1
|
Karmakar P, Karmakar I, Pal D, Das S, Brahmachari G. Electrochemical Regioselective C( sp2)-H Selenylation and Sulfenylation of Substituted 2-Amino-1,4-naphthoquinones. J Org Chem 2023; 88:1049-1060. [PMID: 36599149 DOI: 10.1021/acs.joc.2c02486] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A straightforward and efficient electrochemical method for regioselective C(sp2)-H selenylation and sulfenylation of substituted 2-amino-1,4-naphthoquinones has been unearthed. This oxidative cross-coupling reaction avoids using transition metal catalysts, oxidants, and high temperatures. The other notable advantages of this protocol are the tolerance of diverse functional groups, mild reaction conditions at ambient temperature, energy efficiency, good to excellent yields, short reaction times (in minutes), gram-scale applicability, and eco-friendliness.
Collapse
Affiliation(s)
- Pintu Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Debopam Pal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Suravi Das
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| |
Collapse
|
2
|
Pal S, Chatterjee R, Santra S, Zyryanov GV, Majee A. Metal‐Free, PhI(OAc)
2
‐Promoted Oxidative C(
sp
2
)−H Difunctionalization: Synthesis of Thioaminated Naphthoquinones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Satyajit Pal
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Rana Chatterjee
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute Ural Federal University 19 Mira Street 620002 Yekaterinburg Russian Federation
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute Ural Federal University 19 Mira Street 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22 S. Kovalevskoy Street 620219 Yekaterinburg Russian Federation
| | - Adinath Majee
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
3
|
Patan A, Göksel FS, Sahinler Ayla S. Reactions of 2,3-dichloro-1,4-naphthoquinone with piperidine, amine and some thiol nucleophile. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1901700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Abubaker Patan
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - F. Serpil Göksel
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Sibel Sahinler Ayla
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
4
|
Novel plastoquinone analogs containing benzocaine and its analogs: structure‐based design, synthesis, and structural characterization. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04384-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Brominated plastoquinone analogs: Synthesis, structural characterization, and biological evaluation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
New vitamin K3 (menadione) analogues: synthesis, characterization, antioxidant and catalase inhibition activities. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01835-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Monroy-Cárdenas M, Méndez D, Trostchansky A, Martínez-Cifuentes M, Araya-Maturana R, Fuentes E. Synthesis and Biological Evaluation of Thio-Derivatives of 2-Hydroxy-1,4-Naphthoquinone (Lawsone) as Novel Antiplatelet Agents. Front Chem 2020; 8:533. [PMID: 32850615 PMCID: PMC7417813 DOI: 10.3389/fchem.2020.00533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
We designed and synthesized in water, using conventional heating and microwave irradiation, new thio-derivatives of 2-hydroxy-1,4-naphthoquinone, a naturally occurring pigment known as lawsone or hennotannic acid, thus improving their antiplatelet activity with relevance to their potential future use in thrombus formation treatment. The structure-activity relationship showed that the thiophenyl moiety enhances the antiplatelet activity. Moreover, the position and nature of the substituent at the phenyl ring have a key effect on the observed biological activity. Compound 4 (2-((4-bromophenyl)thio)-3-hydroxynaphthalene-1,4-dione) was the most active derivative, presenting IC50 values for platelet aggregation inhibition of 15.03 ± 1.52 μM for TRAP-6, and 5.58 ± 1.01 μM for collagen. Importantly, no cytotoxicity was observed. Finally, we discussed the structure-activity relationships of these new lawsone thio-derivatives on inhibition of TRAP-6- and collagen-induced platelet aggregation.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile
| | - Diego Méndez
- Department of Clinical Biochemistry and Immunohaematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Andrés Trostchansky
- Departamento de Bioquimica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Maximiliano Martínez-Cifuentes
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Escuela de Tecnología Médica, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca, Chile
| | - Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohaematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| |
Collapse
|
8
|
Elamri I, Radloff M, Hohmann KF, Nimbarte VD, Nasiri HR, Bolte M, Safarian S, Michel H, Schwalbe H. Synthesis and Biological Screening of New Lawson Derivatives as Selective Substrate-Based Inhibitors of Cytochrome bo 3 Ubiquinol Oxidase from Escherichia coli. ChemMedChem 2020; 15:1262-1271. [PMID: 32159929 PMCID: PMC7497249 DOI: 10.1002/cmdc.201900707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/20/2020] [Indexed: 01/13/2023]
Abstract
The respiratory chain of Escherichia coli contains two different types of terminal oxidase that are differentially regulated as a response to changing environmental conditions. These oxidoreductases catalyze the reduction of molecular oxygen to water and contribute to the proton motive force. The cytochrome bo3 oxidase (cyt bo3 ) acts as the primary terminal oxidase under atmospheric oxygen levels, whereas the bd-type oxidase is most abundant under microaerobic conditions. In E. coli, both types of respiratory terminal oxidase (HCO and bd-type) use ubiquinol-8 as electron donor. Here, we assess the inhibitory potential of newly designed and synthesized 3-alkylated Lawson derivatives through L-proline-catalyzed three-component reductive alkylation (TCRA). The inhibitory effects of these Lawson derivatives on the terminal oxidases of E. coli (cyt bo3 and cyt bd-I) were tested potentiometrically. Four compounds were able to reduce the oxidoreductase activity of cyt bo3 by more than 50 % without affecting the cyt bd-I activity. Moreover, two inhibitors for both cyt bo3 and cyt bd-I oxidase could be identified. Based on molecular-docking simulations, we propose binding modes of the new Lawson inhibitors. The molecular fragment benzyl enhances the inhibitory potential and selectivity for cyt bo3 , whereas heterocycles reduce this effect. This work extends the library of 3-alkylated Lawson derivatives as selective inhibitors for respiratory oxidases and provides molecular probes for detailed investigations of the mechanisms of respiratory-chain enzymes of E. coli.
Collapse
Affiliation(s)
- Isam Elamri
- Center for Biomolecular Magnetic Resonance Institute of Organic Chemistry and Chemical BiologyGoethe-Universität Frankfurt am MainMax-von Laue-Straße 760438Frankfurt am MainGermany
| | - Melanie Radloff
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von-Laue-Straße 360438Frankfurt am MainGermany
| | - Katharina F. Hohmann
- Center for Biomolecular Magnetic Resonance Institute of Organic Chemistry and Chemical BiologyGoethe-Universität Frankfurt am MainMax-von Laue-Straße 760438Frankfurt am MainGermany
| | - Vijaykumar D. Nimbarte
- Center for Biomolecular Magnetic Resonance Institute of Organic Chemistry and Chemical BiologyGoethe-Universität Frankfurt am MainMax-von Laue-Straße 760438Frankfurt am MainGermany
| | - Hamid R. Nasiri
- Center for Biomolecular Magnetic Resonance Institute of Organic Chemistry and Chemical BiologyGoethe-Universität Frankfurt am MainMax-von Laue-Straße 760438Frankfurt am MainGermany
| | - Michael Bolte
- Institute for Inorganic ChemistryGoethe-UniversitätFrankfurt am MainGermany
| | - Schara Safarian
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von-Laue-Straße 360438Frankfurt am MainGermany
| | - Hartmut Michel
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von-Laue-Straße 360438Frankfurt am MainGermany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance Institute of Organic Chemistry and Chemical BiologyGoethe-Universität Frankfurt am MainMax-von Laue-Straße 760438Frankfurt am MainGermany
| |
Collapse
|
9
|
Sundaravelu N, Guha S, Sekar G. Iodonium Ion—Catalyzed Domino Synthesis of Z-Selective α,β-Diphenylthio Enones from Easily Accessible Secondary Alcohols. J Org Chem 2020; 85:5895-5906. [PMID: 32272834 DOI: 10.1021/acs.joc.0c00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nallappan Sundaravelu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| | - Somraj Guha
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| |
Collapse
|
10
|
Design, synthesis, characterization, and antimicrobial activity of novel piperazine substituted 1,4-benzoquinones. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Synthesis, characterization, and biological evaluation of a set of new alkylthio substituted plastoquinones containing ester group. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Synthesis and In Vitro Evaluation of Novel Liver X Receptor Agonists Based on Naphthoquinone Derivatives. Molecules 2019; 24:molecules24234316. [PMID: 31779181 PMCID: PMC6930623 DOI: 10.3390/molecules24234316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
We aimed to synthesize novel liver X receptor (LXR) agonists with potent agonist activity and subtype selectivity. Our synthetic scheme started with naphthoquinone derivatives, such as menadione and 2,3-dichloro-1,4-naphthoquinone. We introduced different substituents into the naphthoquinone structures, including aniline, piperidine, pyrrolidine, and morpholine, in one or two steps, and thus, we produced 14 target compounds. All 14 synthetic ligands were tested to determine whether they mediated LXR-mediated transcriptional activity. We investigated the transcriptional activity of each compound with two types of receptors, LXRα and LXRβ. Among all 14 compounds, two showed weak LXRβ-agonist activity, and two others exhibited potent LXRα-agonist activity. We also performed docking studies to obtain a better understanding of the modes of compound binding to LXR at the atomic level. In conclusion, we successfully synthesized naphthoquinone derivatives that act as LXRα/β agonists and selective LXRα agonists.
Collapse
|
13
|
Wellington KW, Hlatshwayo V, Kolesnikova NI, Saha ST, Kaur M, Motadi LR. Anticancer activities of vitamin K3 analogues. Invest New Drugs 2019; 38:378-391. [PMID: 31701430 DOI: 10.1007/s10637-019-00855-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
Abstract
In a previous study we reported on the synthesis of 1,4-naphthoquinone-sulfides by thiolation of 1,4-naphthohydroquinones with primary aryl and alkyl thiols using laccase as catalyst. These compounds were synthesized as Vitamin K3 analogues. Vitamin K3 (VK3; 2-methyl-1,4-naphthoquinone; menadione) is known to have potent anticancer activity. This investigation reports on the anticancer activity of these VK3 analogues against TK10 renal, UACC62 melanoma, MCF7 breast, HeLa cervical, PC3 prostate and HepG2 liver cancer cell lines to evaluate their cytostatic effects. A 1,4-naphthohydroquinone derivative exhibited potent cytostatic effects (GI50 = 1.66-6.75 μM) which were better than that of etoposide and parthenolide against several of the cancer cell lines. This compound produces reactive oxygen species and disrupts the mitochondrial membrane potential in the MCF7 breast cancer cell line which is an indication that the cells undergo apoptosis. The 1,4-naphthoquinone sulfides also had potent cytostatic effects (GI50 = 2.82-9.79 μM) which were also better than that of etoposide, parthenolide and VK3 against several of the cancer cell lines. These compounds are generally more selective for cancer cells than for normal human lung fetal fibroblasts (WI-38). They also have moderate to weak cytostatic effects compared to etoposide, parthenolide and VK3 which have potent cytostatic effects against WI-38. One analogue induces apoptosis by activating caspases without arresting the cell cycle in the MCF7 breast cancer cell line. These results inspire further research for possible application in cancer chemotherapy.
Collapse
Affiliation(s)
| | - Vincent Hlatshwayo
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- Centre for HIV and STI's, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | | | - Sourav Taru Saha
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Lesetja R Motadi
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
| |
Collapse
|
14
|
Ciftci HI, Bayrak N, Yıldırım H, Yıldız M, Radwan MO, Otsuka M, Fujita M, Tuyun AF. Discovery and structure–activity relationship of plastoquinone analogs as anticancer agents against chronic myelogenous leukemia cells. Arch Pharm (Weinheim) 2019; 352:e1900170. [DOI: 10.1002/ardp.201900170] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Halil I. Ciftci
- Department of Drug DiscoveryScience Farm Ltd Kumamoto Japan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto University Kumamoto Japan
| | - Nilüfer Bayrak
- Department of Chemistry, Faculty of EngineeringIstanbul University‐Cerrahpasa Istanbul Turkey
| | - Hatice Yıldırım
- Department of Chemistry, Faculty of EngineeringIstanbul University‐Cerrahpasa Istanbul Turkey
| | - Mahmut Yıldız
- Department of ChemistryGebze Technical University Kocaeli Turkey
| | - Mohamed O. Radwan
- Department of Drug DiscoveryScience Farm Ltd Kumamoto Japan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto University Kumamoto Japan
- Department of Chemistry of Natural Compounds, Pharmaceutical and Drug Industries Research DivisionNational Research Centre Cairo Egypt
| | - Masami Otsuka
- Department of Drug DiscoveryScience Farm Ltd Kumamoto Japan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto University Kumamoto Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto University Kumamoto Japan
| | - Amaç F. Tuyun
- Department of Engineering Sciences, Engineering FacultyIstanbul University‐Cerrahpasa Istanbul Turkey
| |
Collapse
|
15
|
Tuyun AF, Yıldız M, Bayrak N, Yıldırım H, Mataracı Kara E, Jannuzzi AT, Ozbek Celik B. Discovery of a new family of heterocyclic amine linked plastoquinone analogs for antimicrobial evaluation. Drug Dev Res 2019; 80:1098-1109. [DOI: 10.1002/ddr.21591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Amaç F. Tuyun
- Engineering Sciences Department, Engineering FacultyIstanbul University‐Cerrahpasa Istanbul Turkey
| | - Mahmut Yıldız
- Chemistry DepartmentGebze Technical University Gebze Kocaeli Turkey
| | - Nilüfer Bayrak
- Chemistry Department, Engineering FacultyIstanbul University‐Cerrahpasa Istanbul Turkey
| | - Hatice Yıldırım
- Chemistry Department, Engineering FacultyIstanbul University‐Cerrahpasa Istanbul Turkey
| | - Emel Mataracı Kara
- Pharmaceutical Microbiology Department, Pharmacy FacultyIstanbul University Istanbul Turkey
| | - Ayse T. Jannuzzi
- Pharmaceutical Toxicology Department, Pharmacy FacultyIstanbul University Istanbul Turkey
| | - Berna Ozbek Celik
- Pharmaceutical Microbiology Department, Pharmacy FacultyIstanbul University Istanbul Turkey
| |
Collapse
|
16
|
Ravichandiran P, Masłyk M, Sheet S, Janeczko M, Premnath D, Kim AR, Park B, Han M, Yoo DJ. Synthesis and Antimicrobial Evaluation of 1,4-Naphthoquinone Derivatives as Potential Antibacterial Agents. ChemistryOpen 2019; 8:589-600. [PMID: 31098338 PMCID: PMC6507621 DOI: 10.1002/open.201900077] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
1,4-Naphthoquinones are an important class of compounds present in a number of natural products. In this study, a new series of 1,4-naphthoquinone derivatives were synthesized. All the synthesized compounds were tested for in vitro antimicrobial activity. In this present investigation, two Gram-positive and five Gram-negative bacterial strains and one pathogenic yeast strain were used to determine the antibacterial activity. Naphthoquinones tested for its antibacterial potencies, among seven of them displayed better antimicrobial activity against Staphylococcus aureus (S. aureus; 30-70 μg/mL). Some of the tested compounds showed moderate to low antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) and Salmonella bongori (S. bongori; 70-150 μg/mL). In addition, most active compounds against S. aureus were evaluated for toxicity to human blood cells using a hemolysis assay. For better understanding, reactive oxygen species (ROS) generation, time-kill kinetic study, and apoptosis, necrosis responses were investigated for three representative compounds.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research CenterChonbuk National University, Jeollabuk-do54896Republic of Korea
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental SciencesThe John Paul II Catholic University of Lublinul. Konstantynów 1i20-708LublinPoland
| | - Sunirmal Sheet
- Department of Forest Science and Technology, College of Agriculture and Life SciencesChonbuk National University, 567 Baekje-daero, Deokjin-guJeonju-si561-756, Jeollabuk-doRepublic of Korea
| | - Monika Janeczko
- Department of Molecular Biology, Faculty of Biotechnology and Environmental SciencesThe John Paul II Catholic University of Lublinul. Konstantynów 1i20-708LublinPoland
| | - Dhanraj Premnath
- Department of BiotechnologyKarunya Institute of Technology and ScienceSchool of Agriculture and Biosciences, Karunya NagarCoimbatore641114, Tamil NaduIndia
| | - Ae Rhan Kim
- R&D Center for CANUTECH, Business Incubation Center, Department of Bioenvironmental ChemistryChonbuk National University, Jeollabuk-do54896Republic of Korea.
| | - Byung‐Hyun Park
- Department of BiochemistryChonbuk National University Medical School, Jeollabuk-do54896Republic of Korea
| | - Myung‐Kwan Han
- Department of MicrobiologyChonbuk National University Medical School, Jeollabuk-do54896Republic of Korea
| | - Dong Jin Yoo
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research CenterChonbuk National University, Jeollabuk-do54896Republic of Korea
| |
Collapse
|
17
|
Teixeira RI, Goulart JS, Corrêa RJ, Garden SJ, Ferreira SB, Netto-Ferreira JC, Ferreira VF, Miro P, Marin ML, Miranda MA, de Lucas NC. A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives. RSC Adv 2019; 9:13386-13397. [PMID: 35519567 PMCID: PMC9063979 DOI: 10.1039/c9ra01939a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023] Open
Abstract
The photochemical reactivity of the triplet state of pyrano- and furano-1,4-naphthoquinone derivatives (1 and 2) has been examined employing nanosecond laser flash photolysis. The quinone triplets were efficiently quenched by l-tryptophan methyl ester hydrochloride, l-tyrosine methyl ester hydrochloride, N-acetyl-l-tryptophan methyl ester and N-acetyl-l-tyrosine methyl ester, substituted phenols and indole (k q ∼109 L mol-1 s-1). For all these quenchers new transients were formed in the quenching process. These were assigned to the corresponding radical pairs that resulted from a coupled electron/proton transfer from the phenols, indole, amino acids, or their esters, to the excited state of the quinone. The proton coupled electron transfer (PCET) mechanism is supported by experimental rate constants, isotopic effects and theoretical calculations. The calculations revealed differences between the hydrogen abstraction reactions of phenol and indole substrates. For the latter, the calculations indicate that electron transfer and proton transfer occur as discrete steps.
Collapse
Affiliation(s)
- Rodolfo I Teixeira
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Juliana S Goulart
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Rodrigo J Corrêa
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Simon J Garden
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Sabrina B Ferreira
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | | | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmaceûtica Niterói Santa Rosa Brazil
| | - Paula Miro
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - M Luisa Marin
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - Miguel A Miranda
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - Nanci C de Lucas
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| |
Collapse
|
18
|
Kacmaz A, Deniz NG, Aydinli SG, Sayil C, Onay-Ucar E, Mertoglu E, Arda N. Synthesis and antiproliferative evaluation of some 1,4-naphthoquinone derivatives against human cervical cancer cells. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn the course of biological properties of quinone derivatives, the N(H)-, S- and S,S-substituted-1,4-naphthoquinones were synthesized by reactions of 2,3-dichloro-1,4-naphthoquinone with different amines (2-morpholinoaniline, tert-butyl 4-aminobenzoate, 4-tert-butylbenzylamine, N-(3-aminopropyl)-2-pipecoline, 2-amino-5,6-dimethylbenzothiazole, N,N'-diphenyl-p-phenylenediamine) and thiolat (sodium 2-methyl-2-propanethiolate). All new products were characterized by MS-ESI, UV-Vis, FT-IR, 1H NMR, 13C NMR. The antiproliferative activities of these compounds on human cervical cancer (HeLa) cells were evaluated by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay. Although all derivatives inhibited cell growth, the most active compound was 2-(tert-butylthio)-3-chloronaphthalene-1,4-dione 5 (IC50=10.16 μM) against the HeLa cells.
Collapse
Affiliation(s)
- Aysecik Kacmaz
- Division of Organic Chemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul34320, Turkey
| | - Nahide Gulsah Deniz
- Division of Organic Chemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul34320, Turkey
| | - Serdar Goksin Aydinli
- Division of Organic Chemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul34320, Turkey
| | - Cigdem Sayil
- Division of Organic Chemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul34320, Turkey
| | - Evren Onay-Ucar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Elif Mertoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Nazli Arda
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
19
|
Garcia Ferreira P, Pereira Borba-Santos L, Noronha LL, Deckman Nicoletti C, de Sá Haddad Queiroz M, de Carvalho da Silva F, Rozental S, Omena Futuro D, Francisco Ferreira V. Synthesis, Stability Studies, and Antifungal Evaluation of Substituted α- and β-2,3-Dihydrofuranaphthoquinones against Sporothrix brasiliensis and Sporothrix schenckii. Molecules 2019; 24:molecules24050930. [PMID: 30866442 PMCID: PMC6429059 DOI: 10.3390/molecules24050930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/19/2023] Open
Abstract
Sporotrichosis is a neglected fungal infection caused by Sporothrix spp., which have a worldwide distribution. The standard antifungal itraconazole has been recommended as a first-line therapy. However, failure cases in human and feline treatment have been reported in recent years. This study aimed to synthesize several α- and β-2,3-dihydrofuranaphthoquinones and evaluate them against Sporothrix schenckii and Sporothrix brasiliensis—the main etiological agents of sporotrichosis in Brazil. The stability of these compounds was also investigated under different storage conditions for 3 months. The samples were removed at 0, 60, and 90 days and assessed by 1H-NMR, and their in vitro antifungal susceptibility was tested. Furthermore, we evaluated the superficial changes caused by the most effective and stable compounds using scanning electron microscopy and determined their effects when combined with itraconazole. Nine dihydrofuranaphthoquinones showed good antifungal activity and stability, with MIC values of 2–32 µM. Compounds 6 and 10 were the most active dihydrofuranaphthoquinones in vitro for both species; in fungi, these compounds induced yeast–hyphae conversion and alteration in the hyphae and conidia structures. Compound 10 also exhibited a synergistic activity with itraconazole against S. schenckii, with a ΣFIC index value of 0.3. Our results indicate that Compounds 6 and 10 are potential candidates for the development of new antifungal agents for the treatment of sporotrichosis.
Collapse
Affiliation(s)
- Patricia Garcia Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Luana Pereira Borba-Santos
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ-Brazil.
| | - Leticia Lorena Noronha
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Caroline Deckman Nicoletti
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Marcella de Sá Haddad Queiroz
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói-RJ 24210-141, Brazil.
| | - Sônia Rozental
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ-Brazil.
| | - Débora Omena Futuro
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| |
Collapse
|
20
|
Wellington KW, Nyoka NBP, McGaw LJ. Investigation of the antibacterial and antifungal activity of thiolated naphthoquinones. Drug Dev Res 2019; 80:386-394. [PMID: 30609114 DOI: 10.1002/ddr.21512] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/06/2018] [Accepted: 12/15/2018] [Indexed: 12/24/2022]
Abstract
The WHO has stated that antibiotic resistance is escalating to perilously high levels globally and that traditional therapies of antimicrobial drugs are futile against infections caused by resistant microorganisms. Novel antimicrobial drugs are therefore required. We report in this study on the inhibitory activity of the 1,4-naphthoquinone-2,3-bis-sulfides and 1,4-naphthoquinone sulfides against two bacteria and a fungus to determine their antimicrobial properties. The 1,4-naphthoquinone sulfides have potent activity with a minimum inhibitory concentration (MIC) of 7.8 μg/mL against Staphylococcus aureus (Gram +ve), an MIC of 23.4 μg/mL against the fungus, Candida albicans, which was better than that of Amphotericin B (MIC = 31.3 μg/mL), and against Escherichia coli (Gram -ve) an MIC of 31.3 μg/mL was obtained. The 1,4-naphthoquinone had an MIC of 11.7 μg/mL against S. aureus and the 1,4-naphthohydroquinone also had the same activity against E. coli. Hit, Lead & Candidate Discovery.
Collapse
Affiliation(s)
| | - Nomgqibelo B P Nyoka
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
21
|
Zeng FL, Chen XL, He SQ, Sun K, Liu Y, Fu R, Qu LB, Zhao YF, Yu B. Copper-catalyzed one-pot three-component thioamination of 1,4-naphthoquinone. Org Chem Front 2019. [DOI: 10.1039/c9qo00091g] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A concise one-pot three-component thioamination of 1,4-naphthoquinone with thiols and amines was developed to synthesize 2-amino-3-thio-1,4-naphthoquinones.
Collapse
Affiliation(s)
- Fan-Lin Zeng
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xiao-Lan Chen
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
- The Key Laboratory for Chemical Biology of Fujian Province
| | - Shuai-Qi He
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Kai Sun
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yan Liu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
- College of Biological and Pharmaceutical Engineering
| | - Rui Fu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yu-Fen Zhao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
- The Key Laboratory for Chemical Biology of Fujian Province
| | - Bing Yu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
- Henan Nonferrous Metals Geological Exploration Institute
| |
Collapse
|
22
|
Kacmaz A, Hamurcu Z. New NH-substituted 1,4-naphtho- and 1,4-benzo- quinones: Synthesis, characterization and potential antiproliferative effect against MDA-MB-231 cells. PHOSPHORUS SULFUR 2018. [DOI: 10.1080/10426507.2018.1514503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Aysecik Kacmaz
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
23
|
Futuro DO, Ferreira PG, Nicoletti CD, Borba-Santos LP, Silva FCDA, Rozental S, Ferreira VF. The Antifungal Activity of Naphthoquinones: An Integrative Review. AN ACAD BRAS CIENC 2018; 90:1187-1214. [PMID: 29873671 DOI: 10.1590/0001-3765201820170815] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/08/2017] [Indexed: 01/05/2023] Open
Abstract
Naphthoquinones are the most commonly occurring type of quinones in nature. They are a diverse family of secondary metabolites that occur naturally in plants, lichens and various microorganisms. This subgroup is constantly being expanded through the discovery of new natural products and by the synthesis of new compounds via innovative techniques. Interest in quinones and the search for new biological activities within the members of this class have intensified in recent years, as evidenced by the evaluation of the potential antimicrobial activities of quinones. Among fungi of medical interest, yeasts of the genus Candida are of extreme importance due to their high frequency of colonization and infection in humans. The objective of this review is to describe the development of naphthoquinones as antifungals for the treatment of Candida species and to note the most promising compounds. By using certain criteria for selection of publications, 68 reports involving both synthetic and natural naphthoquinones are discussed. The activities of a large number of substances were evaluated against Candida albicans as well as against 7 other species of the genus Candida. The results discussed in this review allowed the identification of 30 naphthoquinones with higher antifungal activities than those of the currently used drugs.
Collapse
Affiliation(s)
- Débora O Futuro
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Patricia G Ferreira
- PPGCAPS, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Caroline D Nicoletti
- PPGCAPS, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luana P Borba-Santos
- Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando C DA Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Sonia Rozental
- Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
24
|
Omardien S, Ter Beek A, Vischer N, Montijn R, Schuren F, Brul S. Evaluating novel synthetic compounds active against Bacillus subtilis and Bacillus cereus spores using Live imaging with SporeTrackerX. Sci Rep 2018; 8:9128. [PMID: 29904100 PMCID: PMC6002552 DOI: 10.1038/s41598-018-27529-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/05/2018] [Indexed: 11/12/2022] Open
Abstract
An empirical approach was taken to screen a novel synthetic compound library designed to be active against Gram-positive bacteria. We obtained five compounds that were active against spores from the model organism Bacillus subtilis and the food-borne pathogen Bacillus cereus during our population based experiments. Using single cell live imaging we were able to observe effects of the compounds on spore germination and outgrowth. Difference in sensitivity to the compounds could be observed between B. subtilis and B. cereus using live imaging, with minor difference in the minimal inhibitory and bactericidal concentrations of the compounds against the spores. The compounds all delayed the bursting time of germinated spores and affected the generation time of vegetative cells at sub-inhibitory concentrations. At inhibitory concentrations spore outgrowth was prevented. One compound showed an unexpected potential for preventing spore germination at inhibitory concentrations, which merits further investigation. Our study shows the valuable role single cell live imaging can play in the final selection process of antimicrobial compounds.
Collapse
Affiliation(s)
- Soraya Omardien
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Alexander Ter Beek
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Norbert Vischer
- Swammerdam Institute for Life Sciences, Department of Bacterial Cell Biology and Physiology, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Roy Montijn
- Microbiology and Systems Biology Group, TNO, Utrechtseweg 48, 3704HE, Zeist, The Netherlands
| | - Frank Schuren
- Microbiology and Systems Biology Group, TNO, Utrechtseweg 48, 3704HE, Zeist, The Netherlands
| | - Stanley Brul
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
FUTURO DÉBORAO, FERREIRA PATRICIAG, NICOLETTI CAROLINED, BORBA-SANTOS LUANAP, SILVA FERNANDOCDA, ROZENTAL SONIA, FERREIRA VITORFRANCISCO. The Antifungal Activity of Naphthoquinones: An Integrative Review. AN ACAD BRAS CIENC 2018. [DOI: 10.1590/0001-3765201820170815 pmid: 29873671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
26
|
Zhang J, Liu Y, Shi D, Hu G, Zhang B, Li X, Liu R, Han X, Yao X, Fang J. Synthesis of naphthazarin derivatives and identification of novel thioredoxin reductase inhibitor as potential anticancer agent. Eur J Med Chem 2017; 140:435-447. [PMID: 28987605 DOI: 10.1016/j.ejmech.2017.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022]
Abstract
Mammalian thioredoxin reductase (TrxR) enzymes play a crucial role in regulating multiple redox-based signaling pathways and have attracted increasing attention as promising anticancer drug targets. We report here the synthesis of a panel of naphthazarin derivatives and discovery of 2-methyl-5,8-dihydroxy-1,4-naphthoquinone (3, 2-methylnaphthazarin) as a potent cytotoxic agent with a submicromolar half maximal inhibitory concentration to the human promyelocytic leukemia HL-60 cells. Mechanism studies reveal that the compound selectively inhibits TrxR to induce oxidative stress-mediated apoptosis of HL-60 cells. Knockdown of TrxR sensitizes the cells to 3 insults, while overexpression of the functional enzyme confers resistance to the compound treatment, underpinning the physiological significance of targeting TrxR by 3. Clarification of the interaction of compound 3 with TrxR unveils a mechanism underlying the cellular action of the compound, and sheds light in considering development of the compound as a potential cancer chemotherapeutic agent.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yaping Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Danfeng Shi
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Guodong Hu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
27
|
Delarmelina M, Greco SJ, Carneiro JWDM. Single step mechanism for nucleophilic substitution of 2,3-dichloro naphthoquinone using nitrogen, oxygen and sulfur nucleophiles: A DFT approach. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
A simple synthesis of 3,4-dihydrobenzo[f]quinoxalin-6(2H)-one derivatives substituted in the ring B. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2092-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Yıldırım H, Bayrak N, Tuyun AF, Kara EM, Çelik BÖ, Gupta GK. 2,3-Disubstituted-1,4-naphthoquinones containing an arylamine with trifluoromethyl group: synthesis, biological evaluation, and computational study. RSC Adv 2017. [DOI: 10.1039/c7ra00868f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial and antibiofilm activities were evaluated. Two compounds (5b and 5e) were identified as the hits against S. epidermidis. Compounds 5b and 5e showed promising antibacterial and antibiofilm activities.
Collapse
Affiliation(s)
- Hatice Yıldırım
- Chemistry Department
- Engineering Faculty
- Istanbul University
- Istanbul
- Turkey
| | - Nilüfer Bayrak
- Chemistry Department
- Engineering Faculty
- Istanbul University
- Istanbul
- Turkey
| | - Amac Fatih Tuyun
- Engineering Sciences Department
- Engineering Faculty
- Istanbul University
- Istanbul
- Turkey
| | - Emel Mataracı Kara
- Pharmaceutical Microbiology Department
- Pharmacy Faculty
- Istanbul University
- Istanbul
- Turkey
| | - Berna Özbek Çelik
- Pharmaceutical Microbiology Department
- Pharmacy Faculty
- Istanbul University
- Istanbul
- Turkey
| | - Girish Kumar Gupta
- Department of Pharmaceutical Chemistry
- Maharishi Markandeshwar College of Pharmacy
- Maharishi Markandeshwar University
- Ambala 133207
- India
| |
Collapse
|
30
|
Synthesis and studies of the antifungal activity of 2-anilino-/2,3-dianilino-/2-phenoxy- and 2,3-diphenoxy-1,4-naphthoquinones. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2732-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Ravichandiran P, Premnath D, Vasanthkumar S. Synthesis, molecular docking and antibacterial evaluation of 2-(4-(4-aminophenylsulfonyl)phenylamino)-3-(thiophen-2-ylthio)naphthalene-1,4-dione derivatives. Front Chem Sci Eng 2016. [DOI: 10.1007/s11705-015-1506-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Singh A, Paliwal SK, Sharma M, Mittal A, Sharma S, Sharma JP. In silico and in vitro screening to identify structurally diverse non-azole CYP51 inhibitors as potent antifungal agent. J Mol Graph Model 2015; 63:1-7. [PMID: 26579619 DOI: 10.1016/j.jmgm.2015.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/26/2015] [Indexed: 11/29/2022]
Abstract
The problem of resistance to azole class of antifungals is a serious cause of concern to the medical fraternity and thus there is an urgent need to identify non-azole scaffolds with high affinity for lanosterol 14α-demethylase (CYP51). In view of this we have attempted to identify novel non-azole CYP51 inhibitors through the application of pharmacophore based virtual screening and in vitro evaluation. A rigorously validated pharmacophore model comprising of 2 hydrogen bond acceptor and 2 hydrophobic features has been developed and used to mine NCI database. Out of 265 retrieved hits, NSC 1215 and 1520 have been chosen on the basis of Lipinski's rule of five, fit and estimated values. Both the hits were docked into the active site of CYP51. In view of high fit value and CDocker score, NSC 1215 and 1520 have been subjected to in vitro microbiological assay. The result reveals that NSC 1215 and 1520 are active against Candida albicans, Candida parapsilosis, Candida tropicalis, and Aspergillus niger. In addition to this the absorption characteristics of both the hits have also been determined using the rat sac technique and permeation in order of NSC 1520>NSC 1215 has been observed.
Collapse
Affiliation(s)
- Aarti Singh
- Department of Pharmacy, Banasthali University, P.O. Banasthali, Rajasthan 304022, India
| | - Sarvesh Kumar Paliwal
- Department of Pharmacy, Banasthali University, P.O. Banasthali, Rajasthan 304022, India.
| | - Mukta Sharma
- Department of Pharmacy, Banasthali University, P.O. Banasthali, Rajasthan 304022, India
| | - Anupama Mittal
- Department of Pharmacy, Banasthali University, P.O. Banasthali, Rajasthan 304022, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali University, P.O. Banasthali, Rajasthan 304022, India
| | - Jai Prakash Sharma
- Department of Pharmacy, Banasthali University, P.O. Banasthali, Rajasthan 304022, India
| |
Collapse
|
33
|
Leyva E, Baines KM, Espinosa-González CG, López LI, Magaldi-Lara DA, Leyva S. Synthesis of novel 2-(fluoroanilino)-3-(2,4-dinitroanilino) derivatives of 1,4-naphthoquinone. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Synthesis andIn VitroBiological Evaluation of Aminonaphthoquinones and Benzo[b]phenazine-6,11-dione Derivatives as Potential Antibacterial and Antifungal Compounds. J CHEM-NY 2015. [DOI: 10.1155/2015/645902] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of 2-arylamino-3-chloro-1,4-naphthoquinone derivatives (3a–h) by the reaction of 2,3-dichloro-1,4-naphthoquinone with aryl amines (2a–h) and benzo[b]phenazine-6,11-dione derivatives (4a–c) by the treatment of 2-arylamino-3-chloro-1,4-naphthoquinone derivatives (3a–h) with sodium azide were synthesized and tested for theirin vitroantibacterial and antifungal activities. The results suggest that compounds3dand3ghad potent antifungal activity againstCandida albicans(MIC = 78.12 μg/mL). All synthesized compounds (3a–h,4a–c) possessed activity againstE. faecaliswith MIC values of between 312.5 and 1250 μg/mL. Benzo[b]phenazine-6,11-dione derivatives (4a–c) were mostly active against Gram-positive bacteria. The structures of the new members of the series were established on the basis of their spectral properties (IR,1H NMR,13C NMR, and mass spectrometry).
Collapse
|
35
|
Singh VK, Verma SK, Kadu R, Mobin SM. Identification of unusual C–Cl⋯π contacts in 2-(alkylamino)-3-chloro-1,4-naphthoquinones: effect of N-substituents on crystal packing, fluorescence, redox and anti-microbial properties. RSC Adv 2015. [DOI: 10.1039/c5ra02295a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
XRD study demonstrates the opening of unusual C–Cl⋯π synthon in 2-(alkylamino)-3-chloro-1,4-naphthoquinone. Notably, compound holding N-pyridylmethyl exhibits enhanced activity against S. aureus and proved to be more potent than ciprofloxacin.
Collapse
Affiliation(s)
- Vinay K. Singh
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara-390 002
- India
| | - Sanjay K. Verma
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara-390 002
- India
| | - Rahul Kadu
- Department of Chemistry
- Faculty of Science
- The M. S. University of Baroda
- Vadodara-390 002
- India
| | - Shaikh M. Mobin
- National Single Crystal X-ray Diffraction Facility
- IIT Bombay
- Mumbai 400 076
- India
| |
Collapse
|
36
|
Tandon VK, Verma MK, Maurya HK, Kumar S. Micelles catalyzed one pot regio- and chemoselective synthesis of benzo[a]phenazines and naphtho[2,3-d]imidazoles ‘in H2O’. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.09.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Leyva E, Schmidtke Sobeck SJ, Loredo-Carrillo SE, Magaldi-Lara DA. Spectral and structural characterization of 2-(fluorophenylamino)- and 2-(nitrophenylamino)-1,4-naphthoquinone derivatives. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Ravichandiran P, Jegan A, Premnath D, Periasamy V, Muthusubramanian S, Vasanthkumar S. Synthesis, molecular docking and cytotoxicity evaluation of novel 2-(4-amino-benzosulfonyl)-5H-benzo[b]carbazole-6,11-dione derivatives as histone deacetylase (HDAC8) inhibitors. Bioorg Chem 2014; 53:24-36. [DOI: 10.1016/j.bioorg.2014.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 01/03/2023]
|
39
|
Satheshkumar A, Ganesh K, Elango KP. Charge transfer facilitated direct electrophilic substitution in phenylaminonaphthoquinones: experimental, theoretical and electrochemical studies. NEW J CHEM 2014. [DOI: 10.1039/c3nj01228j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Ryu CK, Oh SY, Choi SJ, Kang DY. Synthesis of Antifungal Evaluation of 2 H-[1,2,3]Triazolo[4,5- g]isoquinoline-4,9-diones. Chem Pharm Bull (Tokyo) 2014; 62:1119-24. [DOI: 10.1248/cpb.c14-00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chung-Kyu Ryu
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University
| | - Sun Young Oh
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University
| | - Soo Jung Choi
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University
| | - Da Young Kang
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University
| |
Collapse
|
41
|
Wellington KW, Gordon GER, Ndlovu LA, Steenkamp P. Laccase-Catalyzed CS and CC Coupling for a One-Pot Synthesis of 1,4-Naphthoquinone Sulfides and 1,4-Naphthoquinone Sulfide Dimers. ChemCatChem 2013. [DOI: 10.1002/cctc.201200606] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Samant BS, Chakaingesu C. Novel naphthoquinone derivatives: synthesis and activity against human African trypanosomiasis. Bioorg Med Chem Lett 2013; 23:1420-3. [PMID: 23337598 DOI: 10.1016/j.bmcl.2012.12.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 11/29/2022]
Abstract
A series of naphthoquinone derivatives has been synthesized and tested for its biological activity against human African trypanosomiasis. The use of reverse micellar medium not only enhanced the conversion rate, but also showed selectivity towards mono-coupled product in aryl chloride-aniline coupling reactions. Two derivatives of naphthoquinone (9b and 9c) exhibited potent activity against Trypanosoma brucei in vitro with low cytotoxicity.
Collapse
Affiliation(s)
- Bhupesh S Samant
- Natural Product and Medicinal Chemistry Research Group, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Grahamstown 6140, South Africa.
| | | |
Collapse
|
43
|
Tandon VK, Kumar S, Mishra NN, Shukla PK. Micelles catalyzed chemo- and regio-selective one pot and one step synthesis of 2,3,5,6-tetrakis(alkyl and arylsulfanyl)-1,4-benzoquinones and 2,5-diaminosubstituted-1,4-benzoquinones “In-Water” and their biological evaluation as antibacterial and antifungal agents. Eur J Med Chem 2012; 56:375-86. [DOI: 10.1016/j.ejmech.2012.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 07/07/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
44
|
Zhang R, Xu D, Xie J. Efficient Synthesis of 3-Phenylnaphtho[2,3-b]furan-4,9-diones in Water and Their Fluorimetric Study in Solutions. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201200499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Ryu CK, Kim YH, Im HA, Kim JY, Yoon JH, Kim A. Synthesis and antifungal activity of 6,7-bis(arylthio)-quinazoline-5,8-diones and furo[2,3-f]quinazolin-5-ols. Bioorg Med Chem Lett 2012; 22:500-3. [DOI: 10.1016/j.bmcl.2011.10.099] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/18/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
|
46
|
Tandon VK, Maurya HK, Mishra NN, Shukla PK. Micelles catalyzed chemoselective synthesis ‘in water’ and biological evaluation of oxygen containing hetero-1,4-naphthoquinones as potential antifungal agents. Bioorg Med Chem Lett 2011; 21:6398-403. [DOI: 10.1016/j.bmcl.2011.08.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/06/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
|
47
|
Lisboa CDS, Santos VG, Vaz BG, de Lucas NC, Eberlin MN, Garden SJ. C−H Functionalization of 1,4-Naphthoquinone by Oxidative Coupling with Anilines in the Presence of a Catalytic Quantity of Copper(II) Acetate. J Org Chem 2011; 76:5264-73. [DOI: 10.1021/jo200354u] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Cinthia da S. Lisboa
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária CT bloco A, Ilha do Fundão, RJ 21941-909, Brazil
| | - Vanessa G. Santos
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade Estadual de Campinas − UNICAMP, 13084-971, Campinas SP, Brazil
| | - Boniek G. Vaz
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade Estadual de Campinas − UNICAMP, 13084-971, Campinas SP, Brazil
| | - Nanci C. de Lucas
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária CT bloco A, Ilha do Fundão, RJ 21941-909, Brazil
| | - Marcos N. Eberlin
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade Estadual de Campinas − UNICAMP, 13084-971, Campinas SP, Brazil
| | - Simon J. Garden
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária CT bloco A, Ilha do Fundão, RJ 21941-909, Brazil
| |
Collapse
|
48
|
Reactions of 5-oxo-1-phenylpyrrolidine-3-carbohydrazides with 1,4-naphthoquinone derivatives and the properties of the obtained products. RESEARCH ON CHEMICAL INTERMEDIATES 2011. [DOI: 10.1007/s11164-011-0306-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Water-promoted unprecedented chemoselective nucleophilic substitution reactions of 1,4-quinones with oxygen nucleophiles in aqueous micelles. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.05.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|