis of dihydronaphthofurans and their applications. After a brief introduction to the types of dihydronaphthofurans and their biological activities, the different synthetic approaches such as chemical, photochemical, and electrochemical, methods are described and organized on the basis of the catalysts and the other reagents employed in the syntheses. The subsequent section focuses on biological and pharmacological applications and photochromic properties of the target compounds.
Collapse
Affiliation(s)
- Abolfazl Olyaei
- Department of Chemistry, Payame Noor University (PNU) PO BOX 19395-4697 Tehran Iran
| | - Mahdieh Sadeghpour
- Department of Chemistry, Takestan Branch, Islamic Azad University Takestan Iran
| |
Collapse
|
26
|
Sanduja M, Gupta J, Singh H, Pagare PP, Rana A. Uracil-coumarin based hybrid molecules as potent anti-cancer and anti-bacterial agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2019.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Mantoani SP, de Andrade P, Chierrito TPC, Figueredo AS, Carvalho I. Potential Triazole-based Molecules for the Treatment of Neglected Diseases. Curr Med Chem 2019; 26:4403-4434. [DOI: 10.2174/0929867324666170727103901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Neglected Diseases (NDs) affect million of people, especially the poorest population
around the world. Several efforts to an effective treatment have proved insufficient
at the moment. In this context, triazole derivatives have shown great relevance in
medicinal chemistry due to a wide range of biological activities. This review aims to describe
some of the most relevant and recent research focused on 1,2,3- and 1,2,4-triazolebased
molecules targeting four expressive NDs: Chagas disease, Malaria, Tuberculosis
and Leishmaniasis.
Collapse
Affiliation(s)
- Susimaire Pedersoli Mantoani
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | - Peterson de Andrade
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | | | - Andreza Silva Figueredo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| |
Collapse
|
28
|
Gao F, Ye L, Wang Y, Kong F, Zhao S, Xiao J, Huang G. Benzofuran-isatin hybrids and their in vitro anti-mycobacterial activities against multi-drug resistant Mycobacterium tuberculosis. Eur J Med Chem 2019; 183:111678. [PMID: 31525660 DOI: 10.1016/j.ejmech.2019.111678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/01/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
A series of benzofuran-isatin hybrids 6a-n and 7a-g linked by alkyl linkers were designed and synthesized. Among them, hybrids 6a-l and 7a-g were assessed for their in vitro anti-mycobacterial activities against two multi-drug resistant Mycobacterium tuberculosis (MDR-MTB) strains and the cytotoxicity towards CHO cells. The preliminary results indicated that all hybrids (MIC: 0.125-16 μg/mL) showed excellent activity against the tested MDR-MTB strains, and low cytotoxicity (CC50: 64->512 μg/mL) towards CHO cells. Among them, hybrid 7e (MIC: 0.125 and 0.25 μg/mL) was highly active against the tested two MDR-MTB strains, which was 8-16 folds better than ciprofloxacin (MIC: 1 and 4 μg/mL), ≥512 folds more potent than rifampicin (MIC: 64 and > 128 μg/mL) and isoniazid (MIC: >128 μg/mL), but it was less active than TAM16 (MIC: <0.06 μg/mL). Moreover, the hybrid 7e (CC50: 128 μg/mL) also showed low cytotoxicity towards CHO cells, and high selectivity index (1,024). However, the metabolic stability and in vivo pharmacokinetic profiles of hybrid 7e were inferior to TAM16, so it still needs to be modified so as to get the optimized hybrid for potential use in mycobacterial treatment.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China; Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| | - Lei Ye
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Yabin Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Shijia Zhao
- Wuhan University of Science and Technology, Wuhan, Hubei, PR China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| |
Collapse
|
29
|
Kaushik CP, Sangwan J, Luxmi R, Kumar K, Pahwa A. Synthetic Routes for 1,4-disubstituted 1,2,3-triazoles: A Review. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190514074146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
N-Heterocyclic compounds like 1,2,3-triazoles serve as a key scaffolds among organic compounds having diverse applications in the field of drug discovery, bioconjugation, material science, liquid crystals, pharmaceutical chemistry and solid phase organic synthesis. Various drugs containing 1,2,3-triazole ring which are commonly available in market includes Rufinamide, Cefatrizine, Tazobactam etc., Stability to acidic/basic hydrolysis along with significant dipole moment support triazole moiety for appreciable participation in hydrogen bonding and dipole-dipole interactions with biological targets. Huisgen 1,3-dipolar azide-alkyne cycloaddition culminate into a mixture of 1,4 and 1,5- disubstituted 1,2,3-triazoles. In 2001, Sharpless and Meldal came across with a copper(I) catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles by cycloaddition between azides and terminal alkynes. This azide-alkyne cycloaddition has been labelled as a one of the important key click reaction. Click synthesis describes chemical reactions that are simple to perform, gives high selectivity, wide in scope, fast reaction rate and high yields. Click reactions are not single specific reaction, but serve as a pathway for construction of simple to complex molecules from a variety of starting materials. In the last few decades, 1,2,3-triazoles attracted attention of researchers all over the world because of their broad spectrum of biological activities. Keeping in view the biological importance of 1,2,3-triazole, in this review we focus on the various synthetic routes for the syntheisis of 1,4-disubstituted 1,2,3-triazoles. This review involves various synthetic protocols which involves copper and non-copper catalysts, different solvents as well as substrates. It will boost synthetic chemists to explore new pathway for the development of newer biologically active 1,2,3-triazoles.
Collapse
Affiliation(s)
- Chander P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Jyoti Sangwan
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Raj Luxmi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Krishan Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Ashima Pahwa
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| |
Collapse
|
30
|
Gao F, Chen Z, Ma L, Qiu L, Lin J, Lu G. Benzofuran-isatin hybrids tethered via different length alkyl linkers and their in vitro anti-mycobacterial activities. Bioorg Med Chem 2019; 27:2652-2656. [DOI: 10.1016/j.bmc.2019.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022]
|
31
|
Zhang B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur J Med Chem 2019; 168:357-372. [DOI: 10.1016/j.ejmech.2019.02.055] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 01/07/2023]
|
32
|
Wadi I, Prasad D, Batra N, Srivastava K, Anvikar AR, Valecha N, Nath M. Targeting Asexual and Sexual Blood Stages of the Human Malaria Parasite P. falciparum with 7-Chloroquinoline-Based 1,2,3-Triazoles. ChemMedChem 2019; 14:484-493. [PMID: 30609264 DOI: 10.1002/cmdc.201800728] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Indexed: 12/18/2022]
Abstract
Novel 4-amino-7-chloroquinoline-based 1,2,3-triazole hybrids were synthesised in good yields by CuI -catalysed Huisgen 1,3-dipolar cycloaddition reactions of 2-azido-N-(7-chloroquinolin-4-ylaminoalkyl)acetamides with various terminal alkynes. These new hybrids were screened in vitro against asexual blood stages of the chloroquine-sensitive 3D7 strain of P. falciparum. The most active compounds were further screened against asexual and sexual stages (gametocytes) of the chloroquine-resistant RKL-9 strain of P. falciparum. Although all compounds were less potent than chloroquine against the 3D7 strain, the three best compounds were appreciably more active than chloroquine against the RKL-9 strain, displaying IC50 values of <100 nm, with one of them having an IC50 of 2.94 nm. Further, the lead compounds were gametocytocidal with IC50 values in the micromolar range, and were observed to induce morphological deformations in mature gametocytes. Most compounds demonstrated little or no cytotoxicity and exhibited good selectivity indices. The most active compounds represent promising candidates for further evaluation of their schizonticidal and gametocytocidal potential.
Collapse
Affiliation(s)
- Ishan Wadi
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Davinder Prasad
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Neha Batra
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Kumkum Srivastava
- Parasitology Division, Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Anupkumar R Anvikar
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Neena Valecha
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Mahendra Nath
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
33
|
Das R, Asthana GS, Suri KA, Mehta D, Asthana A. Recent Developments in Azole Compounds as Antitubercular Agent. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180622144414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is a global health disaster and is a wide-reaching hitch. The improper use of antibiotics in chemotherapy of TB patients led to the current problem of tuberculosis therapy which gives rise to Multi-Drug Resistant (MDR) strains. Nitrogen heterocycles including azole compounds are an important class of therapeutic agent with electron-rich property. Azole-based derivatives easily bind with the enzymes and receptors in organisms through noncovalent interactions, thereby possessing various applications in medicinal chemistry. Research on azoles derivatives have been expansively carried out and have become one of the extremely active area in recent years and the progress is quite rapid. A genuine attempt to review chemistry of azoles and to describe various azole-based compounds synthesized in the last two decades having promising antitubercular potential is described in the present article. It is hopeful that azole compounds may continue to serve as an important direction for the exploitation of azole-based antitubercular drugs with better curative effect, lower toxicity, less side effects, especially fewer resistances and so on.
Collapse
Affiliation(s)
- Rina Das
- MMCP, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207. HR, India
| | - Gyati S. Asthana
- MMCP, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207. HR, India
| | | | - Dinesh Mehta
- MMCP, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207. HR, India
| | - Abhay Asthana
- MMCP, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207. HR, India
| |
Collapse
|
34
|
Ojaghi Aghbash K, Noroozi Pesyan N, Şahin E. Cu(I)-catalyzed alkyne–azide ‘click’ cycloaddition (CuAAC): a clean, efficient, and mild synthesis of new 1,4-disubstituted 1H-1,2,3-triazole-linked 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile–crystal structure. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-018-03723-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Settypalli T, Chunduri VR, Maddineni AK, Begari N, Allagadda R, Kotha P, Chippada AR. Design, synthesis, in silico docking studies and biological evaluation of novel quinoxaline-hydrazide hydrazone-1,2,3-triazole hybrids as α-glucosidase inhibitors and antioxidants. NEW J CHEM 2019. [DOI: 10.1039/c9nj02580d] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel quinoxaline-hydrazidehydrazone-1,2,3-triazole hybrids were synthesized, characterized and screened for α-glucosidase inhibitory and antioxidant activities.
Collapse
Affiliation(s)
| | | | | | - Nagaraju Begari
- Department of Chemistry
- Sri Venkateswara University
- Tirupati-517502
- India
| | | | - Peddanna Kotha
- Department of Biochemistry
- Sri Venkateswara University
- Tirupati-517502
- India
| | - Appa Rao Chippada
- Department of Biochemistry
- Sri Venkateswara University
- Tirupati-517502
- India
| |
Collapse
|
36
|
Hariss L, Barakat Z, Farès F, Roisnel T, Grée R, Hachem A. Preparation of new gem-difluoro heterocyclic-fused 1,2,3-triazole derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Singh A, Kalamuddin M, Mohmmed A, Malhotra P, Hoda N. Quinoline-triazole hybrids inhibit falcipain-2 and arrest the development ofPlasmodium falciparumat the trophozoite stage. RSC Adv 2019; 9:39410-39421. [PMID: 35540629 PMCID: PMC9076119 DOI: 10.1039/c9ra06571g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/09/2019] [Indexed: 11/21/2022] Open
Abstract
The present study involves development of novel quinoline triazole-containing cysteine protease inhibitors which arrest the development ofP. falciparumat the trophozoite stage.
Collapse
Affiliation(s)
- Anju Singh
- Drug Design and Synthesis Lab
- Department of Chemistry
- Jamia Millia Islamia
- New Delhi-110025
- India
| | - Md Kalamuddin
- International Centre for Genetic Engineering and Biotechnology (ICGEB)
- New Delhi-110067
- India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology (ICGEB)
- New Delhi-110067
- India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology (ICGEB)
- New Delhi-110067
- India
| | - Nasimul Hoda
- Drug Design and Synthesis Lab
- Department of Chemistry
- Jamia Millia Islamia
- New Delhi-110025
- India
| |
Collapse
|
38
|
Ilya E, Kulikova L, Van der Eycken EV, Voskressensky L. Recent Advances in Phthalan and Coumaran Chemistry. ChemistryOpen 2018; 7:914-929. [PMID: 30498677 PMCID: PMC6250979 DOI: 10.1002/open.201800184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Indexed: 12/12/2022] Open
Abstract
Oxygen-containing heterocycles are common in biologically active compounds. In particular, phthalan and coumaran cores are found in pharmaceuticals, organic electronics, and other useful medical and technological applications. Recent research has expanded the methods available for their synthesis. This Minireview presents recent advances in the chemistry of phthalans and coumarans, with the goal of overcoming synthetic challenges and facilitating the applications of phthalans and coumarans.
Collapse
Affiliation(s)
- Efimov Ilya
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
| | - Larisa Kulikova
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
| | - Erik V. Van der Eycken
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)Department of ChemistryKU Leuven Celestijnenlaan 200F3001LeuvenBelgium
| | - Leonid Voskressensky
- Peoples' Friendship University of Russia (RUDN University)6 Miklukho-Maklaya StreetMoscow117198Russia
| |
Collapse
|
39
|
Design, synthesis and anti-mycobacterial activity evaluation of benzofuran-isatin hybrids. Eur J Med Chem 2018; 159:277-281. [DOI: 10.1016/j.ejmech.2018.09.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 11/23/2022]
|
40
|
Synthesis and antiplasmodial activity of glyco-conjugate hybrids of phenylhydrazono-indolinones and glycosylated 1,2,3-triazolyl-methyl-indoline-2,3-diones. Eur J Med Chem 2018; 155:764-771. [DOI: 10.1016/j.ejmech.2018.06.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 12/23/2022]
|
41
|
Kaushik CP, Pahwa A, Kumar D, Kumar A, Singh D, Kumar K, Luxmi R. Synthesis and Antimicrobial Evaluation of (1-(2-(Benzyloxy)-2-oxoethyl)-1H
-1,2,3-triazol-4-yl)methyl Benzoate Analogues. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- C. P. Kaushik
- Department of Chemistry; Guru Jambheshwar University of Science and Technology; Hisar Haryana India
| | - Ashima Pahwa
- Department of Chemistry; Guru Jambheshwar University of Science and Technology; Hisar Haryana India
| | - Devinder Kumar
- Department of Chemistry; Guru Jambheshwar University of Science and Technology; Hisar Haryana India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences; Guru Jambheshwar University of Science and Technology; Hisar Haryana India
| | - Dharmendra Singh
- Centre for Research and Development; IPCA Lab Ltd.; Mumbai Maharashtra India
| | - Krishan Kumar
- Department of Chemistry; Guru Jambheshwar University of Science and Technology; Hisar Haryana India
| | - Raj Luxmi
- Department of Chemistry; Guru Jambheshwar University of Science and Technology; Hisar Haryana India
| |
Collapse
|
42
|
Danne AB, Choudhari AS, Sarkar D, Sangshetti JN, Khedkar VM, Shingate BB. Synthesis and biological evaluation of novel triazole-biscoumarin conjugates as potential antitubercular and anti-oxidant agents. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3490-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Carmel Y S, Begum NS, N L P, Suresh HP. Synthesis of-4-((4-trimethylsilyl-1 H-1,2,3-triazol-1-yl)methyl)-2 H-chromen-2-ones: A novel class of heteroaryl anionic synthon. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1416634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sowmiya Carmel Y
- Department of Post-Graduate Studies in Chemistry, Bangalore University, Bangalore, India
| | - Noor Shahina Begum
- Department of Post-Graduate Studies in Chemistry, Bangalore University, Bangalore, India
| | - Prasad N L
- Department of Post-Graduate Studies in Chemistry, Bangalore University, Bangalore, India
| | - Hari Prasad Suresh
- Department of Post-Graduate Studies in Chemistry, Bangalore University, Bangalore, India
| |
Collapse
|
44
|
Savithri JS, Rajakumar P. Synthesis, Photophysical, and Antioxidant Properties of Rhodamine B Decorated Novel Dendrimers. Aust J Chem 2018. [DOI: 10.1071/ch17652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Novel triazole bridged dendrimers with rhodamine B derivative as surface groups have been achieved using click chemistry by both divergent and convergent approaches. Rhodamine B decorated dendrimers 1, 2, and 3 were synthesised up to the second generation with spirolactam grafted at the terminal. The UV and fluorescence intensity increases with the increase in the dendritic generation. The synthesised rhodamine B decorated dendrimers show significant antioxidant behaviour compared with the standards butylated hydroxy toluene (BHT) and gallic acid when tested by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging assay and hydroxyl radical scavenging assay methods, respectively. Rhodamine B decorated higher generation dendrimers exhibit better antioxidant activity than the lower generation dendrimers due to the presence of a greater number of triazole branching units and rhodamine B derivative surface units.
Collapse
|
45
|
Zych D, Kurpanik A, Slodek A, Maroń A, Pająk M, Szafraniec-Gorol G, Matussek M, Krompiec S, Schab-Balcerzak E, Kotowicz S, Siwy M, Smolarek K, Maćkowski S, Danikiewicz W. NCN-Coordinating Ligands based on Pyrene Structure with Potential Application in Organic Electronics. Chemistry 2017; 23:15746-15758. [PMID: 28853184 DOI: 10.1002/chem.201703324] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 11/11/2022]
Abstract
Five novel derivatives of pyrene, substituted at positions 1,3,6,8 with 4-(2,2-dimethylpropyloxy)pyridine (P1), 4-decyloxypyridine (P2), 4-pentylpyridine (P3), 1-decyl-1,2,3-triazole (P4), and 1-benzyl-1,2,3-triazole (P5), are obtained through a Suzuki-Miyaura cross-coupling reaction or CuI -catalyzed 1,3-dipolar cycloaddition reaction, respectively, and characterized thoroughly. TGA measurements reveal the high thermal stability of the compounds. Pyrene derivatives P1-P5 all show photoluminescence (PL) quantum yields (Φ) of approximately 75 % in solution. Solid-state photo- and electroluminescence characteristics of selected compounds as organic light-emitting diodes are tested. In the guest-host configuration, two matrixes, that is, poly(N-vinylcarbazole) (PVK) and a binary matrix consisting of PVK and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) (50:50 wt %), are applied. The diodes show red, green, or blue electroluminescence, depending on both the compound chemical structure and the actual device architecture. In addition, theoretical studies (DFT and TD-DFT) provide a deeper understanding of the experimental results.
Collapse
Affiliation(s)
- Dawid Zych
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007, Katowice, Poland
| | - Aneta Kurpanik
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007, Katowice, Poland
| | - Aneta Slodek
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007, Katowice, Poland
| | - Anna Maroń
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007, Katowice, Poland
| | - Michał Pająk
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007, Katowice, Poland
| | - Grażyna Szafraniec-Gorol
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007, Katowice, Poland
| | - Marek Matussek
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007, Katowice, Poland
| | - Stanisław Krompiec
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007, Katowice, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007, Katowice, Poland.,Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819, Zabrze, Poland
| | - Sonia Kotowicz
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007, Katowice, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819, Zabrze, Poland
| | - Karolina Smolarek
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Sebastian Maćkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Witold Danikiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warszawa 42, Poland
| |
Collapse
|
46
|
Chirke SS, Krishna JS, Rathod BB, Bonam SR, Khedkar VM, Rao BV, Sampath Kumar HM, Shetty PR. Synthesis of Triazole Derivatives of 9-Ethyl-9H-carbazole and Dibenzo[b,d]furan and Evaluation of Their Antimycobacterial and Immunomodulatory Activity. ChemistrySelect 2017. [DOI: 10.1002/slct.201701377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sahadev S. Chirke
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic and Biomolecular Chemistry Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| | - Jattuboyina Siva Krishna
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic and Biomolecular Chemistry Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| | - Balaji B. Rathod
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Medicinal Chemistry & Biotechnology Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| | - Srinivasa Reddy Bonam
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Vaccine Immunology lab, Natural Product Chemistry Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| | - Vijay M. Khedkar
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy; Mumbai Agra Road, Dhule Maharashtra- 424 001 India
| | - Batchu Venkateswara Rao
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic and Biomolecular Chemistry Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| | - Halmuthur Mahabalarao Sampath Kumar
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Vaccine Immunology lab, Natural Product Chemistry Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| | - Prakasham Reddy Shetty
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Medicinal Chemistry & Biotechnology Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| |
Collapse
|
47
|
Triazole derivatives and their anti-tubercular activity. Eur J Med Chem 2017; 138:501-513. [PMID: 28692915 DOI: 10.1016/j.ejmech.2017.06.051] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/20/2017] [Accepted: 06/25/2017] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) remains one of the most widespread and leading deadliest diseases, threats one-third of the world's population. Although numerous efforts have been undertaken to develop new anti-TB agents, only a handful of compounds have entered human trials in the past 5 decades. Triazoles including 1,2,3-triazole and 1,2,4-triazole are one of the most important classes of nitrogen containing heterocycles that exhibited various biological activities. Triazole derivatives are regarded as a new class of effective anti-TB candidates owing to their potential anti-TB potency. Thus, molecules containing triazole moiety may show promising in vitro and in vivo anti-TB activities and might be able to prevent the drug resistant to certain extent. This review outlines the advances in the application of triazole-containing hybrids as anti-TB agents, and discusses the structure-activity relationship of these derivatives.
Collapse
|
48
|
|
49
|
Singh G, Arora A, Rani S, Kalra P, Kumar M. A Click-Generated Triethoxysilane Tethered Ferrocene-Chalcone-Triazole Triad for Selective and Colorimetric Detection of Cu2+Ions. ChemistrySelect 2017. [DOI: 10.1002/slct.201700186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies; Panjab University; Chandigarh 160014 India
| | - Aanchal Arora
- Khalsa College for Women, Civil Lines; Ludhiana, Punjab 143002 India
| | - Sunita Rani
- Department of Chemistry and Centre of Advanced Studies; Panjab University; Chandigarh 160014 India
| | - Pooja Kalra
- Department of Chemistry and Centre of Advanced Studies; Panjab University; Chandigarh 160014 India
| | - Manoj Kumar
- Department of Chemistry; BBK DAV College; Lawrence Road, Shastri Nagar, White Avenue Amritsar 143001 India
| |
Collapse
|
50
|
Jadhav RP, Raundal HN, Patil AA, Bobade VD. Synthesis and biological evaluation of a series of 1,4-disubstituted 1,2,3-triazole derivatives as possible antimicrobial agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2015.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|