2
|
Venkatesan A, Prabhu Dass J F. Review on chemogenomic approaches towards hepatitis C viral targets. J Cell Biochem 2019; 120:12167-12181. [PMID: 30887580 DOI: 10.1002/jcb.28581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) is the most prevalent viral pathogen that infects more than 185 million people worldwide. HCV infection leads to chronic liver diseases such as liver cirrhosis and hepatocellular carcinoma. Direct-acting antivirals (DAAs) are the recent combination therapy for HCV infection with reduced side effects than prior therapies. Sustained virological response (SVR) acts as a gold standard marker to monitor the success of antiviral treatment. Older treatment therapies attain 50-55% of SVR compared with DAAs which attain around 90-95%. The current review emphasizes the recent chemogenomic updates that have been unfolded through structure-based drug design of HCV drug target proteins (NS3/4A, NS5A, and NS5B) and ligand-based drug design of DAAs in achieving a stable HCV viral treatment strategies.
Collapse
Affiliation(s)
- Arthi Venkatesan
- Department of Integrative Biology, School of BioSciences and Technology (SBST), VIT, Vellore, Tamil Nadu, India
| | - Febin Prabhu Dass J
- Department of Integrative Biology, School of BioSciences and Technology (SBST), VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Ashraf MU, Iman K, Khalid MF, Salman HM, Shafi T, Rafi M, Javaid N, Hussain R, Ahmad F, Shahzad-Ul-Hussan S, Mirza S, Shafiq M, Afzal S, Hamera S, Anwar S, Qazi R, Idrees M, Qureshi SA, Chaudhary SU. Evolution of efficacious pangenotypic hepatitis C virus therapies. Med Res Rev 2018; 39:1091-1136. [PMID: 30506705 DOI: 10.1002/med.21554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C compromises the quality of life of more than 350 million individuals worldwide. Over the last decade, therapeutic regimens for treating hepatitis C virus (HCV) infections have undergone rapid advancements. Initially, structure-based drug design was used to develop molecules that inhibit viral enzymes. Subsequently, establishment of cell-based replicon systems enabled investigations into various stages of HCV life cycle including its entry, replication, translation, and assembly, as well as role of host proteins. Collectively, these approaches have facilitated identification of important molecules that are deemed essential for HCV life cycle. The expanded set of putative virus and host-encoded targets has brought us one step closer to developing robust strategies for efficacious, pangenotypic, and well-tolerated medicines against HCV. Herein, we provide an overview of the development of various classes of virus and host-directed therapies that are currently in use along with others that are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Muhammad Usman Ashraf
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Farhan Khalid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Hafiz Muhammad Salman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Talha Shafi
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Momal Rafi
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | - Nida Javaid
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rashid Hussain
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Fayyaz Ahmad
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | | | - Shaper Mirza
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Shafiq
- Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sadia Hamera
- Department of Plant Genetics, Institute of Life Sciences, University of Rostock, Germany
| | - Saima Anwar
- Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Romena Qazi
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Idrees
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Sohail A Qureshi
- Institute of Integrative Biosciences, CECOS-University of Information Technology and Emerging Sciences, Peshawar, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
5
|
Ismail NSM, Elzahabi HSA, Sabry P, Baselious FN, AbdelMalak AS, Hanna F. A study of the allosteric inhibition of HCV RNA-dependent RNA polymerase and implementing virtual screening for the selection of promising dual-site inhibitors with low resistance potential. J Recept Signal Transduct Res 2016; 37:341-354. [PMID: 27829320 DOI: 10.1080/10799893.2016.1248293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Structure-based pharmacophores were generated and validated using the bioactive conformations of different co-crystallized enzyme-inhibitor complexes for allosteric palm-1 and thumb-2 inhibitors of NS5B. Two pharmacophore models were obtained, one for palm-1 inhibitors with sensitivity = 0.929 and specificity = 0.983, and the other for thumb-2 inhibitors with sensitivity = 1 and specificity = 0.979. In addition, a quantitative structure activity relationship (QSAR) models were developed based on using the values of different scoring functions as descriptors predicting the activity on both allosteric binding sites (palm-1 and thumb-2). QSAR studies revealed good predictive and statistically significant two descriptor models (r2 = .837, r2adjusted = .792 and r2prediction = .688 for palm-1 model and r2 = .927, r2adjusted = .908 and r2prediction = .779 for thumb-2 model). External validation for the QSAR models assured their prediction power with r2ext = .72 and .89 for palm-1 and thumb-2, respectively. Different docking protocols were examined for their validity to predict the correct binding poses of inhibitors inside their respective binding sites. Virtual screening was carried out on ZINC database using the generated pharmacophores, the selected valid docking algorithms and QSAR models to find compounds that could theoretically bind to both sites simultaneously.
Collapse
Affiliation(s)
- Nasser S M Ismail
- a Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries , Future University , Cairo , Egypt
| | - Heba S A Elzahabi
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Al-Azhar University , Cairo , Egypt
| | - Peter Sabry
- c National Organization for Drug Control and Research , Dokki , Cairo , Egypt
| | - Fady N Baselious
- d Department of Research and Development , Global Napi Pharmaceuticals , 6th October City , Giza , Egypt
| | | | | |
Collapse
|
6
|
Schein CH, Rowold D, Choi KH. Allosteric inhibitors of Coxsackie virus A24 RNA polymerase. Bioorg Med Chem 2016; 24:570-7. [PMID: 26762834 PMCID: PMC4743507 DOI: 10.1016/j.bmc.2015.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/04/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Coxsackie virus A24 (CVA24), a causative agent of acute hemorrhagic conjunctivitis, is a prototype of enterovirus (EV) species C. The RNA polymerase (3D(pol)) of CVA24 can uridylylate the viral peptide linked to the genome (VPg) from distantly related EV and is thus, a good model for studying this reaction. Once UMP is bound, VPgpU primes RNA elongation. Structural and mutation data have identified a conserved binding surface for VPg on the RNA polymerase (3D(pol)), located about 20Å from the active site. Here, computational docking of over 60,000 small compounds was used to select those with the lowest (best) specific binding energies (BE) for this allosteric site. Compounds with varying structures and low BE were assayed for their effect on formation of VPgU by CVA24-3D(pol). Two compounds with the lowest specific BE for the site inhibited both uridylylation and formation of VPgpolyU at 10-20μM. These small molecules can be used to probe the role of this allosteric site in polymerase function, and may be the basis for novel antiviral compounds.
Collapse
Affiliation(s)
- Catherine H Schein
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Box 7, Alachua, FL 32616, United States; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States.
| | - Diane Rowold
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd, Box 7, Alachua, FL 32616, United States
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States; Sealy Center for Structural Biology and Molecular Biophysics, UTMB, United States
| |
Collapse
|