1
|
Duan SF, Song L, Guo HY, Deng H, Huang X, Shen QK, Quan ZS, Yin XM. Research status of indole-modified natural products. RSC Med Chem 2023; 14:2535-2563. [PMID: 38107170 PMCID: PMC10718587 DOI: 10.1039/d3md00560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/19/2023] Open
Abstract
Indole is a heterocyclic compound formed by the fusion of a benzene ring and pyrrole ring, which has rich biological activity. Many indole-containing compounds have been sold on the market due to their excellent pharmacological activity. For example, vincristine and reserpine have been widely used in clinical practice. The diverse structures and biological activities of natural products provide abundant resources for the development of new drugs. Therefore, this review classifies natural products by structure, and summarizes the research progress of indole-containing natural product derivatives, their biological activities, structure-activity relationship and research mechanism which has been studied in the past 13 years, so as to provide a basis for the development of new drug development.
Collapse
Affiliation(s)
- Song-Fang Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Lei Song
- Yanbian University Hospital, Yanbian University Yanji 133002 People's Republic of China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| | - Xiu-Mei Yin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University Yanji 133002 China +86 0433 243 6020 +86 0433 243 6019
| |
Collapse
|
2
|
Ghorayshian A, Danesh M, Mostashari-Rad T, fassihi A. Discovery of novel RARα agonists using pharmacophore-based virtual screening, molecular docking, and molecular dynamics simulation studies. PLoS One 2023; 18:e0289046. [PMID: 37616260 PMCID: PMC10449137 DOI: 10.1371/journal.pone.0289046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Nuclear retinoic acid receptors (RARs) are ligand-dependent transcription factors involved in various biological processes, such as embryogenesis, cell proliferation, differentiation, reproduction, and apoptosis. These receptors are regulated by retinoids, i.e., retinoic acid (RA) and its analogs, as receptor agonists. RAR agonists are promising therapeutic agents for the treatment of serious dermatological disorders, including some malignant conditions. By inducing apoptosis, they are able to inhibit the proliferation of diverse cancer cell lines. Also, RAR agonists have recently been identified as therapeutic options for some neurodegenerative diseases. These features make retinoids very attractive molecules for medical purposes. Synthetic selective RAR agonists have several advantages over endogenous ones, but they suffer poor pharmacokinetic properties. These compounds are normally lipophilic acids with unfavorable drug-like features such as poor oral bioavailability. Recently, highly selective, potent, and less toxic RAR agonists with proper lipophilicity, thus, good oral bioavailability have been developed for some therapeutic applications. In the present study, ligand and structure-based virtual screening technique was exploited to introduce some novel RARα agonists. Pharmacokinetic assessment was also performed in silico to suggest those compounds which have optimized drug-like features. Finally, two compounds with the best in silico pharmacological features are proposed as lead molecules for future development of RARα agonists.
Collapse
Affiliation(s)
- Atefeh Ghorayshian
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahshid Danesh
- Functional Genomics & System Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Wuerzburg, Wuerzburg, Germany
| | - Tahereh Mostashari-Rad
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | - Afshin fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Gurkan-Alp AS, Karabay AZ, Koc A, Buyukbingol E. Novel indole retinoid derivative induces apoptosis and cell cycle arrest and modulates AKT and ERK signaling in HL-60 cells. Fundam Clin Pharmacol 2023; 37:557-565. [PMID: 36690337 DOI: 10.1111/fcp.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Chemotherapy with targeted drugs is the first line therapy option for acute and chronic myeloid leukemia. However, hematopoietic stem cell transplantation may be used in high-risk patients or patients with failed responses to chemo drugs. Discovery and development of more effective new agents with lower side effects is the main aim of leukemia treatment. In this study, a novel retinoid compound with tetrahydronaphthalene ring was synthesized and evaluated for anticancer activity in human chronic and acute myeloid leukemia cell lines K562 and HL-60. Novel N-(1H-indol-1-yl)-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalene-2-carboxamide was synthesized based on molecular hybridization of the two different bioactive structures retinoid head and indole. The effects of the synthesized carboxamide compound, which was referred to as compound 5, were determined in K562 chronic myeloid leukemia and HL-60 acute myeloid leukemia cell lines and L929 fibroblast cell line, which served as a control. Colorimetric MTT and caspase3 activity tests, flow cytometry, western blot, and microscopic examinations were used to evaluate biological activity. Compound 5 more effectively induced cell death in HL60 cells in comparison to K562 cells and L929 fibroblast cells. Therefore, further mechanism of cell death was investigated in HL60 cell line. It was found that compound 5 induced remarkable cytotoxicity, caspase3 activation, and PARP fragmentation in HL60 cells. Flow cytometric staining showed that the percentage of cells arrested in G0/G1 was also increased with compound 5 treatment. Important modulator proteins of cell proliferation p-ERK, p-AKT, and p-m-TOR were also found to be inhibited with compound 5 treatment. Collectively, our results reveal compound 5, which is a novel indole retinoid compound as a potential active agent for the treatment of acute promyelocytic leukemia.
Collapse
Affiliation(s)
- A Selen Gurkan-Alp
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Ankara, Turkey
| | - Arzu Z Karabay
- Faculty of Pharmacy, Department of Biochemistry, Ankara University, Ankara, Turkey
| | - Asli Koc
- Faculty of Pharmacy, Department of Biochemistry, Ankara University, Ankara, Turkey
| | - Erdem Buyukbingol
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Jia S, Tian Y, Li X, Wang P, Lan Y, Yan H. Atroposelective Construction of Nine-Membered Carbonate-Bridged Biaryls. Angew Chem Int Ed Engl 2022; 61:e202206501. [PMID: 35621411 DOI: 10.1002/anie.202206501] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/27/2022]
Abstract
We herein demonstrated an efficient method for the atroposelective construction of nine-membered carbonate-bridged biaryls through vinylidene ortho-quinone methide (VQM) intermediates. Diverse products with desirable pharmacological features were synthesized in satisfying yields and good to excellent enantioselectivities. In subsequent bioassays, several agents showed considerable antiproliferative activity via the mitochondrial-related apoptosis mechanism. Further transformations produced more structural diversity and may inspire new ideas for developing functional molecules.
Collapse
Affiliation(s)
- Shiqi Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Xin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
5
|
Jia S, Tian Y, Li X, Wang P, Lan Y, Yan H. Atroposelective Construction of Nine‐Membered Carbonate Bridged Biaryls. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shiqi Jia
- Zhengzhou University Green Catalysis Center 重庆大学虎溪校区药学院 zhengzhou CHINA
| | - Yuhong Tian
- Chongqing University School of Pharmaceutical Sciences Chongqing CHINA
| | - Xin Li
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Pengfei Wang
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Yu Lan
- Chongqing University School of Chemistry and Chemical Engineering CHINA
| | - Hailong Yan
- Chongqing University Innovative Drug Research Center No.55 Daxuecheng South Rd 401331 Chongqing CHINA
| |
Collapse
|
6
|
Ghouse S, Sreenivasulu C, Kishore DR, Satyanarayana G. Recent developments by zinc based reagents/catalysts promoted organic transformations. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Bargathulla I, Aadhil Ashwaq B, Sathiyaraj S, Sultan Nasar A, ElangovanVellaichamy. Pegylated bis-indolyl polyurethane dendrimer: Empty drug carrier with prominent anticancer activity. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Kumar S, Ritika. A brief review of the biological potential of indole derivatives. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00141-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Various bioactive aromatic compounds containing the indole nucleus showed clinical and biological applications. Indole scaffold has been found in many of the important synthetic drug molecules which gave a valuable idea for treatment and binds with high affinity to the multiple receptors helpful in developing new useful derivatives.
Main text
Indole derivatives possess various biological activities, i.e., antiviral, anti-inflammatory, anticancer, anti-HIV, antioxidant, antimicrobial, antitubercular, antidiabetic, antimalarial, anticholinesterase activities, etc. which created interest among researchers to synthesize a variety of indole derivatives.
Conclusion
From the literature, it is revealed that indole derivatives have diverse biological activities and also have an immeasurable potential to be explored for newer therapeutic possibilities.
Collapse
|
9
|
Zhu WR, Su Q, Diao HJ, Wang EX, Wu F, Zhao YL, Weng J, Lu G. Enantioselective Dehydrative γ-Arylation of α-Indolyl Propargylic Alcohols with Phenols: Access to Chiral Tetrasubstituted Allenes and Naphthopyrans. Org Lett 2020; 22:6873-6878. [PMID: 32808789 DOI: 10.1021/acs.orglett.0c02386] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report an enantioselective dehydrative γ-arylation of α-indolyl propargylic alcohols with phenols via organocatalysis, which provides efficient access to chiral tetrasubstituted allenes and naphthopyrans in high yields with excellent regio- and enantioselectivities under mild conditions. This method features the use of cheaply available naphthols/phenols as the C-H aryl source and liberating water as the sole byproduct. Control experiments suggest that the excellent enantioselectivity and remote regioselectivity stem from dual hydrogen-bonding interaction with the chiral phosphoric acid catalyst.
Collapse
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qiong Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hong-Juan Diao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Er-Xuan Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Feng Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yun-Long Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Gaddam GR, Dubey PK, Chittireddy VRR. Synthesis of Indolyl Pyrazole Scaffolds as Potential Anti-cancer Agents and their Molecular Modelling Studies. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666191024103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Indole and pyrazoles are one of the prime structural units in the field of
medicinal chemistry and have been reported to exhibit a variety of biological activities specifically
anti-cancer. In view of their medicinal significance, we synthesized a conjugate of the two moieties
to get access to newer and potential anti-cancer agents.
Methods:
Indolyl pyrazoles [3-(1,3-diphenyl-1H-pyrazol-4-yl)-2-(1-methyl-1H-indole-3-carbon
yl)acrylonitriles] (4a-l) were synthesized by adopting simple and greener protocol and all the synthesized
derivatives were docked against Bcl-2 protein and the selected chemical moieties were
screened for their cytotoxicity by using the MTT assay.
Results: :
All the synthesized compounds were docked against BCL-2 protein in order to understand
their binding pattern. Among the 12 compounds docked, 4d, 4f, 4h, 4j, and 4l compounds exhibited
better protein binding interactions and the same were screened for their anti-cancer activity against
A549 (lung) cancer cell lines at a concentration of 100 μM using Doxorubicin as standard. Substitutions
such as N-benzyl, N-ethyl groups and halogen groups such as Br, Cl on indole ring showed
moderate activity against A-549 cell lines.
Conclusion::
Among the 5 indolyl pyrazole derivatives screened, compounds 4h and 4j showed significantly
better activity with an IC50 of 33.12 and 34.24 μM, respectively. Further, structural tweaking
of the synthesized new chemical entities may lead to potential hit/lead-like molecules.
Collapse
Affiliation(s)
- Ganga Reddy Gaddam
- Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana 500 085, India
| | - Pramod Kumar Dubey
- Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana 500 085, India
| | | |
Collapse
|
11
|
Peng L, Li K, Xie C, Li S, Xu D, Qin W, Yan H. Organocatalytic Asymmetric Annulation of
ortho
‐Alkynylanilines: Synthesis of Axially Chiral Naphthyl‐C2‐indoles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908961] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lei Peng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
| | - Kai Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
| | - Chuandong Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
| | - Shan Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
| | - Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing University Chongqing 400044 China
| |
Collapse
|
12
|
Peng L, Li K, Xie C, Li S, Xu D, Qin W, Yan H. Organocatalytic Asymmetric Annulation of
ortho
‐Alkynylanilines: Synthesis of Axially Chiral Naphthyl‐C2‐indoles. Angew Chem Int Ed Engl 2019; 58:17199-17204. [DOI: 10.1002/anie.201908961] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/27/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Lei Peng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
| | - Kai Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
| | - Chuandong Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
| | - Shan Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
| | - Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug ResearchChemical Biology Research CenterSchool of Pharmaceutical SciencesChongqing University Chongqing 401331 P. R. China
- Key Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing University Chongqing 400044 China
| |
Collapse
|
13
|
Peng L, Xu D, Yang X, Tang J, Feng X, Zhang SL, Yan H. Organocatalytic Asymmetric One-Step Desymmetrizing Dearomatization Reaction of Indoles: Development and Bioactivity Evaluation. Angew Chem Int Ed Engl 2018; 58:216-220. [DOI: 10.1002/anie.201811437] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/07/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Lei Peng
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| | - Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| | - Xiaohong Yang
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| | - Jiakun Tang
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| | - Shao-Lin Zhang
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| |
Collapse
|
14
|
Peng L, Xu D, Yang X, Tang J, Feng X, Zhang SL, Yan H. Organocatalytic Asymmetric One-Step Desymmetrizing Dearomatization Reaction of Indoles: Development and Bioactivity Evaluation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811437] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lei Peng
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| | - Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| | - Xiaohong Yang
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| | - Jiakun Tang
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| | - Shao-Lin Zhang
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis, and Drug Research; School of Pharmaceutical Sciences; Chongqing University; Chongqing 401331 P. R. China
| |
Collapse
|
15
|
Aneja B, Arif R, Perwez A, Napoleon JV, Hasan P, Rizvi MMA, Azam A, Rahisuddin, Abid M. N-Substituted 1,2,3-Triazolyl-Appended Indole-Chalcone Hybrids as Potential DNA Intercalators Endowed with Antioxidant and Anticancer Properties. ChemistrySelect 2018. [DOI: 10.1002/slct.201702913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Babita Aneja
- Department of Biosciences; Jamia Millia Islamia; Medicinal Chemistry Laboratory, Jamia Nagar; New Delhi 110025 India
- Department of Chemistry; Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Rizwan Arif
- Department of Chemistry; Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Ahmad Perwez
- Department of Biosciences; Jamia Millia Islamia; Genome Biology Laboratory, Jamia Nagar; New Delhi 110025 India
| | - John V. Napoleon
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha, NE 68198-6805 USA
| | - Phool Hasan
- Department of Biosciences; Jamia Millia Islamia; Medicinal Chemistry Laboratory, Jamia Nagar; New Delhi 110025 India
| | - M. Moshahid A. Rizvi
- Department of Biosciences; Jamia Millia Islamia; Genome Biology Laboratory, Jamia Nagar; New Delhi 110025 India
| | - Amir Azam
- Department of Chemistry; Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Rahisuddin
- Department of Chemistry; Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Mohammad Abid
- Department of Biosciences; Jamia Millia Islamia; Medicinal Chemistry Laboratory, Jamia Nagar; New Delhi 110025 India
| |
Collapse
|
16
|
New Thiazoline-Tetralin Derivatives and Biological Activity Evaluation. Molecules 2018; 23:molecules23010135. [PMID: 29320423 PMCID: PMC6017121 DOI: 10.3390/molecules23010135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 01/15/2023] Open
Abstract
In this study, novel N′-(3-cyclohexyl/phenyl-4-(substituted phenyl)thiazole-2(3H)-ylidene)-2-[(5,6,7,8-tetrahydronaphthalen-2-yl)oxy]acetohydrazide (4a–4k) derivatives were synthesized and their anticancer potency were evaluated on human breast adenocarcinoma cell line (MCF-7), human lung carcinoma cell line (A549) and mouse embryoblast cell line (NIH/3T3) using the MTT method, DNA synthesis inhibition and flow cytometric analysis. Compound 4e bearing 4-methoxyphenyl moiety exhibited the highest antitumor efficiency against MCF-7 cell line with higher DNA synthesis inhibition and apoptotic cell percentages (ealy+late apoptotic cell). On the other hand, compounds 4f, 4g, and 4h bearing 4-bromo, 4-chloro and 4-florophenyl moieties, respectively caused excellent apoptosis levels against A549 cell line when treated with lower concentration even than cisplatin. Anticholinesterase activity of the compounds were also tested, compound 4h showed 49.92% inhibition of acetylcholinesterase (AChE).
Collapse
|
17
|
Synthesis of novel indole derivatives as promising DNA-binding agents and evaluation of antitumor and antitopoisomerase I activities. Eur J Med Chem 2017; 136:511-522. [DOI: 10.1016/j.ejmech.2017.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
|
18
|
Abdelrahman MH, Aboraia AS, Youssif BGM, Elsadek BEM. Design, synthesis and pharmacophoric model building of new 3-alkoxymethyl/3-phenyl indole-2-carboxamides with potential antiproliferative activity. Chem Biol Drug Des 2017; 90:64-82. [DOI: 10.1111/cbdd.12928] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 12/10/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | - Ahmed S. Aboraia
- Department of Medicinal Chemistry; Faculty of Pharmacy; Assiut University; Assiut Egypt
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry; Faculty of Pharmacy; Assiut University; Assiut Egypt
- Department of Pharmaceutical Chemistry; College of Pharmacy; Aljouf University; Aljouf Sakaka Saudi Arabia
| | | |
Collapse
|
19
|
Akhtar J, Khan AA, Ali Z, Haider R, Shahar Yar M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur J Med Chem 2016; 125:143-189. [PMID: 27662031 DOI: 10.1016/j.ejmech.2016.09.023] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
Abstract
The present review article offers a detailed account of the design strategies employed for the synthesis of nitrogen-containing anticancer agents. The results of different studies describe the N-heterocyclic ring system is a core structure in many synthetic compounds exhibiting a broad range of biological activities. Benzimidazole, benzothiazole, indole, acridine, oxadiazole, imidazole, isoxazole, pyrazole, triazoles, quinolines and quinazolines including others drugs containing pyridazine, pyridine and pyrimidines are covered. The following studies of these compounds suggested that these compounds showed their antitumor activities through multiple mechanisms including inhibiting protein kinase (CDK, MK-2, PLK1, kinesin-like protein Eg5 and IKK), topoisomerase I and II, microtubule inhibition, and many others. Our concise representation exploits the design and anticancer potency of these compounds. The direct comparison of anticancer activities with the standard enables a systematic analysis of the structure-activity relationship among the series.
Collapse
Affiliation(s)
- Jawaid Akhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Ahsan Ahmed Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Zulphikar Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Rafi Haider
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
20
|
Kamath PR, Sunil D, Ajees AA, Pai K, Biswas S. N′-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential. Eur J Med Chem 2016; 120:134-47. [PMID: 27187865 DOI: 10.1016/j.ejmech.2016.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 01/09/2023]
Abstract
A wide number of marketed drugs and drug candidates in cancer clinical development contain halogen substituents. The aim of the present study was to synthesize a series of halogen incorporated indole-coumarin hybrid schiff bases - N'-((2-(2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazides and to investigate their apoptotic and anti-migratory potential in human breast adenocarcinoma cells as well as to examine their Bcl-2 and Bcl-xL protein binding ability via in silico docking. Hybrid 5g with a bromine atom in position-7 of coumarin ring displayed significant dose dependent cytotoxic activity with high selectivity to MCF-7 cells in MTT assay. Cell cycle progression analysis of 5g treated cells using flow cytometer exhibited a cell cycle arrest in the S phase and accumulation of cells in the subG1 phase. The apoptotic mode of cell death induced by 5g was further confirmed by Annexin-V staining assay. The wound healing assay revealed a profound impairment in the migration of MCF-7 cells presumably due to down-regulation of Bcl-2 and Bcl-xL proteins induced by 5g as observed in immunoblotting analysis. SAR studies of these hybrid molecules based on cell viability and docking were also probed. The most active pharmacophore 5g was found to bind favourably to Bcl-2 and Bcl-xL in docking simulation analysis suggesting it to be a probable small molecule Bcl-2/Bcl-xL inhibitor and a potential lead for breast cancer chemotherapy with apoptotic and anti-metastatic properties.
Collapse
|
21
|
Kamath PR, Sunil D, Ajees AA, Pai K, Das S. Some new indole–coumarin hybrids; Synthesis, anticancer and Bcl-2 docking studies. Bioorg Chem 2015; 63:101-9. [PMID: 26469742 DOI: 10.1016/j.bioorg.2015.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022]
|
22
|
Electrosprayed poly(butylene succinate) microspheres loaded with indole derivatives: A system with anticancer activity. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Das BC, Thapa P, Karki R, Das S, Mahapatra S, Liu TC, Torregroza I, Wallace DP, Kambhampati S, Van Veldhuizen P, Verma A, Ray SK, Evans T. Retinoic acid signaling pathways in development and diseases. Bioorg Med Chem 2014; 22:673-83. [PMID: 24393720 PMCID: PMC4447240 DOI: 10.1016/j.bmc.2013.11.025] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023]
Abstract
Retinoids comprise a group of compounds each composed of three basic parts: a trimethylated cyclohexene ring that is a bulky hydrophobic group, a conjugated tetraene side chain that functions as a linker unit, and a polar carbon-oxygen functional group. Biochemical conversion of carotenoid or other retinoids to retinoic acid (RA) is essential for normal regulation of a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids regulate various physiological outputs by binding to nuclear receptors called retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which themselves are DNA-binding transcriptional regulators. The functional response of RA and their receptors are modulated by a host of coactivators and corepressors. Retinoids are essential in the development and function of several organ systems; however, deregulated retinoid signaling can contribute to serious diseases. Several natural and synthetic retinoids are in clinical use or undergoing trials for treating specific diseases including cancer. In this review, we provide a broad overview on the importance of retinoids in development and various diseases, highlighting various retinoids in the drug discovery process, ranging all the way from retinoid chemistry to clinical uses and imaging.
Collapse
Affiliation(s)
- Bhaskar C Das
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA; Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; The Kidney Institute, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA.
| | - Pritam Thapa
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Radha Karki
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Sasmita Das
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Sweta Mahapatra
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Ting-Chun Liu
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Darren P Wallace
- The Kidney Institute, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA
| | - Suman Kambhampati
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Peter Van Veldhuizen
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Amit Verma
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
24
|
Guan QL, Xing YH, Liu J, Wei WJ, Zhang R, Wang X, Bai FY. Application of multiple parallel perfused microbioreactors: Synthesis, characterization and cytotoxicity testing of the novel rare earth complexes with indole acid as a ligand. J Inorg Biochem 2013; 128:57-67. [DOI: 10.1016/j.jinorgbio.2013.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022]
|