1
|
Fu HJ, Chen ZJ, Wang H, Luo L, Wang Y, Huang RM, Xu ZL, Hammock B. Development of a sensitive non-competitive immunoassay via immunocomplex binding peptide for the determination of ethyl carbamate in wine samples. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124288. [PMID: 33525128 PMCID: PMC8893042 DOI: 10.1016/j.jhazmat.2020.124288] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 05/03/2023]
Abstract
Ethyl carbamate is a group of 2A carcinogen ubiquitously existed in fermented foods. The monitoring of its residues was important for evaluating the potential risk to human beings. Immunoassays with good accuracy and simplicity are great analytical tools for small molecule contaminants. However, it is typically confined in a competitive mode for small molecules with drawback of the sensitivity curbing. In this work, three different phages displayed peptides with capability of identifying the xanthyl ethyl carbamate immunocomplex were isolated from phage library. The binding mechanism of peptides and immunocomplex was studied by computer-assisted simulation. Results indicated that the xanthydrol group of xanthyl ethyl carbamate and the Asn-32 and Asn-92 residues of the antibody light chain were mainly responsible for binding. Simultaneously, a sensitive non-competitive immunoassay for detecting ethyl carbamate in wine samples was developed. The established method exhibited a limit of detection of 5.4 ng/mL and a linear range from 8.7 ng/mL to 32 ng/mL for wine samples. In comparison with the conventional competitive immunoassay, the sensitivity of the proposed non-competitive immunoassay was improved by 17-fold. The results of the immunoassay were validated by a standard ultra-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry, which illustrated good reliability of the proposed assay.
Collapse
Affiliation(s)
- Hui-Jun Fu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Yu Wang
- Guangzhou Institute for Food Control, Guangzhou 510410, China.
| | - Ri-Ming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Bruce Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis 95616, CA, United States.
| |
Collapse
|
2
|
Blum K, Cadet JL, Gold MS. Psychostimulant use disorder emphasizing methamphetamine and the opioid -dopamine connection: Digging out of a hypodopaminergic ditch. J Neurol Sci 2021; 420:117252. [PMID: 33279726 DOI: 10.1016/j.jns.2020.117252] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Approved food and drug administration (FDA) medications to treat Psychostimulant Use Disorder (PUD) are needed. Both acute and chronic neurological deficits related to the neurophysiological effects of these powerfully addictive drugs can cause stroke and alterations in mood and cognition. OBJECTIVE This article presents a brief review of the psychiatric and neurobiological sequelae of methamphetamine use disorder, some known neurogenetic associations impacted by psychostimulants, and explores treatment modalities and outcomes. HYPOTHESIS The authors propose that gentle D2 receptor stimulation accomplished via some treatment modalities can induce dopamine release, causing alteration of D2-directed mRNA and thus enhanced function of D2 receptors in the human. This proliferation of D2 receptors, in turn, will induce the attenuation of craving behavior, especially in genetically compromised high-risk populations. DISCUSSION A better understanding of the involvement of molecular neurogenetic opioid, mesolimbic dopamine, and psychostimulant connections in "wanting" supports this hypothesis. While both scientific and, clinical professionals search for an FDA approved treatment for PUD the induction of dopamine homeostasis, via activation of the brain reward circuitry, offers treatment for underlying neurotransmitter functional deficits, potential prophylaxis, and support for recovery efforts. CONCLUSION Dopamine regulation may help people dig out of their hypodopaminergia ditch.
Collapse
Affiliation(s)
- Kenneth Blum
- Graduate College, Western University Health Sciences, Pomona, CA, Baltimore, MD, United States of America.
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, United States of America
| | - Mark S Gold
- Department of Psychiatry, Washington University, St Louis, MO, United States of America.
| |
Collapse
|
3
|
Shine PV, Shankar KM, Abhiman B, Sudheer NS, Patil R. Epitope mapping of the White Spot Syndrome Virus (WSSV) VP28 monoclonal antibody through combined in silico and in vitro analysis reveals the potential antibody binding site. Mol Cell Probes 2020; 50:101508. [PMID: 31935436 DOI: 10.1016/j.mcp.2020.101508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 01/18/2023]
Abstract
White Spot Syndrome Virus (WSSV) infecting shrimp is an enveloped double-stranded DNA virus. The WSSV is a member of the genus Whispovirus. The envelope protein VP28 is the most investigated protein of WSSV. In the present study, the epitope mapping of the monoclonal antibody (MAb) C-33 was carried out. Based on the epitope mapping results, an antigen-antibody interaction model was derived. Peptide scanning and confirmation of epitopes of MAb C-33 were carried out using the sequence data. The MAb was reactive to the epitope of both recombinant VP28 and the whole virus. The results of the study indicated the presence of an epitope region. The epitope region is found positioned within two peptides, covering 13 amino acids. Framework and CDR (complementarity determining regions) of heavy and light chain (VH & VL) sequences showed identity to germline immunoglobulin sequences. The Web Antibody Modelling (WAM) selected for further evaluation based on a comparative analysis of WAM and Rosetta server-generated models of the Fv region. The docking study using WAM generated model revealed that the residues from LEU98 to GLY105 are active in antibody binding. The findings of this study could form a structural basis for further research in VP28 based diagnostics and therapeutics or vaccine discovery.
Collapse
Affiliation(s)
- P V Shine
- Aquatic Animal Health Laboratory, Department of Aquaculture, College of Fisheries, Mangalore, India
| | - K M Shankar
- Aquatic Animal Health Laboratory, Department of Aquaculture, College of Fisheries, Mangalore, India.
| | - B Abhiman
- Aquatic Animal Health Laboratory, Department of Aquaculture, College of Fisheries, Mangalore, India
| | - N S Sudheer
- Central Institute of Brackishwater Aquaculture, Chennai, India
| | - R Patil
- Aquatic Animal Health Laboratory, Department of Aquaculture, College of Fisheries, Mangalore, India
| |
Collapse
|
4
|
Tan K, Zhou M, Ahrendt AJ, Duke NEC, Tabaja N, Ball WJ, Kirley TL, Norman AB, Joachimiak A, Schiffer M, Wilton R, Pokkuluri PR. Structural analysis of free and liganded forms of the Fab fragment of a high-affinity anti-cocaine antibody, h2E2. Acta Crystallogr F Struct Biol Commun 2019; 75:697-706. [PMID: 31702583 PMCID: PMC6839822 DOI: 10.1107/s2053230x19013608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/05/2019] [Indexed: 01/04/2023] Open
Abstract
A high-affinity anti-cocaine monoclonal antibody, designated h2E2, is entering phase 1 clinical trials for cocaine abuse therapy. To gain insight into the molecular details of its structure that are important for binding cocaine and cocaine metabolites, the Fab fragment was generated and crystallized with and without ligand. Structures of the unliganded Fab and the Fab fragment bound to benzoylecgonine were determined, and were compared with each other and with other crystallized anti-cocaine antibodies. The affinity of the h2E2 antibody for cocaine is 4 nM, while that of the cocaine metabolite benzoylecgonine is 20 nM. Both are higher than the reported affinity for cocaine of the two previously crystallized anti-cocaine antibodies. Consistent with cocaine fluorescent quenching binding studies for the h2E2 mAb, four aromatic residues in the CDR regions of the Fab (TyrL32, TyrL96, TrpL91 and TrpH33) were found to be involved in ligand binding. The aromatic side chains surround and trap the tropane moiety of the ligand in the complex structure, forming significant van der Waals interactions which may account for the higher affinity observed for the h2E2 antibody. A water molecule mediates hydrogen bonding between the antibody and the carbonyl group of the benzoyl ester. The affinity of binding to h2E2 of benzoylecgonine differs only by a factor of five compared with that of cocaine; therefore, it is suggested that h2E2 would bind cocaine in the same way as observed in the Fab-benzoylecgonine complex, with minor rearrangements of some hypervariable segments of the antibody.
Collapse
Affiliation(s)
- Kemin Tan
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Min Zhou
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Angela J. Ahrendt
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Norma E. C. Duke
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Nassif Tabaja
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - William J. Ball
- Department of Pharmacology and Systems Physiology, College of Medicine and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Terence L. Kirley
- Department of Pharmacology and Systems Physiology, College of Medicine and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Andrew B. Norman
- Department of Pharmacology and Systems Physiology, College of Medicine and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Marianne Schiffer
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Rosemarie Wilton
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - P. Raj Pokkuluri
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
5
|
Chen ZJ, Zhang X, Wang BF, Rao MF, Wang H, Lei HT, Liu H, Zhang Y, Sun YM, Xu ZL. Production of Antigen-Binding Fragment against O, O-Diethyl Organophosphorus Pesticides and Molecular Dynamics Simulations of Antibody Recognition. Int J Mol Sci 2018; 19:ijms19051381. [PMID: 29734787 PMCID: PMC5983703 DOI: 10.3390/ijms19051381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/29/2018] [Accepted: 05/03/2018] [Indexed: 01/26/2023] Open
Abstract
Immunoassay for pesticides is an emerging analytical method since it is rapid, efficient, sensitive, and inexpensive. In this study, a recombinant antigen-binding fragment (Fab) against a broad set of O,O-diethyl organophosphorus pesticides (DOPs) was produced and characterized. The κ chain and Fd fragment were amplified via PCR and inserted into the vector pComb3XSS and the soluble Fab on phagemid pComb3XSS was induced by isopropyl β-d-thiogalactoside in E. coli TOP 10F’. SDS-PAGE, Western blotting, and indirect competitive ELISA results indicated that Fab maintained the good characteristics of the parental mAb. To better understand antibody recognition, the three-dimensional (3D) model of Fab was built via homologous modeling and the interaction between Fab and DOPs was studied via molecular docking and dynamics simulations. The model clearly explained the interaction manner of Fab and DOPs, and showed that the Arg-L96 and Arg-H52 were mainly responsible for antibody binding. This work provided a foundation for further mutagenesis of Fab to improve its characteristics.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Xuan Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Bing-Feng Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Mei-Fang Rao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Hui Liu
- Guangdong Institute of Product Quality Supervision and Inspection, Foshan 528300, China.
| | - Yan Zhang
- Guangdong Institute of Product Quality Supervision and Inspection, Foshan 528300, China.
| | - Yuan-Ming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
6
|
Kirley TL, Norman AB. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment. Hum Vaccin Immunother 2015; 11:458-67. [PMID: 25692880 PMCID: PMC4514192 DOI: 10.4161/21645515.2014.990856] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region.
Collapse
Key Words
- ABD-F, 7-fluorobenz-2-oxa-1, 3-diazole-4-sulfonamide
- ADCC, antibody-dependent cell mediated cytotoxicity
- BE, benzoylecgonine
- CDR, complementarity determining regions
- CE, cocaethylene
- CHO, Chinese hamster ovary
- ELISA, enzyme-linked immunosorbent assay
- Endo H, endoglycosidase H
- Endo Lys-C, lysyl endoproteinase
- Fab fragment
- Fab, fragment
- Fc, fragment, crystallizable
- HPLC, high performance liquid chromatography
- IEF, isoelectric focusing
- KD, dissociation constant
- MES, 2-(N-morpholino)ethanesulfonic acid
- MOPS, 3-(N-morpholino)propanesulfonic acid
- NEPHGE, non-equilibrium pH gel electrophoresis
- PNGase-F, peptide N-glycosidase F
- SCX, strong cation exchange
- TBP, tributylphosphine
- TBS, tris-buffered saline
- antigen-binding
- cocaine
- fluorescence quenching, heterogeneity
- h2E2, humanized monoclonal antibody against cocaine
- high performance ion exchange chromatography
- ligand binding
- mAb, monoclonal antibody
- monoclonal antibody
- non-equilibrium pH gel electrophoresis
Collapse
Affiliation(s)
- Terence L Kirley
- a Department of Pharmacology and Cell Biophysics ; College of Medicine ; University of Cincinnati ; Cincinnati , OH USA
| | | |
Collapse
|
7
|
Density functional theory investigation of cocaine water complexes. J Mol Model 2013; 19:3411-25. [PMID: 23686284 DOI: 10.1007/s00894-013-1866-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
Abstract
Twenty cocaine-water complexes were studied using density functional theory (DFT) B3LYP/6-311++G** level to understand their geometries, energies, vibrational frequencies, charge transfer and topological parameters. Among the 20 complexes, 12 are neutral and eight are protonated in the cocaine-water complexes. Based on the interaction energy, the protonated complexes are more stable than the neutral complexes. In both complexes, the most stable structure involves the hydrogen bond with water at nitrogen atom in the tropane ring and C=O groups in methyl ester. Carbonyl groups in benzoyl and methyl ester is the most reactive site in both forms and it is responsible for the stability order. The calculated topological results show that the interactions involved in the hydrogen bond are electrostatic dominant. Natural bond orbital (NBO) analysis confirms the presence of hydrogen bond and it supports the stability order. Atoms in molecules (AIM) and NBO analysis confirms the C-H···O hydrogen bonds formed between the cocaine-water complexes are blue shifted in nature.
Collapse
|
8
|
Molecular characterization of monoclonal antibodies against aflatoxins: a possible explanation for the highest sensitivity. Anal Chem 2012; 84:5229-35. [PMID: 22548609 DOI: 10.1021/ac202747u] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We screened and established seven hybridoma cell lines that secrete anti-aflatoxin monoclonal antibodies with different sensitivities. Among these antibodies, 1C11 exhibited the highest sensitivity against all four major kinds of aflatoxins (AFB1, AFB2, AFG1, and AFG2) (IC(50) 0.0012-0.018 ng mL(-1) in the enzyme linked immunosorbent assay (ELISA) system, visual limit of detection of 0.03-0.25 ng mL(-1)). To better understand the interactions between these antibodies and aflatoxins, as well as to guide their potential sensitivity improvement in recombinant antibodies, we used multiple sequence alignment and molecular modeling combined with molecular docking to clarify the molecular mechanism of the highest sensitivity of 1C11 against aflatoxins. Our results show that hydrogen bond and hydrophobic interaction formed by Ser-H49 and Phe-H103 in the antibody with the hapten played the most important roles in determining the binding affinity. Further experiments performed on antibody mutants, designed on the basis of the computational models, supported the prediction of the interaction mode between the antibody and the hapten. Although the factors that influence antibody sensitivity are highly interdependent, our experimental and modeling studies clearly demonstrate how structural differences influence the binding properties of antibodies against the target hapten with different sensitivities.
Collapse
|
9
|
Hu G, Chen LY. In silico experiments of single-chain antibody fragment against drugs of abuse. Biophys Chem 2010; 153:97-103. [PMID: 21056529 DOI: 10.1016/j.bpc.2010.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/10/2010] [Accepted: 10/12/2010] [Indexed: 11/29/2022]
Abstract
Three sets of in silico experiments have been conducted to elucidate the binding mechanics of two drugs, (+)-methamphetamine (METH) and amphetamine (AMP) to the single-chain variable fragment (scFv) recently engineered from anti-METH monoclonal antibody mAb6H4 (IgG, κlight chain, K(d)=11nM). The first set of in silico experiments are long time equilibration runs of scFv:drug complexes and of drug-free scFv both in the solution. They demonstrate how the solution structures of scFv deviate from its crystallographic form with or without drug molecules bound to it. They lead to the prediction that the Arrhenius activation barrier is nearly zero for transitions from the dissociated state to the bound state. The second set of in silico experiments are nonequilibrium dynamics of pulling the drug molecules out of the binding pocket of scFv and the equilibration runs for drugs to fall back into the binding pocket. They demonstrate that extra water molecules (in addition to the two crystallographic waters) exist inside the binding pocket, underneath the drug molecules. These extra waters must have been evaporated from the binding pockets during the crystallization process of the in vitro experiments of structural determination. The third set of in silico experiments are nonequilibrium steered molecular dynamics simulations to determine the absolute binding free energies of METH and AMP to scFv. The center of mass of a drug molecule (METH or AMP) is steered (pulled) towards (forward) and away from (reverse) the binding site, sampling forward and reverse pulling paths. Mechanic work is measured along the pulling paths. The work measurements are averaged through the Brownian dynamics fluctuation dissipation theorem to produce the free-energy profiles of the scFv:drug complexes as a function of the drug-scFv separation. These experiments lead to the theoretical prediction of absolute binding energies of METH and AMP that are in agreement with the in vitro experimental results.
Collapse
Affiliation(s)
- Guodong Hu
- Department of Physics, University of Texas at San Antonio, 78249, USA
| | | |
Collapse
|