1
|
Osman EO, Khalil NA, Magdy A, El-Dash Y. New pyrazole-pyridazine hybrids as selective COX-2 inhibitors: design, synthesis, molecular docking, in silico studies and investigation of their anti-inflammatory potential by evaluation of TNF-α, IL-6, PGE-2 and NO in LPS-induced RAW264.7 macrophages. RSC Med Chem 2024; 15:2692-2708. [PMID: 39149111 PMCID: PMC11324043 DOI: 10.1039/d4md00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 08/17/2024] Open
Abstract
Hybrid-based design has gained significant interest in the development of novel active substances with anti-inflammatory properties. In this study, two series of new pyrazole-pyridazine-based hybrids, 5a-f and 6a-f, were designed and synthesized. Molecules containing pyrazole and pyridazine pharmacophores in a single molecule, each with a unique mechanism of action and different pharmacological characteristics, are believed to exert higher biological activity. The cell viability of all compounds was evaluated using MTT assay in LPS-induced RAW264.7 macrophages. In vitro COX-1 and COX-2 inhibition assays were performed for the investigation of the anti-inflammatory activity of target compounds. Trimethoxy derivatives 5f and 6f were the most active candidates, demonstrating higher COX-2 inhibitory action than celecoxib, with IC50 values of 1.50 and 1.15 μM, respectively. Bromo derivative 6e demonstrated a COX-2 inhibitory activity comparable to celecoxib. Further, the ability of compounds 5f, 6e, and 6f to inhibit the generation of specific pro-inflammatory cytokines and mediators, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and prostaglandin-E2 (PGE-2), in RAW264.7 macrophages stimulated by LPS was also estimated. Compounds 5f and 6f demonstrated the most potent activity. Morover, according to the investigation using molecular modeling studies, derivatives 5f and 6f showed respectable binding affinity towards the COX-2 active site compared to the reference ligand. Moreover, the ADME parameters, physicochemical characteristics, pharmacokinetic characteristics, and l of the most potent compounds were also computed.
Collapse
Affiliation(s)
- Eman O Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University 33 Kasr El-Aini Street Cairo 11562 Egypt +20 2023635140 +20 2023639307
| | - Nadia A Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University 33 Kasr El-Aini Street Cairo 11562 Egypt +20 2023635140 +20 2023639307
| | - Alaa Magdy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University 33 Kasr El-Aini Street Cairo 11562 Egypt +20 2023635140 +20 2023639307
| | - Yara El-Dash
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University 33 Kasr El-Aini Street Cairo 11562 Egypt +20 2023635140 +20 2023639307
| |
Collapse
|
2
|
Osman EO, Khalil NA, Magdy A, El-Dash Y. Pyridazine and pyridazinone derivatives: Synthesis and in vitro investigation of their anti-inflammatory potential in LPS-induced RAW264.7 macrophages. Drug Dev Res 2024; 85:e22173. [PMID: 38515272 DOI: 10.1002/ddr.22173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/18/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
New pyridazine and pyridazinone derivatives 3a-g, 4a-f, 6a, and 6b were designed and synthesized. Cell viability of all compounds was established based on the viability of lipopolysaccharide-induced RAW264.7 macrophage cells determined via the MTT assay. In vitro inhibition assays on human COX-1 and COX-2 enzymes were conducted to probe the newly synthesized compounds' anti-inflammatory activity. The half maximal inhibitory concentration values for the most active compounds, 3d, 3e, and 4e towards COX-2 were 0.425, 0.519, and 0.356 µM, respectively, in comparison with celecoxib. The newly synthesized compounds' ability to inhibit the production of certain proinflammatory cytokines, such as inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-6, and prostaglandin-E2, was also estimated in lipopolysaccharide-induced macrophages (RAW264.7 cells). Compounds 3d and 3e were identified as the most potent cytokine production inhibitors. The results of molecular modeling studies suggested that these compounds were characterized by a reasonable binding affinity toward the active site of COX-2, when compared to a reference ligand. These results might be taken into consideration in further investigations into new anti-inflammatory agents.
Collapse
Affiliation(s)
- Eman O Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nadia A Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alaa Magdy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yara El-Dash
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Li L, Liu S, Wang B, Liu F, Xu S, Li P, Chen Y. An Updated Review on Developing Small Molecule Kinase Inhibitors Using Computer-Aided Drug Design Approaches. Int J Mol Sci 2023; 24:13953. [PMID: 37762253 PMCID: PMC10530957 DOI: 10.3390/ijms241813953] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Small molecule kinase inhibitors (SMKIs) are of heightened interest in the field of drug research and development. There are 79 (as of July 2023) small molecule kinase inhibitors that have been approved by the FDA and hundreds of kinase inhibitor candidates in clinical trials that have shed light on the treatment of some major diseases. As an important strategy in drug design, computer-aided drug design (CADD) plays an indispensable role in the discovery of SMKIs. CADD methods such as docking, molecular dynamic, quantum mechanics/molecular mechanics, pharmacophore, virtual screening, and quantitative structure-activity relationship have been applied to the design and optimization of small molecule kinase inhibitors. In this review, we provide an overview of recent advances in CADD and SMKIs and the application of CADD in the discovery of SMKIs.
Collapse
Affiliation(s)
- Linwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.L.); (S.L.); (B.W.); (F.L.); (S.X.)
- Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chines Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Songtao Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.L.); (S.L.); (B.W.); (F.L.); (S.X.)
- Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chines Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.L.); (S.L.); (B.W.); (F.L.); (S.X.)
- Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chines Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Fei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.L.); (S.L.); (B.W.); (F.L.); (S.X.)
- Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chines Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.L.); (S.L.); (B.W.); (F.L.); (S.X.)
- Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chines Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Pirui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.L.); (S.L.); (B.W.); (F.L.); (S.X.)
- Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chines Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.L.); (S.L.); (B.W.); (F.L.); (S.X.)
- Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chines Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
4
|
Bougheloum C. Ultrasound‐promoted green synthesis under montmorillonite K10 catalysis, characterization, ADME properties, and molecular docking study of a series of N-cyclic imides substituted benzenesulfonamide as possible inhibitors of human carbonic anhydrase I and II. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2136666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chafika Bougheloum
- Advanced Materials Laboratory, Faculty of Sciences, Badji Mokhtar Annaba-University, Annaba, Algeria
| |
Collapse
|
5
|
Bao Z, Chen C. Efficient synthesis of cyclic imides by the tandem N-arylation-acylation and rearrangement reaction of cyanoesters with diaryliodonium salts. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Ram S, Mehara P, Kumar A, Sharma AK, Chauhan AS, Kumar A, Das P. Supported-Pd catalyzed carbonylative synthesis of phthalimides and isoindolinones using Oxalic acid as in situ CO surrogate with 2-iodobenzamides and 2-iodobenzylanilines in ppm-level catalyst loading. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Grigor’eva AI, Shetnev AA, Kotov AD, Ivanovskii SA, Petzer A, Petzer JP. Synthesis and Antimonoamine Oxidase Activity of 2-(3-Iminoisoindol-1-ylidene)-2-arylacetonitriles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022050049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Samra MM, Hafeez H, Sadia A, Imran M, Basra MAR. Synthesis, characterization, docking and biological studies of M(II) (M= Mg, Ca, Sr) Piroxicam complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Synthesis, Spectroscopic and Biological Investigation of a New Ca(II) Complex of Meloxicam as Potential COX-2 Inhibitor. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 47:7105-7122. [PMID: 35070636 PMCID: PMC8767366 DOI: 10.1007/s13369-021-06521-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
Drug development on basis of coordination compounds provides versatile structural and functional properties as compared to other organic compounds. In the present study, a new Ca(II) complex of meloxicam was synthesized and characterized by elemental analysis, FT-IR, UV–Vis, 13C NMR, SEM–EDX, powder XRD and thermal analysis (TGA). The Ca(II) complex was investigated for its in vitro, in vivo biological activities and in silico docking analysis against COX-1 and COX-2. The spectral analysis indicates that the meloxicam acts as a deprotonated bidentate ligand (coordinated to the metal atom through the amide oxygen and the nitrogen atom of the thiazolyl ring) in the complex. SEM–EDX and powder XRD analysis depicted crystalline morphology of Ca(II) complex with a crystalline size of 32.86 nm. The in vitro biological activities were evaluated by five different antioxidant methods and COX inhibition assay, while in vivo activities were evaluated by carrageenan-, histamine- and PGE2-induced paw edema methods and acetic acid-induced writhing test. The Ca(II) complex showed prominent antioxidant activities and was found to be more selective toward COX-2 (43.77) than COX-1 as compared to meloxicam. It exhibited lower toxicity (LD50 1000 mg/Kg) and significantly inhibited carrageenan- and PGE2-induced inflammation at 10 mg/Kg (P < 0.05), but no significant effect was observed on histamine-induced inflammation. Moreover, Ca(II) complex significantly reduced the number of writhes induced by acetic acid (P < 0.05). The in silico molecular docking data revealed that Ca(II) complex obstructed COX-2 (dock score 6438) more effectively than COX-1 (dock score 5732) as compared to meloxicam alone.
Collapse
|
10
|
Neha K, Wakode S. Contemporary advances of cyclic molecules proposed for inflammation. Eur J Med Chem 2021; 221:113493. [PMID: 34029774 DOI: 10.1016/j.ejmech.2021.113493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
This review stretches insight about the advancement (2011-2021) of synthesized non-heterocyclic, heterocyclic and natural occurring cyclic molecules for inflammation. While inflammation is very significant in the abolition of pathogens and other causes of soreness, a protracted inflammatory procedure takes to outcomes in chronic disease that might finally affect in organ failure or damage. Thus, restraining the provocative process by the use of anti-inflammatory agents is chief in controlling this damage. It also reveals other pursuit along with their anti-inflammatory activity. Molecular docking studies represent most suitable PDB (Protein Data Bank) ID for the synthesized heterocyclic molecules with their selective inhibitor. It discusses the findings presented in recent research papers and provides understanding to researchers intended for the growth of newer combinations/molecules having littler side things.
Collapse
Affiliation(s)
- Kumari Neha
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India.
| |
Collapse
|
11
|
Mohamed NA, Abd El-Ghany NA, Abdel-Aziz MM. Synthesis, characterization, anti-inflammatory and anti-Helicobacter pylori activities of novel benzophenone tetracarboxylimide benzoyl thiourea cross-linked chitosan hydrogels. Int J Biol Macromol 2021; 181:956-965. [PMID: 33878358 DOI: 10.1016/j.ijbiomac.2021.04.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Chitosan (Cs) was cross-linked with four various quantities of 4,4'-(5,5'‑carbonylbis(1,3-dioxoisoindoline-5,2-diyl))dibenzoyl isothiocyanate. Elemental analysis, FTIR and 1H NMR spectroscopy assured that the amino groups of chitosan reacted with the isothiocyanate groups of the cross-linker producing four new hydrogels namely as BBTU-Cs-1, BBTU-Cs-2, BBTU-Cs-3, and BBTU-Cs-4 according to the increment of their cross-linking content, respectively. SEM showed their porous structures and XRD indicated their amorphous nature. Their swell ability increased with decreasing the medium pH value and with increasing cross-linking density. In comparison with the popular COX inhibitor Celecoxib, these hydrogels showed an inhibition activity towards COX enzymes with selective inhibition towards COX-2. Their inhibition activity could be arranged as follows: Celecoxib > BBTU-Cs-4 > BBTU-Cs-3 > BBTU-Cs-2 > BBTU-Cs-1. BBTU-CS-4 hydrogel exhibited a potent inhibition against COX-2 (IC50 0.42 μg/ml) compared with that observed for the standard Celecoxib (IC50 0.26 μg/ml). BBTU-Cs-4 is more potent against H. pylori compared to the other hydrogels. BBTU-Cs-4 at a concentration of 7.81 μg/ml is able to kill 100% of the H. pylori and exhibits a preferential ability to inhibit 89.35% of COX-2 than COX-1 (0%). These findings make BBTU-Cs-4 a promising anti-H. pylori and selective anti-inflammatory agent.
Collapse
Affiliation(s)
- Nadia A Mohamed
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt; Department of Chemistry, College of Science & Arts, Qassim University, Qassim, Saudi Arabia.
| | - Nahed A Abd El-Ghany
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Marwa M Abdel-Aziz
- Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11651, Egypt
| |
Collapse
|
12
|
Bano B, Kanwal, Khan KM, Jabeen A, Faheem A, Taha M, Haider SM, Perveen S. Sulfonamides and Sulphonyl Ester of Quinolines as Non-Acidic, Non- Steroidal, Anti-inflammatory Agents. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201005201308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Quinolines are an important class of heterocyclic compounds possessing a
wide range of biological activities. Previously, we had identified Schiff bases of quinoline as potential
anti-inflammatory agents, thus the current work is the continuation of our previous study.
Objective:
In the current study, 3-, 5-, and 8-sulfonamide and 8-sulfonate derivatives of quinoline
(1-50) were synthesized and their anti-inflammatory potential was evaluated. These synthetic analogs
were evaluated for their anti-inflammatory activity via ROS (Reactive oxygen species) inhibitory
effect produced from phagocytes from human whole blood.
Methods:
The sulfonamide and sulfonate derivatives of quinoline were synthesized via treating 5-,
3-, 8-amino, and 8-hydroxy quinolines with different substituted sulfonyl chlorides in pyridine. The
synthetic molecules were characterized using various spectroscopic techniques and screened for
their anti-inflammatory potential.
Results:
Among the synthetic derivatives 1-50, six compounds showed good to moderate antiinflammatory
activity. Compounds 47 (IC50 = 2.9 ± 0.5 μg/mL), 36 (IC50 = 3.2 ± 0.2 μg/mL), and
24 (IC50 = 6.7 ± 0.3 μg/mL) exhibited enhanced activity as compared to the standard ibuprofen
(IC50 = 11.2 ± 1.9 μg/mL). Compounds 20 (IC50 = 25.5 ± 0.7 μg/mL), 50 (IC50 = 42.9 ± 5.6 μg/mL),
and 8 (IC50 = 53.9 ± 3.1 μg/mL) were moderately active, however, rest of the compounds were
found to be inactive.
Conclusion:
The sulfonamide and sulfonate derivatives of quinoline were found to have promising
anti-inflammatory activity. Further studies on the modification of these molecules may lead to the
discovery of new and potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Bilquees Bano
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Aisha Faheem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Syed Moazzam Haider
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| |
Collapse
|
13
|
Moussa N, Hassan A, Gharaghani S. Pharmacophore model, docking, QSAR, and molecular dynamics simulation studies of substituted cyclic imides and herbal medicines as COX-2 inhibitors. Heliyon 2021; 7:e06605. [PMID: 33889764 PMCID: PMC8047494 DOI: 10.1016/j.heliyon.2021.e06605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 03/24/2021] [Indexed: 01/09/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) enzyme inhibitors have not eliminated the necessity for developed drugs not only in the nonsteroidal anti-inflammatory drug (NSAIDs) area, but also in other therapeutic applications including prevention of cancer and Alzheimer's disease. A series of novel substituted cyclic imides have been reported as selective COX-2 inhibitors. To understand the structural features responsible for their activity, a 3D validated pharmacophore and quantitative structure−activity relationship (QSAR) model have been developed. The values of enrichment factor (EF), goodness of hit score (GH), area under the ROC curve (AUC), sensitivity, and specificity refer to the good ability of the pharmacophore model to identify active compounds. Multiple linear regression (MLR) produced statistically significant QSAR model with (R2training = 0.763, R2test = 0.96) and predictability (Q2training = 0.66, Q2test = 0.84). Then, using the pharmacophore and QSAR models, eight authenticated botanicals in two herbal medicines and the ZINC compounds database, were virtually screened for ligands to COX-2. The retrieved hits which also obey lipinski's rule of five (RO5) were docked in the COX-2 3D structure to investigate their binding mode and affinity. Finally, based on the docking results, nine molecules were prioritized as promising hits that could be used as leads to discover novel COX-2 inhibitors. COX-2 inhibition of most of these hits has not been reported previously. Ten-nanosecond molecular dynamics simulation (10-ns MD) was performed on the initial structure COX-2 complex with ZINC000113253375 and ZINC000043170560 resulted from the docking. Our utilization of the 3D pharmacophore model, QSAR, molecular docking, and molecular dynamics simulation trials can be a potent strategy to successfully predict activity, efficiently design drugs, and screen large numbers of new compounds as active drug candidates.
Collapse
Affiliation(s)
- Nathalie Moussa
- Department of Pharmaceutical Chemistry and Quality Control of Medicaments, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Ahmad Hassan
- Department of Pharmaceutical Chemistry and Quality Control of Medicaments, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
|
15
|
Redzicka A, Czyżnikowska Ż, Wiatrak B, Gębczak K, Kochel A. Design and Synthesis of N-Substituted 3,4-Pyrroledicarboximides as Potential Anti-Inflammatory Agents. Int J Mol Sci 2021; 22:1410. [PMID: 33573356 PMCID: PMC7866801 DOI: 10.3390/ijms22031410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/23/2022] Open
Abstract
In the present paper, we describe the biological activity of the newly designed and synthesized series N-substituted 3,4-pyrroledicarboximides 2a-2p. The compounds 2a-2p were obtained in good yields by one-pot, three-component condensation of pyrrolo[3,4-c]pyrrole scaffold (1a-c) with secondary amines and an excess of formaldehyde solution in C2H5OH. The structural properties of the compounds were characterized by 1H NMR, 13C NMR FT-IR, MS, and elemental analysis. Moreover, single crystal X-ray diffraction has been recorded for compound 2h. The colorimetric inhibitor screening assay was used to obtain their potencies to inhibit COX-1 and COX-2 enzymes. According to the results, all of the tested compounds inhibited the activity of COX-1 and COX-2. Theoretical modeling was also applied to describe the binding properties of compounds towards COX-1 and COX-2 cyclooxygenase isoform. The data were supported by QSAR study.
Collapse
Affiliation(s)
- Aleksandra Redzicka
- Department of Chemistry of Drugs, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Żaneta Czyżnikowska
- Department of Inorganic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Benita Wiatrak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (B.W.); (K.G.)
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland
| | - Katarzyna Gębczak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (B.W.); (K.G.)
| | - Andrzej Kochel
- Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 54-234 Wrocław, Poland;
| |
Collapse
|
16
|
Lawrenson SB, Pearce AK, Hart S, Whitwood AC, O’Reilly RK, North M. Synthesis of cytotoxic spirocyclic imides from a biomass-derived oxanorbornene. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Akhtar MS, Lee YR. Organocatalyzed Synthesis of Highly Functionalized Phthalimides via Diels-Alder Reaction Employing Two Dienophiles. J Org Chem 2020; 85:15129-15138. [PMID: 33147948 DOI: 10.1021/acs.joc.0c01991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and facile protocol for the synthesis of biologically and pharmaceutically important phthalimides is developed by l-proline-catalyzed reaction between two dienophiles of α,β-unsaturated aldehydes and maleimides. The reaction involves an efficient benzannulation that proceeds via a formal [4 + 2] cycloaddition of azadiene intermediates generated in situ from enals and N-substituted maleimides. This protocol provides a variety of functionalized phthalimide derivatives, including a potent COX-2 enzyme inhibitor.
Collapse
Affiliation(s)
- Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
18
|
Abdel-Aziz AAM, El-Azab AS, AlSaif NA, Alanazi MM, El-Gendy MA, Obaidullah AJ, Alkahtani HM, Almehizia AA, Al-Suwaidan IA. Synthesis, anti-inflammatory, cytotoxic, and COX-1/2 inhibitory activities of cyclic imides bearing 3-benzenesulfonamide, oxime, and β-phenylalanine scaffolds: a molecular docking study. J Enzyme Inhib Med Chem 2020; 35:610-621. [PMID: 32013633 PMCID: PMC7034070 DOI: 10.1080/14756366.2020.1722120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/26/2022] Open
Abstract
Cyclic imides containing 3-benzenesulfonamide, oxime, and β-phenylalanine derivatives were synthesised and evaluated to elucidate their in vivo anti-inflammatory and ulcerogenic activity and in vitro cytotoxic effects. Most active anti-inflammatory agents were subjected to in vitro COX-1/2 inhibition assay. 3-Benzenesulfonamides (2-4, and 9), oximes (11-13), and β-phenylalanine derivative (18) showed potential anti-inflammatory activities with 71.2-82.9% oedema inhibition relative to celecoxib and diclofenac (85.6 and 83.4%, respectively). Most active cyclic imides 4, 9, 12, 13, and 18 possessed ED50 of 35.4-45.3 mg kg-1 relative to that of celecoxib (34.1 mg kg-1). For the cytotoxic evaluation, the selected derivatives 2-6 and 8 exhibited weak positive cytotoxic effects (PCE = 2/59-5/59) at 10 μM compared to the standard drug, imatinib (PCE = 20/59). Cyclic imides bearing 3-benzenesulfonamide (2-5, and 9), acetophenone oxime (11-14, 18, and 19) exhibited high selectivity against COX-2 with SI > 55.6-333.3 relative to that for celecoxib [SI > 387.6]. β-Phenylalanine derivatives 21-24 and 28 were non-selective towards COX-1/2 isozymes as indicated by their SI of 0.46-0.68.
Collapse
Affiliation(s)
- Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf A. AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal A. El-Gendy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A. Al-Suwaidan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Turky A, Bayoumi AH, Ghiaty A, El-Azab AS, A-M Abdel-Aziz A, Abulkhair HS. Design, synthesis, and antitumor activity of novel compounds based on 1,2,4-triazolophthalazine scaffold: Apoptosis-inductive and PCAF-inhibitory effects. Bioorg Chem 2020; 101:104019. [PMID: 32615465 DOI: 10.1016/j.bioorg.2020.104019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023]
Abstract
The antitumor activity of newly synthesised triazolophthalazines (L-45 analogues) 10-32 was evaluated in human hepatocellular carcinoma (HePG-2), breast cancer (MCF-7), prostate cancer (PC3), and colorectal carcinoma (HCT-116) cells. Compounds 17, 18, 25, and 32 showed potent antitumor activity (IC50, 2.83-13.97 μM), similar to doxorubicin (IC50, 4.17-8.87 μM) and afatinib (IC50, 5.4-11.4 μM). HePG2 was inhibited by compounds 10, 17, 18, 25, 26, and 32 (IC50, 3.06-10.5 μM), similar to doxorubicin (IC50, 4.50 μM) and afatinib (IC50, 5.4 μM). HCT-116 and MCF-7 were susceptible to compounds 10, 17, 18, 25, and 32 (IC50, 2.83-10.36 and 5.69-11.36 μM, respectively), similar to doxorubicin and afatinib (IC50 = 5.23 and 4.17, and 11.4 and 7.1 μM, respectively). Compounds 17, 25, and 32 exerted potent activities against PC3 (IC50, 7.56-12.28 μM) compared with doxorubicin (IC50, 8.87 µM) and afatinib (IC50 7.7 μM). Compounds 17 and 32 were the strongest PCAF inhibitors (IC50, 5.31 and 10.30 μM, respectively) and compounds 18 and 25 exhibited modest IC50 values (17.09 and 32.96 μM, respectively) compared with bromosporine (IC50, 5.00 μM). Compound 17 was cytotoxic to HePG2 cells (IC50, 3.06 μM), inducing apoptosis in the pre-G phase and arresting the cell cycle in the G2/M phase. Molecular docking for the most active PCAF inhibitors (17 and 32) was performed.
Collapse
Affiliation(s)
- Abdallah Turky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ashraf H Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Adel Ghiaty
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Hamada S Abulkhair
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University - Egypt, International Costal Road, New Damietta, Egypt.
| |
Collapse
|
20
|
Cytotoxicity, anticancer, and antioxidant properties of mono and bis-naphthalimido β-lactam conjugates. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02552-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
El-Husseiny WM, El-Sayed MAA, El-Azab AS, AlSaif NA, Alanazi MM, Abdel-Aziz AAM. Synthesis, antitumor activity, and molecular docking study of 2-cyclopentyloxyanisole derivatives: mechanistic study of enzyme inhibition. J Enzyme Inhib Med Chem 2020; 35:744-758. [PMID: 32183576 PMCID: PMC7144195 DOI: 10.1080/14756366.2020.1740695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A series of 24 compounds was synthesised based on a 2-cyclopentyloxyanisole scaffold 3–14 and their in vitro antitumor activity was evaluated. Compounds 4a, 4b, 6b, 7b, 13, and 14 had the most potent antitumor activity (IC50 range: 5.13–17.95 μM), compared to those of the reference drugs celecoxib, afatinib, and doxorubicin. The most active derivatives 4a, 4b, 7b, and 13 were evaluated for their inhibitory activity against COX-2, PDE4B, and TNF-α. Compounds 4a and 13 potently inhibited TNF-α (IC50 values: 2.01 and 6.72 μM, respectively) compared with celecoxib (IC50=6.44 μM). Compounds 4b and 13 potently inhibited COX-2 (IC50 values: 1.08 and 1.88 μM, respectively) comparable to that of celecoxib (IC50=0.68 μM). Compounds 4a, 7b, and 13 inhibited PDE4B (IC50 values: 5.62, 5.65, and 3.98 μM, respectively) compared with the reference drug roflumilast (IC50=1.55 μM). The molecular docking of compounds 4b and 13 with the COX-2 and PDE4B binding pockets was studied.Highlights Antitumor activity of new synthesized cyclopentyloxyanisole scaffold was evaluated. The powerful antitumor 4a, 4b, 6b, 7b & 13 were assessed as COX-2, PDE4B & TNF-α inhibitors. Compounds 4a, 7b, and 13 exhibited COX-2, PDE4B, and TNF-α inhibition. Compounds 4b and 13 showed strong interactions at the COX-2 and PDE4B binding pockets.
Collapse
Affiliation(s)
- Walaa M El-Husseiny
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Magda A-A El-Sayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Bougheloum C, Alioua S, Belghiche R, Benali N, Messalhi A. An efficient green synthesis of new benzothiazoles containing sulfonamide or cyclic imide moieties. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chafika Bougheloum
- Advanced Materials LaboratoryBadji Mokhtar Annaba‐University Annaba Algeria
| | - Sabrina Alioua
- Advanced Materials LaboratoryBadji Mokhtar Annaba‐University Annaba Algeria
| | - Robila Belghiche
- Chemistry Inorganic Materials LaboratoryBadji Mokhtar Annaba‐University Annaba Algeria
| | - Nesma Benali
- Advanced Materials LaboratoryBadji Mokhtar Annaba‐University Annaba Algeria
| | - Abdelrani Messalhi
- Advanced Materials LaboratoryBadji Mokhtar Annaba‐University Annaba Algeria
| |
Collapse
|
23
|
El-Azab AS, Abdel-Aziz AAM, Bua S, Nocentini A, Alanazi MM, AlSaif NA, Al-Suwaidan IA, Hefnawy MM, Supuran CT. Synthesis and comparative carbonic anhydrase inhibition of new Schiff's bases incorporating benzenesulfonamide, methanesulfonamide, and methylsulfonylbenzene scaffolds. Bioorg Chem 2019; 92:103225. [PMID: 31493707 DOI: 10.1016/j.bioorg.2019.103225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/07/2023]
Abstract
Herein, we report the synthesis, characterization, and carbonic anhydrase (CA) inhibition of the newly synthesized Schiff's bases 4-18 with benzenesulfonamide, methanesulfonamide, and methylsulfonylbenzene scaffolds. The compound inhibition profiles against human CA (hCA) isoforms I, II, IX, and XII were compared to those of the standard inhibitors, acetazolamide (AAZ) and SLC-0111 (a CA inhibitor in Phase II clinical trials for the treatment of hypoxic tumors). The hCA I was inhibited by compounds 4a-8a with inhibition constants (KI) in the range 93.5-428.1 nM (AAZ and SLC-0111: KI, 250.0 and 5080.0 nM, respectively). Compounds 4a-8a proved to be effective hCA II inhibitors, with KI ranging from 18.2 to 133.3 nM (AAZ and SLC-0111: KI, 12.0 and 960.0 nM, respectively). Compounds 4a-8a effectively inhibited hCA IX, with KI in the range 8.5-24.9 nM; these values are superior or equivalent to that of AAZ and SLC-0111 (KI, 25.0 and 45.0 nM, respectively). Compounds 4a-8a displayed effective hCA XII inhibitory activity with KI values ranging from 8.6 to 43.2 nM (AAZ and SLC-0111: KI, 5.7 and 4.5 nM, respectively). However, compounds 9b-13b and 14c-18c were found to be micromolar CA inhibitors. For molecular docking studies, compounds 5a, 6a, and 8a were selected.
Collapse
Affiliation(s)
- Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Silvia Bua
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Al-Suwaidan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed M Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
24
|
El-Azab AS, Abdel-Aziz AAM, Bua S, Nocentini A, AlSaif NA, Almehizia AA, Alanazi MM, Hefnawy MM, Supuran CT. New anthranilic acid-incorporating N-benzenesulfonamidophthalimides as potent inhibitors of carbonic anhydrases I, II, IX, and XII: Synthesis, in vitro testing, and in silico assessment. Eur J Med Chem 2019; 181:111573. [PMID: 31394463 DOI: 10.1016/j.ejmech.2019.111573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
Abstract
The carbonic anhydrase (CA) inhibitory activity of newly synthesized compounds 4-21 against the human CA (hCA) isoforms I, II, IX, and XII was measured and compared to that of standard sulfonamide inhibitors, acetazolamide (AAZ) and SLC-0111. Among this series; benzensulfonamides 6-11 gave the best potent hCA inhibitors with inhibition constants (KIs) ranging from 81.9 to 456.6 nM (AAZ and SLC-0111: KIs, 250.0 and 5080 nM, respectively). Compounds 6-11 proved to be effective hCA II inhibitors (KIs, 8.9-51.5 nM); they were almost equally potent to AAZ (KI, 12.0 nM) and had superior potency to SLC-0111 (KI, 960.0 nM). For hCA IX inhibition, compounds 6-11 proved to be potent inhibitors, with KI values of 3.9-36.0 nM, which were greater than or equal to that of AAZ and greater than that of SLC-0111 (KIs, 25.0 and 45.0 nM, respectively). For hCA XII inhibitory activity, compounds 6-11 displayed effective inhibition with KI values ranging from 4.6 to 86.3 nM and were therefore comparable to AAZ and SLC-0111 (KIs, 5.7 and 4.5 nM, respectively). Molecular docking studies of compounds 6, 7, 10, and 11 were conducted using the crystal structures of hCA isozymes I, II, IX, and XII to study their binding interactions for further lead optimization.
Collapse
Affiliation(s)
- Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Silvia Bua
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohamed M Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
25
|
Abstract
A simple approach to synthesize 4b,5,6,9-tetrahydro-7H-dibenzo[c,e]pyrrolo[1,2-a]azepin- 7-one has been developed, based on a three-step transformation of 2-(2-bromophenyl)cyclopropane-1,1-diester. The key stage in this method is an intramolecular cross-coupling of 1-(2-bromobenzyl)-5-(2-bromophenyl)pyrrolidin-2-one under continuous flow conditions in an H-Сube-Pro using commercially available supported Pd catalysts.
Collapse
|
26
|
Dardeer HM. Synthesis and characterization of original [2]rotaxanes including cyclodextrin. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0350-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Gülcan Duru, Evecen M, Tanak H, Ağar E. Crystal and Molecular Structure of 2-(4-Ethoxyphenyl)isoindoline-1,3-dione. CRYSTALLOGR REP+ 2018. [DOI: 10.1134/s1063774518070088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Abdel-Aziz AAM, Angeli A, El-Azab AS, Hammouda MEA, El-Sherbeny MA, Supuran CT. Synthesis and anti-inflammatory activity of sulfonamides and carboxylates incorporating trimellitimides: Dual cyclooxygenase/carbonic anhydrase inhibitory actions. Bioorg Chem 2018; 84:260-268. [PMID: 30508771 DOI: 10.1016/j.bioorg.2018.11.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 01/11/2023]
Abstract
Trimellitimides 6-21 were prepared and investigated in vivo for anti-inflammatory and ulcerogenic effects and in vitro for cytotoxicity. They were subjected to in vitro cyclooxygenase (COX-1/2) and carbonic anhydrase inhibition protocols. Compounds 6-11 and 18 exhibited anti-inflammatory activities and had median effective doses (ED50) of 34.3-49.8 mg kg-1 and 63.6-86.6% edema inhibition relative to the reference drug celecoxib (ED50: 33.9 mg kg-1 and 85.2% edema inhibition). Compounds 6-11 and 18 were weakly cytotoxic at 10 μM against 59 cell lines compared with the reference standard 5-fluorouracil (5-FU). Compounds 6-11 had optimal selectivity against COX-2. The selectivity index (SI) range was >200-490 and was comparable to that for celecoxib [COX-2 (SI) > 416.7]. In contrast, compounds 12, 13, and 16-18 were nonselective COX inhibitors with a selectivity index range of 0.92-0.25. The carbonic anhydrase inhibition assay showed that sulfonamide incorporating trimellitimides 6-11 inhibited the cytosolic isoforms hCA I and hCA II, and tumor-associated isoform hCA IX. They were relatively more susceptible to inhibition by compounds 8, 9, and 11. The KI ranges were 54.1-81.9 nM for hCA I, 25.9-55.1 nM for hCA II, and 46.0-348.3 nM for hCA IX. © 2018 Elsevier Science. All rights reserved.
Collapse
Affiliation(s)
- Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Andrea Angeli
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed E A Hammouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Magda A El-Sherbeny
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
29
|
4-Substituted benzenesulfonamides featuring cyclic imides moieties exhibit potent and isoform-selective carbonic anhydrase II/IX inhibition. Bioorg Chem 2018; 83:198-204. [PMID: 30380448 DOI: 10.1016/j.bioorg.2018.10.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/17/2022]
Abstract
The synthesis, characterization and biological evaluation of series of cyclic imides incorporating the 4-sulfamoylbenzamide scaffold (16-29) is disclosed. The compounds were designed by application of the "tail approach" to the aromatic sulfonamide scaffold and prepared by reacting the proper acid anhydride with 4-(hydrazinecarbonyl)benzenesulfonamide (15). Phtalimides and cyclic imides are biologically privileged scaffolds, endowed with versatile biological activity, such as an anti-proliferative action. The compounds were investigated for the inhibition of four human (h) isoforms of zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), and more specifically against the cytosolic hCA I and II and the transmembrane hCA IV and IX. Most screened sulfonamides exhibited great potency in inhibiting CA isoforms II, widely involved in glaucoma and other pathologies (KIs in the range of 0.7-62.3 nM), and IX, that is a validated anti-tumor target (KIs in the range of 3.0-50.9 nM), whereas interesting hydrophilicity-dependent inhibitory profiles were measured against isoform CA IV (KIs in the range of 3.9-428.6 nM). In silico studies were carried out to assess the binding mode of selected derivatives to hCA II, IV and IX.
Collapse
|
30
|
Abdel-Aziz AAM, El-Azab AS, Abu El-Enin MA, Almehizia AA, Supuran CT, Nocentini A. Synthesis of novel isoindoline-1,3-dione-based oximes and benzenesulfonamide hydrazones as selective inhibitors of the tumor-associated carbonic anhydrase IX. Bioorg Chem 2018; 80:706-713. [PMID: 30064081 DOI: 10.1016/j.bioorg.2018.07.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/25/2022]
Abstract
The synthesis, characterization and biological evaluation of a library of isoindoline-1,3-dione-based oximes and benzenesulfonamide hydrazones is disclosed. The set of hydroxyiminoethyl aromatic derivatives 10-18 was designed to assess the potentiality as zinc-binder for a feebly studied functional group in the field of carbonic anhydrase (CA, EC 4.2.1.1) inhibition. Analogue phenylphthalimmides were linked to benzenesulfonamide scaffold by hydrazone spacers in the second subset of derivatives 20-28 to further investigate the application of the "tail approach" as tool to afford CA selective inhibition profiles. The compounds were assayed for the inhibition of physiologically relevant isoforms of human carbonic anhydrases (hCA, EC 4.2.1.1), the cytosolic CA I and II, and the membrane-bound CA IV and tumor-associated CA IX. The new zinc-binders, both of the oxime and sulfonamide types, showed a striking selective activity against the target hCA IX over ubiquitous hCA I and II, with diverse inhibitory ranges and ratio differing the two subsets. With CA IX being a strongly current antitumor/antimetastatic drug target, these series of compounds may be of interest for the development of new, both conventional and unconventional anticancer drugs targeting hypoxia-induced CA isoforms such as CA IX with minimum ubiquitous CAs-related side effects.
Collapse
Affiliation(s)
- Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed A Abu El-Enin
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Claudiu T Supuran
- NEUROFARBA Department, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Alessio Nocentini
- NEUROFARBA Department, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
31
|
Gökce H, Öztürk N, Sert Y, El-Azab AS, A. AlSaif N, Abdel-Aziz AAM. 4-[(1, 3-Dioxoisoindolin-2-yl)methyl]benzenesulfonamide: Full Structural and Spectroscopic Characterization and Molecular Docking with Carbonic Anhydrase II. ChemistrySelect 2018. [DOI: 10.1002/slct.201802484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Halil Gökce
- Vocational School of Health Services; Giresun University; 28200 Giresun Turkey
| | - Nuri Öztürk
- Dereli Vocational School; Giresun University; 28950 Giresun Turkey
| | - Yusuf Sert
- Sorgun Vocational School; Bozok University; 66100 Yozgat Turkey
| | - Adel S. El-Azab
- Department of Pharmaceutical Chemistry; College of Pharmacy; King Saud University; 11451 Riyadh Saudi Arabia
- Department of Organic Chemistry; Faculty of Pharmacy; Al-Azhar University; 11884 Cairo Egypt
| | - Nawaf A. AlSaif
- Department of Pharmaceutical Chemistry; College of Pharmacy; King Saud University; 11451 Riyadh Saudi Arabia
| | - Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry; College of Pharmacy; King Saud University; 11451 Riyadh Saudi Arabia
- Department of Medicinal Chemistry; Faculty of Pharmacy; Mansoura University; 35516 Mansoura Egypt
| |
Collapse
|
32
|
Synthesis, molecular docking and biological evaluation of novel phthaloyl derivatives of 3-amino-3-aryl propionic acids as inhibitors of Trypanosoma cruzi trans-sialidase. Eur J Med Chem 2018; 156:252-268. [PMID: 30006170 DOI: 10.1016/j.ejmech.2018.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 11/22/2022]
Abstract
In the last two decades, trans-sialidase of Trypanosoma cruzi (TcTS) has been an important pharmacological target for developing new anti-Chagas agents. In a continuous effort to discover new potential TcTS inhibitors, 3-amino-3-arylpropionic acid derivatives (series A) and novel phthaloyl derivatives (series B, C and D) were synthesized and molecular docking, TcTS enzyme inhibition and determination of trypanocidal activity were carried out. From four series obtained, compound D-11 had the highest binding affinity value (-11.1 kcal/mol) compared to reference DANA (-7.8 kcal/mol), a natural ligand for TS enzyme. Furthermore, the 3D and 2D interactions analysis of compound D-11 showed a hydrogen bond, π-π stacking, π-anion, hydrophobic and Van der Waals forces with all important amino acid residues (Arg35, Arg245, Arg314, Tyr119, Trp312, Tyr342, Glu230 and Asp59) on the active site of TcTS. Additionally, D-11 showed the highest TcTS enzyme inhibition (86.9% ± 5) by high-performance ion exchange chromatography (HPAEC). Finally, D-11 showed better trypanocidal activity than the reference drugs nifurtimox and benznidazole with an equal % lysis (63 ± 4 and 65 ± 2 at 10 μg/mL) and LC50 value (52.70 ± 2.70 μM and 46.19 ± 2.36 μM) on NINOA and INC-5 strains, respectively. Therefore, D-11 is a small-molecule with potent TcTS inhibition and a strong trypanocidal effect that could help in the development of new anti-Chagas agents.
Collapse
|
33
|
Li N, Wang L, Zhang L, Zhao W, Qiao J, Xu X, Liang Z. Air-stable Bis(pentamethylcyclopentadienyl) Zirconium Perfluorooctanesulfonate as an Efficient and Recyclable Catalyst for the Synthesis of N-substituted Amides. ChemCatChem 2018. [DOI: 10.1002/cctc.201800590] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ningbo Li
- Basic Medical College; Shanxi Medical University; No.56 Xinjian South Road Taiyuan 030001 P.R. China
| | - Lingxiao Wang
- Basic Medical College; Shanxi Medical University; No.56 Xinjian South Road Taiyuan 030001 P.R. China
| | - Liting Zhang
- Basic Medical College; Shanxi Medical University; No.56 Xinjian South Road Taiyuan 030001 P.R. China
| | - Wenjie Zhao
- Basic Medical College; Shanxi Medical University; No.56 Xinjian South Road Taiyuan 030001 P.R. China
| | - Jie Qiao
- Basic Medical College; Shanxi Medical University; No.56 Xinjian South Road Taiyuan 030001 P.R. China
| | - Xinhua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Lushan South Road Changsha 410082 P.R. China
| | - Zhiwu Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Lushan South Road Changsha 410082 P.R. China
| |
Collapse
|
34
|
Wei ZY, Chi KQ, Wang KS, Wu J, Liu LP, Piao HR. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg Med Chem Lett 2018; 28:1797-1803. [PMID: 29678461 DOI: 10.1016/j.bmcl.2018.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/14/2023]
Abstract
Ursolic acid derivatives containing oxadiazole, triazolone, and piperazine moieties were synthesized in an attempt to develop potent anti-inflammatory agents. Structures of the synthesized compounds were elucidated by 1H NMR, 13C NMR, and HRMS. Most of the synthesized compounds showed pronounced anti-inflammatory effects at 100 mg/kg. In particular, compound 11b, which displayed the most potent anti-inflammatory activity of all of the compounds prepared, with 69.76% inhibition after intraperitoneal administration, was more potent than the reference drugs indomethacin and ibuprofen. The cytotoxicity of the compounds was also assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and no compounds showed any appreciable cytotoxic activity (IC50 >100 μmol/L). Furthermore, molecular docking studies of the synthesized compounds were performed to rationalize the obtained biological results. Overall, the results indicate that compound 11b could be a therapeutic candidate for the treatment of inflammation.
Collapse
Affiliation(s)
- Zhi-Yu Wei
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China
| | - Ke-Qiang Chi
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China
| | - Ke-Si Wang
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China
| | - Jie Wu
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China
| | - Li-Ping Liu
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China.
| | - Hu-Ri Piao
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China.
| |
Collapse
|
35
|
5-(1-Aryl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-1H-tetrazoles: Synthesis, structural characterization, Hirshfeld analysis, anti-inflammatory and anti-bacterial studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Romero-Chávez MM, Pineda-Urbina K, Pérez DJ, Obledo-Benicio F, Flores-Parra A, Gómez-Sandoval Z, Ramos-Organillo Á. Organotin(IV) compounds derived from ibuprofen and cinnamic acids, an alternative into design of anti-inflammatory by the cyclooxygenases (COX-1 and COX-2) pathway. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.02.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Sharma A, Gudala S, Ambati SR, Penta S, Bomma Y, Janapala VR, Jha A, Kumar A. Synthesis, Anticancer Evaluation, and Molecular Docking Studies of Novel (4-Hydroxy-2-Thioxo-3,4-Dihydro-2H-[1,3]Thiazin-6-Yl)-Chromen-2-Ones via a Multicomponent Approach. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Archi Sharma
- Department of Chemistry; National Institute of Technology; Raipur C.G-492010 India
| | - Satish Gudala
- Department of Chemistry; National Institute of Technology; Raipur C.G-492010 India
| | - Srinivasa Rao Ambati
- Department of Chemistry; National Institute of Technology; Raipur C.G-492010 India
- Department of Research and Development; MSN R&D Center, Pashamylaram; Medak 502307 India
| | - Santhosh Penta
- Department of Chemistry; National Institute of Technology; Raipur C.G-492010 India
| | - Yashwanth Bomma
- Biology Division; Indian Institute of Chemical Technology; Hyderabad 500 007 India
| | | | - Anubhuti Jha
- Department of Biotechnology; National Institute of Technology; Raipur C.G-492010 India
| | - Awanish Kumar
- Department of Biotechnology; National Institute of Technology; Raipur C.G-492010 India
| |
Collapse
|
38
|
Boichenko MA, Chagarovskiy AO. Recent achievements in the synthesis of dibenz[c,e]azepines (microreview). Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2207-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Ji F, Li J, Li X, Guo W, Wu W, Jiang H. Carbonylation Access to Phthalimides Using Self-Sufficient Directing Group and Nucleophile. J Org Chem 2017; 83:104-112. [DOI: 10.1021/acs.joc.7b02433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fanghua Ji
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jianxiao Li
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xianwei Li
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wei Guo
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wanqing Wu
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key
Laboratory of Functional Molecular Engineering of Guangdong Province,
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
40
|
Bano B, Khan KM, Jabeen A, Hameed A, Faheem A, Taha M, Perveen S, Iqbal S. Aminoquinoline Schiff Bases as Non-Acidic, Non-Steroidal, Anti-Inflammatory Agents. ChemistrySelect 2017. [DOI: 10.1002/slct.201702200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bilquees Bano
- H. E. J. Research Institute of Chemistry; International Center for Chemical and Biological Sciences; University of Karachi; Karachi- 75270 Pakistan
| | - Khalid M. Khan
- H. E. J. Research Institute of Chemistry; International Center for Chemical and Biological Sciences; University of Karachi; Karachi- 75270 Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research; International Center for Chemical and Biological Sciences; University of Karachi; Karachi- 75270 Pakistan
| | - Abdul Hameed
- H. E. J. Research Institute of Chemistry; International Center for Chemical and Biological Sciences; University of Karachi; Karachi- 75270 Pakistan
| | - Aisha Faheem
- Dr. Panjwani Center for Molecular Medicine and Drug Research; International Center for Chemical and Biological Sciences; University of Karachi; Karachi- 75270 Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy; Institute for Research and Medical Consultations (IRMC); Imam Abdulrahman Bin Faisal University; Dammam P.O. Box 31441 Saudi Arabia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex; Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui Karachi-75280 Pakistan
| | - Sarosh Iqbal
- Department of Applied Chemistry; Government College University; Faisalabad-38000 Pakistan
| |
Collapse
|
41
|
Silicon containing ibuprofen derivatives with antioxidant and anti-inflammatory activities: An in vivo and in silico study. Eur J Pharmacol 2017; 814:18-27. [DOI: 10.1016/j.ejphar.2017.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
|
42
|
Angeli A, Abdel-Aziz AAM, Nocentini A, El-Azab AS, Gratteri P, Supuran CT. Synthesis and carbonic anhydrase inhibition of polycyclic imides incorporating N-benzenesulfonamide moieties. Bioorg Med Chem 2017; 25:5373-5379. [PMID: 28789908 DOI: 10.1016/j.bmc.2017.07.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022]
Abstract
A series of polycyclic imides was prepared by reaction of the benzenesulfonamide with an appropriate polycyclic acid anhydride in refluxing glacial acetic acid. The synthesized mono- and bis-sulfonamides were evaluated as a carbonic anhydrase inhibitors (CA, EC 4.2.1.1), more precisely against the human (h) isoforms hCA I, II, IX and XII, some of which are involved in various pathologies, such as glaucoma, epilepsy and cancer. Several low nanomolar and isoform-selective hCA II, IX and XII inhibitors were detected, and the structure-activity relationship for CA inhibition with this class of compounds is discussed in details. Computational studies allowed us to explain the efficacy and isoform-selective behaviour for some of these enzyme inhiibtors.
Collapse
Affiliation(s)
- Andrea Angeli
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
| | - Alessio Nocentini
- Università degli Studi di Firenze, NEUROFARBA Dep., Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Paola Gratteri
- Università degli Studi di Firenze, NEUROFARBA Dep., Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
43
|
COX Inhibition Profile and Molecular Docking Studies of Some 2-(Trimethoxyphenyl)-Thiazoles. Molecules 2017; 22:molecules22091507. [PMID: 28891941 PMCID: PMC6151395 DOI: 10.3390/molecules22091507] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used therapeutic agents that exhibit frequent and sometimes severe adverse effects, including gastrointestinal ulcerations and cardiovascular disorders. In an effort to obtain safer NSAIDs, we assessed the direct cyclooxygenase (COX) inhibition activity and we investigated the potential COX binding mode of some previously reported 2-(trimethoxyphenyl)-thiazoles. The in vitro COX inhibition assays were performed against ovine COX-1 and human recombinant COX-2. Molecular docking studies were performed to explain the possible interactions between the inhibitors and both COX isoforms binding pockets. Four of the tested compounds proved to be good inhibitors of both COX isoforms, but only compound A3 showed a good COX-2 selectivity index, similar to meloxicam. The plausible binding mode of compound A3 revealed hydrogen bond interactions with binding site key residues including Arg120, Tyr355, Ser530, Met522 and Trp387, whereas hydrophobic contacts were detected with Leu352, Val349, Leu359, Phe518, Gly526, and Ala527. Computationally predicted pharmacokinetic profile revealed A3 as lead candidate. The present data prove that the investigated compounds inhibit COX and thus confirm the previously reported in vivo anti-inflammatory screening results suggesting that A3 is a suitable candidate for further development as a NSAID.
Collapse
|
44
|
Ghannay S, Bakari S, Ghabi A, Kadri A, Msaddek M, Aouadi K. Stereoselective synthesis of enantiopure N -substituted pyrrolidin-2,5-dione derivatives by 1,3-dipolar cycloaddition and assessment of their in vitro antioxidant and antibacterial activities. Bioorg Med Chem Lett 2017; 27:2302-2307. [DOI: 10.1016/j.bmcl.2017.04.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
|
45
|
Chiral Derivatives of Xanthones: Investigation of the Effect of Enantioselectivity on Inhibition of Cyclooxygenases (COX-1 and COX-2) and Binding Interaction with Human Serum Albumin. Pharmaceuticals (Basel) 2017; 10:ph10020050. [PMID: 28561772 PMCID: PMC5490407 DOI: 10.3390/ph10020050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 12/02/2022] Open
Abstract
Searching of new enantiomerically pure chiral derivatives of xanthones (CDXs) with potential pharmacological properties, particularly those with anti-inflammatory activity, has remained an area of interest of our group. Herein, we describe in silico studies and in vitro inhibitory assays of cyclooxygenases (COX-1 and COX-2) for different enantiomeric pairs of CDXs. The evaluation of the inhibitory activities was performed by using the COX Inhibitor Screening Assay Kit. Docking simulations between the small molecules (CDXs; known ligands and decoys) and the enzyme targets were undertaken with AutoDock Vina embedded in PyRx—Virtual Screening Tool software. All the CDXs evaluated exhibited COX-1 and COX-2 inhibition potential as predicted. Considering that the (S)-(−)-enantiomer of the nonsteroidal anti-inflammatory drug ketoprofen preferentially binds to albumin, resulting in lower free plasma concentration than (R)-(+)-enantiomer, protein binding affinity for CDXs was also evaluated by spectrofluorimetry as well as in in silico. For some CDXs enantioselectivity was observed.
Collapse
|
46
|
Khatri CK, Indalkar KS, Patil CR, Goyal SN, Chaturbhuj GU. Novel 2-phenyl-4,5,6,7-tetrahydro[ b ]benzothiophene analogues as selective COX-2 inhibitors: Design, synthesis, anti-inflammatory evaluation, and molecular docking studies. Bioorg Med Chem Lett 2017; 27:1721-1726. [DOI: 10.1016/j.bmcl.2017.02.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
|
47
|
Abdel-Aziz AAM, Angeli A, El-Azab AS, Abu El-Enin MA, Supuran CT. Synthesis and biological evaluation of cyclic imides incorporating benzenesulfonamide moieties as carbonic anhydrase I, II, IV and IX inhibitors. Bioorg Med Chem 2017; 25:1666-1671. [PMID: 28161252 DOI: 10.1016/j.bmc.2017.01.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
Abstract
A group of cyclic imides was synthesized by reaction of amino-substituted benzenesulfonamides with a series of acid anhydrides such as succinic, maleic, tetrahydrophthalic, pyrazine-2,3-dicarboxylic acid anhydride, and substituted phthalic anhydrides. The synthesized sulfonamides were evaluated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors against the human (h) isoforms hCA I, II, IV and IX, involved in a variety of diseases among which glaucoma, retinitis pigmentosa, etc. Some of these sulfonamides showed effective inhibitory action (in the nanomolar range) against the cytosolic isoform hCA II and the transmembrane, tumor-associated one hCA IX, making them interesting candidates for preclinical evaluation in glaucoma or various tumors in which the two enzymes are involved. hCA I and IV were on the other hand less inhibited by these sulfonamides, with inhibition constants in the micromolar range.
Collapse
Affiliation(s)
- Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt; Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Andrea Angeli
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed A Abu El-Enin
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
48
|
Solvent free, catalyst free, microwave or grinding assisted synthesis of bis-cyclic imide derivatives and their evaluation for anticancer activity. Bioorg Med Chem Lett 2017; 27:501-504. [DOI: 10.1016/j.bmcl.2016.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/15/2016] [Accepted: 12/09/2016] [Indexed: 01/19/2023]
|
49
|
Pérez DJ, Sarabia O, Villanueva-García M, Pineda-Urbina K, Ramos-Organillo Á, Gonzalez-Gonzalez J, Gómez-Sandoval Z, Razo-Hernández RS. In silico receptor-based drug design of X,Y-benzenesulfonamide derivatives as selective COX-2 inhibitors. CR CHIM 2017. [DOI: 10.1016/j.crci.2016.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Anti-inflammatory, analgesic and COX-2 inhibitory activity of novel thiadiazoles in irradiated rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 166:285-300. [DOI: 10.1016/j.jphotobiol.2016.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/10/2016] [Indexed: 02/07/2023]
|