1
|
Xiong Y, Wang R, Zheng J, Fang D, He P, Liu S, Lin Z, Chen X, Chen C, Shang Y, Yu Z, Liu X, Han S. Discovery of novel dihydropyrrolidone-thiadiazole compound crosstalk between the YycG/F two-component regulatory pathway and cell membrane homeostasis to combat methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2024; 277:116770. [PMID: 39208742 DOI: 10.1016/j.ejmech.2024.116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
The rapid emergence and spread of multidrug-resistant (MDR) Gram-positive pathogens present a significant challenge to global healthcare. Methicillin-resistant Staphylococcus aureus (MRSA) is a particular concern because of its high resistance to most antibiotics. Based on our previously reported chemical structure of compound 62, a series of novel derivatives were synthesized and evaluated for their antibacterial activities. We found that some of these derivatives displayed effective antibacterial activity against Gram-positive pathogens, with minimal cytotoxicity (CC50>100 μM) and hemolytic activity (HC50>200 μM). Among these derivatives, the minimum inhibitory concentration (MIC) of 62-7c against Gram-positive bacterial isolates ranged from 6.25 to 25 μM. This derivative also exhibited significant synergistic antibacterial effects with daptomycin both in vitro and in vivo, with an ability to eradicate planktonic and persister cells of MRSA. Additionally, 62-7c inhibited biofilm formation and eradicated mature biofilms of MRSA. Mechanistic studies revealed that 62-7c inhibited the YycG kinase activity and disrupted the cell membrane by binding to cardiolipin (CL), leading to cell death. Importantly, no development of drug resistance was observed even after 20 serial passages. Furthermore, 62-7c exhibited high biosafety and potent effectiveness in combating infections in both mouse pneumonia and mouse wound models infected with MRSA. Thus, our study revealed that 62-7c has the potential to serve as a novel antibacterial agent for treating MRSA infections.
Collapse
Affiliation(s)
- Yanpeng Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Ruian Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiaoyang Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Di Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peikun He
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Shanghong Liu
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Zhiwei Lin
- Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Xuecheng Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengchun Chen
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Yongpeng Shang
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China.
| | - Xiaoju Liu
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China.
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Joksimović N, Petronijević J, Ćoćić D, Ristić M, Mihajlović K, Janković N, Milović E, Klisurić O, Petrović N, Kosanić M. Synthesis, characterization, and biological evaluation of novel cobalt(II) complexes with β-diketonates: crystal structure determination, BSA binding properties and molecular docking study. J Biol Inorg Chem 2024; 29:541-553. [PMID: 39120695 DOI: 10.1007/s00775-024-02069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
In order to discover a new antibiotic drug with better or similar activity of the already existing drugs, a series of novel cobalt(II) complexes with β-diketonate as ligands is synthesized and tested on four strains of bacteria and four species of fungi. All compounds showed notable antimicrobial activity against all tested strains. More importantly, some cobalt(II) complexes displayed greater activity than ketoconazole. It is important to notice that on the tested strains Mucor mucedo and Penicillium italicum complex 2B showed five times better activity compared to ketoconazole, while complex 2D had two times better activity on Penicillium italicum strain compared to ketoconazole. Moreover, investigations with bovine serum albumin were performed. Investigations showed that the tested complexes have an appropriate affinity for binding to bovine serum albumin. In addition, the molecular docking study was performed to investigate more specifically the sites and binding mode of the tested cobalt(II) complexes with β-diketonate as ligands to bovine serum albumin, tyrosyl-tRNA synthetase, topoisomerase II DNA gyrase, and cytochrome P450 14 alpha-sterol demethylase. In conclusion, all the results indicated the great prospective of the novel cobalt complexes for some potential clinical applications in the future.
Collapse
Affiliation(s)
- Nenad Joksimović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| | - Jelena Petronijević
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Dušan Ćoćić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Marija Ristić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Kristina Mihajlović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Nenad Janković
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Emilija Milović
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Olivera Klisurić
- Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000, Novi Sad, Serbia
| | - Nevena Petrović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Marijana Kosanić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| |
Collapse
|
3
|
Cunha VLS, O'Doherty GA, Lowary TL. Exploring a De Novo Route to Bradyrhizose: Synthesis and Isomeric Equilibrium of Bradyrhizose Diastereomers ≠. Chemistry 2024; 30:e202400886. [PMID: 38590211 PMCID: PMC11168859 DOI: 10.1002/chem.202400886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
A de novo asymmetric strategy for the synthesis of d-bradyrhizose diastereomers from an achiral ketoenolester precursor is described. Key transformations used in the stereodivergent approach include two Noyori asymmetric reductions, an Achmatowicz rearrangement, diastereoselective alkene oxidations, and the first example of a palladium(0)-catalyzed glycosylation of a vinylogous pyranone. The isomeric composition of the bicyclic reducing sugars obtained was analyzed and their behaviour was compared to the natural product, revealing key stereocentres that impact the overall distribution.
Collapse
Affiliation(s)
- Vitor L S Cunha
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, 11529, Taiwan
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, 11529, Taiwan
- Institute of Biochemical Sciences, Institute of Biological Chemistry, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
4
|
Kumar A, Narang RK, Bhatia R. Recent advancements in NS5B inhibitors (2011-2021): Structural insights, SAR studies and clinical status. J Mol Struct 2023; 1293:136272. [DOI: 10.1016/j.molstruc.2023.136272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
|
5
|
Discovery of novel HCV inhibitors: design, synthesis and biological activity of phthalamide derivatives. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Joksimović N, Janković N, Davidović G, Bugarčić Z. 2,4-Diketo esters: Crucial intermediates for drug discovery. Bioorg Chem 2020; 105:104343. [PMID: 33086180 DOI: 10.1016/j.bioorg.2020.104343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Convenient structures such as 2,4-diketo esters have been widely used as an effective pattern in medicinal chemistry and pharmacology for drug discovery. 2,4-Diketonate is a common scaffold that can be found in many biologically active and naturally occurring compounds. Also, many 2,4-diketo ester derivatives have been prepared due to their suitable synthesis. These synthetic drugs and natural products have shown numerous interesting biological properties with clinical potential as a cure for the broad specter of diseases. This review aims to highlight the important evidence of 2,4-diketo esters as a privileged scaffold in medicinal chemistry and pharmacology. Herein, numerous aspects of 2,4-diketo esters will be summarized, including synthesis and isolation of their derivatives, development of novel synthetic methodologies, the evaluation of their biological properties as well as the mechanisms of action of the diketo ester derivates. This paperwork is expected to be a comprehensive, trustworthy, and critical review of the 2,4-diketo ester intermediate to the chemistry community.
Collapse
Affiliation(s)
- Nenad Joksimović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Nenad Janković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Goran Davidović
- University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Zorica Bugarčić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
7
|
Gedawy EM, Kassab AE, El Kerdawy AM. Design, synthesis and biological evaluation of novel pyrazole sulfonamide derivatives as dual COX-2/5-LOX inhibitors. Eur J Med Chem 2020; 189:112066. [PMID: 31982653 DOI: 10.1016/j.ejmech.2020.112066] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 12/13/2022]
Abstract
The current therapeutic demand focuses more on the discovery of safer NSAIDs rather than exploring more potent alternatives. The dual COX-2/5-LOX inhibition is a promising strategy for designing compounds with an enhanced efficacy, reduced side-effects and a broader anti-inflammatory spectrum in comparison to classical NSAIDs. In the present study, a hybridization strategy was adopted to combine the binding features of the non-selective COX inhibitor "sulindac" and the selective COX-2 inhibitor "celecoxib" which show 5-LOX inhibitory activity with that of licofelone and a celecoxib pyridone analogue which show dual COX-2/5-LOX inhibitory activity to design new series of pyrazole sulfonamide derivatives which, by design, should possess dual COX-2/5-LOX inhibitory activity. All the newly synthesized compounds were initially tested for their potential analgesic activity, then candidates that showed potential analgesic activity, were selected for the subsequent anti-inflammatory activity evaluation, as well as, ulcerogenicity testing. Moreover, in vitro assessment of their COX-1, COX-2 and 5-LOX inhibitory activities were performed. The benzothiophen-2-yl pyrazole carboxylic acid derivative 5b showed the most potent analgesic and anti-inflammatory activities surpassing that of celecoxib and indomethacin. It showed potent COX-1, COX-2 and 5-LOX inhibitory activity with IC50 of 5.40, 0.01 and 1.78 μM, respectively, showing a selectivity index of 344.56 that was much better than the used reference standards and its parent compounds, confirming its selectivity towards COX-2 over COX-1. The prodrug ester derivatives 6c and 6d showed equipotent activity to their parent compound 5b with no gastric ulcerogenicity. Molecular docking simulations confirmed that the newly synthesized compounds possess the structural features required for binding to the target enzymes COX-2 and 5-LOX.
Collapse
Affiliation(s)
- Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo BUC, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| |
Collapse
|
8
|
Wei Y, Li W, Du T, Hong Z, Lin J. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method. Int J Mol Sci 2019; 20:ijms20143572. [PMID: 31336592 PMCID: PMC6678913 DOI: 10.3390/ijms20143572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/13/2019] [Accepted: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus type-1 and hepatitis C virus (HIV/HCV) coinfection occurs when a patient is simultaneously infected with both human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV), which is common today in certain populations. However, the treatment of coinfection is a challenge because of the special considerations needed to ensure hepatic safety and avoid drug–drug interactions. Multitarget inhibitors with less toxicity may provide a promising therapeutic strategy for HIV/HCV coinfection. However, the identification of one molecule that acts on multiple targets simultaneously by experimental evaluation is costly and time-consuming. In silico target prediction tools provide more opportunities for the development of multitarget inhibitors. In this study, by combining Naïve Bayes (NB) and support vector machine (SVM) algorithms with two types of molecular fingerprints, MACCS and extended connectivity fingerprints 6 (ECFP6), 60 classification models were constructed to predict compounds that were active against 11 HIV-1 targets and four HCV targets based on a multiple quantitative structure–activity relationships (multiple QSAR) method. Five-fold cross-validation and test set validation were performed to measure the performance of the 60 classification models. Our results show that the 60 multiple QSAR models appeared to have high classification accuracy in terms of the area under the ROC curve (AUC) values, which ranged from 0.83 to 1 with a mean value of 0.97 for the HIV-1 models and from 0.84 to 1 with a mean value of 0.96 for the HCV models. Furthermore, the 60 models were used to comprehensively predict the potential targets of an additional 46 compounds, including 27 approved HIV-1 drugs, 10 approved HCV drugs and nine selected compounds known to be active against one or more targets of HIV-1 or HCV. Finally, 20 hits, including seven approved HIV-1 drugs, four approved HCV drugs, and nine other compounds, were predicted to be HIV/HCV coinfection multitarget inhibitors. The reported bioactivity data confirmed that seven out of nine compounds actually interacted with HIV-1 and HCV targets simultaneously with diverse binding affinities. The remaining predicted hits and chemical-protein interaction pairs with the potential ability to suppress HIV/HCV coinfection are worthy of further experimental investigation. This investigation shows that the multiple QSAR method is useful in predicting chemical-protein interactions for the discovery of multitarget inhibitors and provides a unique strategy for the treatment of HIV/HCV coinfection.
Collapse
Affiliation(s)
- Yu Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Wei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
- Platform of Pharmaceutical Intelligence, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Tengfei Du
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
- Platform of Pharmaceutical Intelligence, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
9
|
Mahboubi Rabbani SMI, Vahabpour R, Hajimahdi Z, Zarghi A. Design, Synthesis, Molecular Modeling Studies and Biological Evaluation of N'-Arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide Derivatives as Novel Anti-HCV Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:1790-1802. [PMID: 32184846 PMCID: PMC7059030 DOI: 10.22037/ijpr.2019.112186.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HCV-induced hepatitis is one of the most debilitating diseases. The limited number of anti-HCV drugs and drug-resistance necessitate developing of new scaffolds with different mode of actions. HCV non-structural protein 5B (NS5B) is an attractive target for development of novel inhibitors of HCV replication. In this paper, new N'-arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide derivatives were designed based on the pharmacophores of HCV NS5B active site binding inhibitors. Designed compounds were synthesized and evaluated for their inhibitory activities in a cell-based HCV replicon system assay. Among tested compounds, compounds 18 and 20 were found to be the most active (EC50 = 35 and 70 µM, respectively) with good selectivity index (SI > 2) in the corresponding series. Molecular modeling studies showed that the designed compounds are capable of forming key coordination with the two magnesium ions as well as interactions with other key residues at the active site of HCV NS5B.
Collapse
Affiliation(s)
| | - Rouhollah Vahabpour
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Saez-Ayala M, Laban Yekwa E, Mondielli C, Roux L, Hernández S, Bailly F, Cotelle P, Rogolino D, Canard B, Ferron F, Alvarez K. Metal chelators for the inhibition of the lymphocytic choriomeningitis virus endonuclease domain. Antiviral Res 2018; 162:79-89. [PMID: 30557576 DOI: 10.1016/j.antiviral.2018.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Arenaviridae is a viral family whose members are associated with rodent-transmitted infections to humans responsible of severe diseases. The current lack of a vaccine and limited therapeutic options make the development of efficacious drugs of high priority. The cap-snatching mechanism of transcription of Arenavirus performed by the endonuclease domain of the L-protein is unique and essential, so we developed a drug design program targeting the endonuclease activity of the prototypic Lymphocytic ChorioMeningitis Virus. Since the endonuclease activity is metal ion dependent, we designed a library of compounds bearing chelating motifs (diketo acids, polyphenols, and N-hydroxyisoquinoline-1,3-diones) able to block the catalytic center through the chelation of the critical metal ions, resulting in a functional impairment. We pre-screened 59 compounds by Differential Scanning Fluorimetry. Then, we characterized the binding affinity by Microscale Thermophoresis and evaluated selected compounds in in vitro and in cellula assays. We found several potent binders and inhibitors of the endonuclease activity. This study validates the proof of concept that the endonuclease domain of Arenavirus can be used as a target for anti-arena-viral drug discovery and that both diketo acids and N-hydroxyisoquinoline-1,3-diones can be considered further as potential metal-chelating pharmacophores.
Collapse
Affiliation(s)
- Magali Saez-Ayala
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France; Aix-Marseille Université, CRCM, INSERM U1068, CNRS UMR7258, 13273, Marseille, France
| | - Elsie Laban Yekwa
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France; Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Clémence Mondielli
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France
| | - Loic Roux
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France; Department of Physiology Anatomy and Genetics, Oxford University, Oxford, UK
| | - Sergio Hernández
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France
| | - Fabrice Bailly
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000, Lille, France
| | - Philippe Cotelle
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000, Lille, France; ENSCL, F-59000, Lille, France
| | - Dominga Rogolino
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, P.co Area delle Scienze 17/A, Parma, Italy
| | - Bruno Canard
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France
| | - François Ferron
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France
| | - Karine Alvarez
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France.
| |
Collapse
|
11
|
Bongarzone S, Nadal M, Kaczmarska Z, Machón C, Álvarez M, Albericio F, Coll M. Structure-Driven Discovery of α,γ-Diketoacid Inhibitors Against UL89 Herpesvirus Terminase. ACS OMEGA 2018; 3:8497-8505. [PMID: 31458978 PMCID: PMC6645139 DOI: 10.1021/acsomega.8b01472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 05/27/2023]
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen causing a variety of severe viral infections, including irreversible congenital disabilities. Nowadays, HCMV infection is treated by inhibiting the viral DNA polymerase. However, DNA polymerase inhibitors have several drawbacks. An alternative strategy is to use compounds against the packaging machinery or terminase complex, which is essential for viral replication. Our discovery that raltegravir (1), a human immunodeficiency virus drug, inhibits the nuclease function of UL89, one of the protein subunits of the complex, prompted us to further develop terminase inhibitors. On the basis of the structure of 1, a library of diketoacid (α,γ-DKA and β,δ-DKA) derivatives were synthesized and tested for UL89-C nuclease activity. The mode of action of α,γ-DKA derivatives on the UL89 active site was elucidated by using X-ray crystallography, molecular docking, and in vitro experiments. Our studies identified α,γ-DKA derivative 14 able to inhibit UL89 in vitro in the low micromolar range, making 14 an optimal candidate for further development and virus-infected cell assay.
Collapse
Affiliation(s)
- Salvatore Bongarzone
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Molecular
Biology Institute of Barcelona (IBMB—CSIC), Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Marta Nadal
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Molecular
Biology Institute of Barcelona (IBMB—CSIC), Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Zuzanna Kaczmarska
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Molecular
Biology Institute of Barcelona (IBMB—CSIC), Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Cristina Machón
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Molecular
Biology Institute of Barcelona (IBMB—CSIC), Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Mercedes Álvarez
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, 08028 Barcelona, Spain
- Laboratory
of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Fernando Albericio
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, 08028 Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Miquel Coll
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Molecular
Biology Institute of Barcelona (IBMB—CSIC), Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Saez-Ayala M, Yekwa EL, Carcelli M, Canard B, Alvarez K, Ferron F. Crystal structures of Lymphocytic choriomeningitis virus endonuclease domain complexed with diketo-acid ligands. IUCRJ 2018; 5:223-235. [PMID: 29765612 PMCID: PMC5947727 DOI: 10.1107/s2052252518001021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
The Arenaviridae family, together with the Bunyaviridae and Orthomyxoviridae families, is one of the three negative-stranded RNA viral families that encode an endonuclease in their genome. The endonuclease domain is at the N-terminus of the L protein, a multifunctional protein that includes the RNA-dependent RNA polymerase. The synthesis of mRNA in arenaviruses is a process that is primed by capped nucleotides that are 'stolen' from the cellular mRNA by the endonuclease domain in cooperation with other domains of the L protein. This molecular mechanism has been demonstrated previously for the endonuclease of the prototype Lymphocytic choriomeningitis virus (LCMV). However, the mode of action of this enzyme is not fully understood as the original structure did not contain catalytic metal ions. The pivotal role played by the cap-snatching process in the life cycle of the virus and the highly conserved nature of the endonuclease domain make it a target of choice for the development of novel antiviral therapies. Here, the binding affinities of two diketo-acid (DKA) compounds (DPBA and L-742,001) for the endonuclease domain of LCMV were evaluated using biophysical methods. X-ray structures of the LCMV endonuclease domain with catalytic ions in complex with these two compounds were determined, and their efficacies were assessed in an in vitro endonuclease-activity assay. Based on these data and computational simulation, two new DKAs were synthesized. The LCMV endonuclease domain exhibits a good affinity for these DKAs, making them a good starting point for the design of arenavirus endonuclease inhibitors. In addition to providing the first example of an X-ray structure of an arenavirus endonuclease incorporating a ligand, this study provides a proof of concept that the design of optimized inhibitors against the arenavirus endonuclease is possible.
Collapse
Affiliation(s)
| | - Elsie Laban Yekwa
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France
- CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Mauro Carcelli
- Dipartimento di Scienze Chimiche, della Vita, della Sostenibilità Ambientale, Università Di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Bruno Canard
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France
- CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Karine Alvarez
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France
- CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - François Ferron
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France
- CNRS, AFMB UMR 7257, 13288 Marseille, France
| |
Collapse
|
13
|
Abdellatif KR, Abdelall EK, Fadaly WA, Kamel GM. Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1,3,5-triarylpyrazoline and 1,5-diarylpyrazole derivatives as selective COX-2 inhibitors. Bioorg Med Chem Lett 2016; 26:406-412. [DOI: 10.1016/j.bmcl.2015.11.105] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
14
|
Zhao C, Wang Y, Ma S. Recent advances on the synthesis of hepatitis C virus NS5B RNA-dependent RNA-polymerase inhibitors. Eur J Med Chem 2015; 102:188-214. [PMID: 26276434 DOI: 10.1016/j.ejmech.2015.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis C is a viral liver infection considered as the major cause of cirrhosis and hepatocellular carcinoma (HCC). The HCV NS5B polymerase, an RNA-dependent RNA polymerase, is essential for HCV replication, which is able to catalyze the synthesis of positive (genomic) and negative (template) strand HCV RNA, but has no functional equivalent in mammalian cells. Therefore, the NS5B polymerase has emerged as an attractive target for the development of specifically targeted antiviral therapy for HCV (DAA, for direct-acting antivirals). Recently, a growing number of compounds have been reported as the NS5B polymerase inhibitors, some of which especially have been licensed in clinical trials. This review describes recent advances on the synthesis of the NS5B polymerase inhibitors, focusing on the merits and demerits of their synthetic methods. In particular, inspiration from the synthesis and the future direction of the NS5B polymerase inhibitors are highlighted.
Collapse
Affiliation(s)
- Can Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, PR China
| | - Yinhu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, PR China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, PR China.
| |
Collapse
|
15
|
Pourbasheer E, Aalizadeh R, Shokouhi Tabar S, Ganjali MR, Norouzi P, Shadmanesh J. 2D and 3D Quantitative Structure–Activity Relationship Study of Hepatitis C Virus NS5B Polymerase Inhibitors by Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis Methods. J Chem Inf Model 2014; 54:2902-14. [DOI: 10.1021/ci500216c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Eslam Pourbasheer
- Department
of Chemistry, Payame Noor University (PNU), P. O. Box 19395-3697, Tehran, Iran
| | | | - Samira Shokouhi Tabar
- Department
of Chemistry, Payame Noor University (PNU), P. O. Box 19395-3697, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center
of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, P.O. Box 143981-7435, Tehran, Iran
- Biosensor
Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences
Institute, Tehran University of Medical Sciences, P. O. Box,
14114-13137, Tehran, Iran
| | - Parviz Norouzi
- Center
of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, P.O. Box 143981-7435, Tehran, Iran
- Biosensor
Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences
Institute, Tehran University of Medical Sciences, P. O. Box,
14114-13137, Tehran, Iran
| | | |
Collapse
|
16
|
Structure modeling and docking study of HCV NS5B-3a RNA polymerase for the identification of potent inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0666-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|