1
|
Wang P, Fan Z, Wei W, Yang C, Wang Y, Shen X, Yan X, Zhou Z. Biosynthesis of the Plant Coumarin Osthole by Engineered Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:2455-2462. [PMID: 37450901 DOI: 10.1021/acssynbio.3c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Osthole is a coumarin compound found in the traditional Chinese medicine Cnidium monnieri. Extensive studies have shown that osthole exhibits many medicinal properties, and recently, researchers have found that it possesses potent airway-relaxation activity by inhibiting phosphodiesterase 4D activity, making it a potential novel bronchodilator that does not target β2-adrenoceptors for asthma treatment. Here, we report the complete biosynthesis of osthole in engineered yeast. We created an umbelliferone (UMB)-producing strain by reconstituting the complete UMB pathway in yeast. We found that coumarin synthase (COSY) is essential for the conversion of 2',4'-dihydroxycinnamoyl-CoA into UMB in yeast; this conversion has been treated as a spontaneous step in previously reported UMB-producing microbials. By introducing downstream prenyltransferase and methyltransferase genes and addressing problems such as protein expression and cofactor supply to fulfill the downstream steps, complete biosynthesis of osthole was achieved. Finally, through metabolic engineering, to ensure precursor supply, and the debugging of rate-limited steps, the osthole titer reached 108.10 mg/L in shake flasks and 255.1 mg/L in fed-batch fermentation. Our study is the first to produce osthole using engineered microbes, providing a blueprint for the supply of plant-derived osthole via microbial fermentation, which will remove the barriers of resource limitations for osthole-based drug development.
Collapse
Affiliation(s)
- Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenjun Fan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Wei
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengshuai Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao Shen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Yu Q, Luo B, Luo Z, Zhong X, Li Y, Zhang Y, Zhu G, Guo B, Tang L, Li Y, Fan L. Synthesis of Novel 3-Butylphthalide Derivatives Containing Isopentenylphenol Moiety as Potential Antiplatelet Agents for the Treatment of Ischemic Stroke. Chem Biodivers 2023; 20:e202201002. [PMID: 36424354 DOI: 10.1002/cbdv.202201002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
In order to find novel antiplatelet drugs for the treatment of ischemic stroke, a series of 3-butylphthalide derivatives containing isopentenylphenol moiety were designed, synthesized and characterized with spectroscopic analyses. The in vitro antiplatelet activity results indicated that compound 3 better inhibited the arachidonic acid (AA) induced platelet aggregation than aspirin (ASP) and 3-butylphthalide (NBP). Additionally, compared with precursor NBP, compound 3 possessed outstanding antithrombotic activity in the animal experiment model, which could effectively alleviate the formation of tail thrombus and carotid artery thrombus in mice. More importantly, intraperitoneal administration of compound 3 can well protected the rats against ischemia/reperfusion-induced brain injury. Further pharmacokinetic (PK) assay indicated that compound 3 had good absorption characteristics and metabolic stability in vivo. Overall, the present research provides a new candidate compound for the treatment of ischemic stroke caused by platelet aggregation.
Collapse
Affiliation(s)
- Qinyang Yu
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Bilan Luo
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Zhongfu Luo
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Xu Zhong
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yi Li
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yi Zhang
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Gaofeng Zhu
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Bing Guo
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Lei Tang
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yong Li
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Lingling Fan
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, P. R. China
| |
Collapse
|
3
|
Ren Z, Lv M, Xu H. Osthole: Synthesis, Structural Modifications and Biological Properties. Mini Rev Med Chem 2022; 22:2124-2137. [DOI: 10.2174/1389557522666220214101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Osthole, a naturally occurring coumarin-type compound, is isolated from a Chinese herbal medicine Cnidium monnieri (L.), and exhibits a broad range of biological properties. In this review, the total synthesis and structural modifications of osthole and its analogs are described. Additionally, the progress on bioactivities of osthole and its analogs is outlined since 2016. Moreover, the structure-activity relationships and mechanisms of action of osthole and its derivatives are discussed. These can provide references for future design, development and application of osthole and its analogs as drugs or pesticides in the fields of medicine and agriculture.
Collapse
Affiliation(s)
- Zili Ren
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
4
|
Osthole: an overview of its sources, biological activities, and modification development. Med Chem Res 2021; 30:1767-1794. [PMID: 34376964 PMCID: PMC8341555 DOI: 10.1007/s00044-021-02775-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
Osthole, also known as osthol, is a coumarin derivative found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. It can be obtained via extraction and separation from plants or total synthesis. Plenty of experiments have suggested that osthole exhibited multiple biological activities covering antitumor, anti-inflammatory, neuroprotective, osteogenic, cardiovascular protective, antimicrobial, and antiparasitic activities. In addition, there has been some research done on the optimization and modification of osthole. This article summarizes the comprehensive information regarding the sources and modification progress of osthole. It also introduces the up-to-date biological activities of osthole, which could be of great value for its use in future research. ![]()
Collapse
|
5
|
Dhar ED, Yadav AK, Basumatary G, Bez G. Anti-pinworm activity of novel coumarin-based trisubstituted methanes in Syphacia obvelata-infected mice. Parasitol Int 2021; 85:102425. [PMID: 34325083 DOI: 10.1016/j.parint.2021.102425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
The control of pinworms mainly relies on use of anthelmintic drugs. At present, there exists only few medications against pinworms, and their repeated use pose a serious risk of resistance development. Therefore, new anti-pinworm drugs are required to overcome the risk of resistance. This study reports the anti-pinworm activity of three novel coumarin-based trisubstituted methanes (TRSMs), i.e., 6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)(4-fluoro-phenyl)methyl)-1,3-dimethyl-pyrimidine-2,4(1H,3H)-dione (1), 6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)(4-chlor-ophenyl)methyl)-1,3-dimethyl-pyrimidine-2,4(1H,3H)-dione (2) and 6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)(4-bromophenyl)methyl)-1,3-dimethyl-pyrimidine-2,4(1H,3H)-dione (3) in Syphacia obvelata-infected mice. The oral acute toxicity of compounds was examined using the OECD guidelines. The findings of this study reveal that TRSM analogues 1 and 2, at a single 80 mg/kg dose given for 5 days, can reduce about 90% of pinworm worm burden in mice, compared to 98% worm reduction shown by 20 mg/kg dose of albendazole, the reference drug, on the 12 day of infection. In particular, the fluoro-and bromo-substituents in the phenyl ring of synthesized derivatives greatly influence the efficacy of candidates. The oral acute toxicity of TRSMs was observed to be greater than 2000 mg/kg body weight for mice. Taken together, our study suggests that studied novel coumarin-based trisubstituted methanes could serve as suitable candidates for the development of new anti-pinworm drugs.
Collapse
Affiliation(s)
- Errini Decruse Dhar
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Arun K Yadav
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| | - Grace Basumatary
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Ghanashyam Bez
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
6
|
Juang SH, Hsieh MT, Hsu PL, Chen JL, Liu HK, Liang FP, Kuo SC, Chiu CY, Liu SH, Chou CH, Wu TS, Hung HY. Studies of Coumarin Derivatives for Constitutive Androstane Receptor (CAR) Activation. Molecules 2020; 26:molecules26010164. [PMID: 33396516 PMCID: PMC7796031 DOI: 10.3390/molecules26010164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022] Open
Abstract
Constitutive androstane receptor (CAR) activation has found to ameliorate diabetes in animal models. However, no CAR agonists are available clinically. Therefore, a safe and effective CAR activator would be an alternative option. In this study, sixty courmarin derivatives either synthesized or purified from Artemisia capillaris were screened for CAR activation activity. Chemical modifications were on position 5,6,7,8 with mono-, di-, tri-, or tetra-substitutions. Among all the compounds subjected for in vitro CAR activation screening, 6,7-diprenoxycoumarin was the most effective and was selected for further preclinical studies. Chemical modification on the 6 position and unsaturated chains were generally beneficial. Electron-withdrawn groups as well as long unsaturated chains were hazardous to the activity. Mechanism of action studies showed that CAR activation of 6,7-diprenoxycoumarin might be through the inhibition of EGFR signaling and upregulating PP2Ac methylation. To sum up, modification mimicking natural occurring coumarins shed light on CAR studies and the established screening system provides a rapid method for the discovery and development of CAR activators. In addition, one CAR activator, scoparone, did showed anti-diabetes effect in db/db mice without elevation of insulin levels.
Collapse
Affiliation(s)
- Shin-Hun Juang
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-H.J.); (M.-T.H.); (P.-L.H.); (J.-L.C.); (F.-P.L.); (S.-C.K.)
| | - Min-Tsang Hsieh
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-H.J.); (M.-T.H.); (P.-L.H.); (J.-L.C.); (F.-P.L.); (S.-C.K.)
- Chinese Medicine Research and Development Center, China Medical University Hospital, 2 Yude Road, Taichung 404, Taiwan
| | - Pei-Ling Hsu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-H.J.); (M.-T.H.); (P.-L.H.); (J.-L.C.); (F.-P.L.); (S.-C.K.)
| | - Ju-Ling Chen
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-H.J.); (M.-T.H.); (P.-L.H.); (J.-L.C.); (F.-P.L.); (S.-C.K.)
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (C.-H.C.); (T.-S.W.)
| | - Hui-Kang Liu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan;
| | - Fong-Pin Liang
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-H.J.); (M.-T.H.); (P.-L.H.); (J.-L.C.); (F.-P.L.); (S.-C.K.)
| | - Sheng-Chu Kuo
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-H.J.); (M.-T.H.); (P.-L.H.); (J.-L.C.); (F.-P.L.); (S.-C.K.)
| | - Chen-Yuan Chiu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-Y.C.); (S.-H.L.)
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-Y.C.); (S.-H.L.)
| | - Chen-Hsi Chou
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (C.-H.C.); (T.-S.W.)
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (C.-H.C.); (T.-S.W.)
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (C.-H.C.); (T.-S.W.)
- Correspondence: ; Tel.: +886-6-2353535 (ext. 6803)
| |
Collapse
|
7
|
Schultze C, Foß S, Schmidt B. 8‐Prenylflavanones through Microwave Promoted Tandem Claisen Rearrangement/6‐
endo
‐trig Cyclization and Cross Metathesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christiane Schultze
- Institut für Chemie Universitaet Potsdam Karl‐Liebknecht‐Straße 24‐25, Haus 25 14476 Potsdam‐Golm Germany
| | - Stefan Foß
- Institut für Chemie Universitaet Potsdam Karl‐Liebknecht‐Straße 24‐25, Haus 25 14476 Potsdam‐Golm Germany
| | - Bernd Schmidt
- Institut für Chemie Universitaet Potsdam Karl‐Liebknecht‐Straße 24‐25, Haus 25 14476 Potsdam‐Golm Germany
| |
Collapse
|
8
|
Kharmawlong GK, Nongrum R, Chhetri B, Rani JWS, Rahman N, Yadav AK, Nongkhlaw R. Green and efficient one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones and their anthelmintic studies. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1639754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- George Kupar Kharmawlong
- Department of Chemistry, Centre for Advances Studies, North-Eastern Hill University, Shillong, India
| | - Ridaphun Nongrum
- Department of Chemistry, Centre for Advances Studies, North-Eastern Hill University, Shillong, India
| | - Bhusan Chhetri
- Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Jims World Star Rani
- Department of Chemistry, Centre for Advances Studies, North-Eastern Hill University, Shillong, India
| | - Noimur Rahman
- Department of Chemistry, Centre for Advances Studies, North-Eastern Hill University, Shillong, India
| | - Arun Kumar Yadav
- Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Rishanlang Nongkhlaw
- Department of Chemistry, Centre for Advances Studies, North-Eastern Hill University, Shillong, India
| |
Collapse
|
9
|
Peraman M, Nachimuthu S. Identification and quantification of fucoxanthin in selected carotenoid-producing marine microalgae and evaluation for their chemotherapeutic potential. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_64_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
New camphor hybrids: lipophilic enhancement improves antimicrobial efficacy against drug-resistant pathogenic microbes and intestinal worms. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2186-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Schultze C, Schmidt B. Prenylcoumarins in One or Two Steps by a Microwave-Promoted Tandem Claisen Rearrangement/Wittig Olefination/Cyclization Sequence. J Org Chem 2018; 83:5210-5224. [DOI: 10.1021/acs.joc.8b00667] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Christiane Schultze
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Bernd Schmidt
- Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
12
|
Hu Y, Liu L, Liu GL, Tu X, Wang GX, Ling F. Synthesis and anthelmintic activity of arctigenin derivatives against Dactylogyrus intermedius in goldfish. Bioorg Med Chem Lett 2017; 27:3310-3316. [DOI: 10.1016/j.bmcl.2017.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
|
13
|
Liu GL, Hu Y, Chen XH, Wang GX, Ling F. Synthesis and anthelmintic activity of coumarin–imidazole hybrid derivatives against Dactylogyrus intermedius in goldfish. Bioorg Med Chem Lett 2016; 26:5039-5043. [DOI: 10.1016/j.bmcl.2016.08.090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
|
14
|
Liu M, Liu Y, Hua X, Wu C, Zhou S, Wang B, Li Z. Synthesis of Osthole Derivatives with Grignard Reagents and Their Larvicidal Activities on Mosquitoes. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201500620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Synthesis of Naphthalene FunctionalizedTrans-2,3-dihydrofuro[3,2-c]coumarins as Antioxidant and Anthelmintic Agents. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|