1
|
Khudhur HKA, Hussein AJ. Catalytic One-pot Solvent Free Synthesis, Biological Activity, and Docking Study of New Series of 1, 3-thiazolidine-4-one Derivatives Derived from 2- (P-tolyl) Benzoxazol-5-amine. Curr Org Synth 2024; 21:210-223. [PMID: 37990856 DOI: 10.2174/1570179420666230428125251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE In this study, a simple triethylammonium salt of phosphoric acid (triethylammonium dihydrogen phosphate) (4) in the liquid state was utilized as an inexpensive, efficient one-pot three components, solvent-free synthesis of thiazolidine-4-one derivatives, with good to excellent yields. Techniques such as FT-IR, 1H-NMR, 13C-NMR, 13C-NMR-DEPT-135, and MS. were used for the structural elucidation. The high biotic efficiency of the newly obtained compounds was confirmed by in vitro antimicrobial action against Gram-positive (S. Aureus), Gram-negative bacteria (P. Aeruginosa and E. Coli) and antifungal activity (C. Albicans) via microplate titer dilution technique. Finally, a molecular docking study was performed with a resolved crystal structure of S. Aureus D-alanine alanyl carrier protein ligase (PDB ID: 7VHV). This investigation aimed to synthesize a new series of thiazolidine-4-one derivatives combined with benzoxazole moiety. MATERIAL AND METHODS Ionic liquid assistance one-pot solvent-free synthesis method used to synthesize a new series of thiazolidine-4-one derivative 10(a-e). RESULTS Structural identification of new synthesis and biological evaluation via techniques of (IR, 1H-NMR, 13C-NMR, 13C-NMR-DEPT-135, and MS). CONCLUSION Ionic liquid is utilized as an inexpensive, efficient one-pot three-component solvent-free synthesis of thiazolidine-4-one derivatives with good to excellent yields. Most of the synthesized compounds showed high biological and anti-fungal activity, in line with the docking study against mentioned microorganism and crystal structure of PDB (ID: 7VHV), respectively.
Collapse
Affiliation(s)
| | - Awaz Jamil Hussein
- Department of Chemistry, College of Education, Salahaddin University, Erbil, Kurdistan, Iraq
| |
Collapse
|
2
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Yeni Y, Hacımüftüoğlu A, Ereminsoy E, Küfrevioğlu Öİ, Beydemir Ş. Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1,3,4-oxadiazol structural motif. Mol Divers 2022; 26:2825-2845. [PMID: 35397086 PMCID: PMC8994094 DOI: 10.1007/s11030-022-10422-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022]
Abstract
Abstract The acetylcholinesterase and carbonic anhydrase inhibitors (AChEIs and hCAIs) remain key therapeutic agents for many bioactivities such as anti-Alzheimer and antiobesity antiepileptic, anticancer, antiinfective, antiglaucoma, and diuretic effects. Here, it has been attempted to discover novel multi-target AChEIs and hCAIs that are highly potent, orally bioavailable, may be brain penetrant, and have higher effectiveness at lower doses than tacrine and acetazolamide. After detailed investigations both in vitro and in silico, novel N-substituted sulfonyl amide derivatives (6a–j) were determined to be highly potent inhibitors for AChE and hCAs (KIs are in the range of 23.11–52.49 nM, 18.66–59.62 nM, and 9.33–120.80 nM for AChE, hCA I, and hCA II, respectively). Moreover, according to the cytotoxic effect studies, such as the ADME-Tox, cortex neuron cells, and neuroblastoma SH-SY5Y cell line, compounds 6a, 6d, and 6h, which are the most potent representative versus the target enzymes, were identified as orally bioavailable, highly selective, and brain preferentially distributed AChEIs and hCAIs. The docking studies revealed precise binding modes between 6a, 6d, and 6h and hCA II, hCA I, and AChE, respectively. The results presented here might provide a solid basis for further investigation into more potent AChEIs and hCAIs. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11030-022-10422-8.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, 54187, Serdivan, Sakarya, Türkiye
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Türkiye.
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, 54187, Serdivan, Sakarya, Türkiye.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Türkiye
| | - Yeşim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Türkiye
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Türkiye
| | - Ergün Ereminsoy
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Ömer İrfan Küfrevioğlu
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Türkiye.,The Rectorate of Bilecik Şeyh Edebali University, 11230, Bilecik, Türkiye
| |
Collapse
|
3
|
Tratrat C. Novel Thiazole-Based Thiazolidinones as Potent Anti-infective Agents: In silico PASS and Toxicity Prediction, Synthesis, Biological Evaluation and Molecular Modelling. Comb Chem High Throughput Screen 2021; 23:126-140. [PMID: 31985370 DOI: 10.2174/1386207323666200127115238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/01/2019] [Accepted: 12/13/2019] [Indexed: 01/11/2023]
Abstract
AIMS AND OBJECTIVE The infectious disease treatment remains a challenging concern owing to the increasing number of pathogenic microorganisms associated with resistance to multiple drugs. A promising approach for combating microbial infection is to combine two or more known bioactive heterocyclic pharmacophores in one molecular platform. Herein, the synthesis and biological evaluation of novel thiazole-thiazolidinone hybrids as potential antimicrobial agents were dissimilated. MATERIALS AND METHODS The preparation of the substituted 5-benzylidene-2-thiazolyimino-4- thiazolidinones was achieved in three steps from 2-amino-5-methylthiazoline. All the compounds have been screened in PASS antibacterial activity prediction and in a panel of bacteria and fungi strains. Minimum inhibitory concentration and minimum bacterial concentration were both determined by microdilution assays. Molecular modeling was conducted using Accelrys Discovery Studio 4.0 client. ToxPredict (OPEN TOX) and ProTox were used to estimate the toxicity of the title compounds. RESULTS PASS prediction revealed the potentiality antibacterial property of the designed thiazolethiazolidinone hybrids. All tested compounds were found to kill and to inhibit the growth of a vast variety of bacteria and fungi, and were more potent than the commercial drugs, streptomycin, ampicillin, bifomazole and ketoconazole. Further, in silico study was carried out for prospective molecular target identification and revealed favorable interaction with the target enzymes E. coli MurB and CYP51B of Aspergillus fumigatus. Toxicity prediction revealed that none of the active compounds was found toxic. CONCLUSION Substituted 5-benzylidene-2-thiazolyimino-4-thiazolidinones, endowing remarkable antibacterial and antifungal properties, were identified as a novel class of antimicrobial agents and may find a potential therapeutic use to eradicate infectious diseases.
Collapse
Affiliation(s)
- Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
4
|
Tahmasvand R, Bayat P, Vahdaniparast SM, Dehghani S, Kooshafar Z, Khaleghi S, Almasirad A, Salimi M. Design and synthesis of novel 4-thiazolidinone derivatives with promising anti-breast cancer activity: Synthesis, characterization, in vitro and in vivo results. Bioorg Chem 2020; 104:104276. [PMID: 32992280 DOI: 10.1016/j.bioorg.2020.104276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Novel lead compounds as anticancer agents with the ability to circumvent emerging drug resistance have recently gained a great deal of interest. Thiazolidinones are among such compounds with well-established biological activity in the field of oncology. Here, we designed, synthesized and characterized a series of thiazolidinone structures (8a-8k). The results of anti-proliferative assay led to the discovery of compound 8j with a high potent cytotoxic effect using colon, liver and breast cancer cells. Furthermore, MDA-MB-231 and 4T1 cell lines were used to represent triple negative breast cancer (TNBC). Next, a number of in vitro and in vivo evaluations were carried out to demonstrate the potential activity against TNBC and also elucidate the possible mechanism of cell death induction. Our in vitro outcomes exhibited an impressive anticancer activity for compound 8j toward MDA-MB-231 cells through inducing apoptosis and a remarkable anti-metastatic feature via suppressing MMP-9 expression as well. Consistently, the in vivo and immunohistopathologic evaluations demonstrated that this compound significantly inhibited the 4T1 induced tumor growth and its metastasis to the lung. Altogether, among numerous thiazolidinone derivatives, compound 8j might represent a promising anticancer agent for TNBC, which is a major concern in the developed and developing countries.
Collapse
Affiliation(s)
- Raheleh Tahmasvand
- Department of Medical Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Peyman Bayat
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyyed Mahmood Vahdaniparast
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soudeh Dehghani
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Kooshafar
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Medical Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Almasirad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Sahiba N, Sethiya A, Soni J, Agarwal DK, Agarwal S. Saturated Five-Membered Thiazolidines and Their Derivatives: From Synthesis to Biological Applications. Top Curr Chem (Cham) 2020; 378:34. [PMID: 32206929 PMCID: PMC7101601 DOI: 10.1007/s41061-020-0298-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/07/2020] [Indexed: 02/06/2023]
Abstract
In past decades, interdisciplinary research has been of great interest for scholars. Thiazolidine motifs behave as a bridge between organic synthesis and medicinal chemistry and compel researchers to explore new drug candidates. Thiazolidine motifs are very intriguing heterocyclic five-membered moieties present in diverse natural and bioactive compounds having sulfur at the first position and nitrogen at the third position. The presence of sulfur enhances their pharmacological properties, and, therefore, they are used as vehicles in the synthesis of valuable organic combinations. They show varied biological properties viz. anticancer, anticonvulsant, antimicrobial, anti-inflammatory, neuroprotective, antioxidant activity and so on. This diversity in the biological response makes it a highly prized moiety. Based on literature studies, various synthetic approaches like multicomponent reaction, click reaction, nano-catalysis and green chemistry have been employed to improve their selectivity, purity, product yield and pharmacokinetic activity. In this review article, we have summarized systematic approaches for the synthesis of thiazolidine and its derivatives, along with their pharmacological activity, including advantages of green synthesis, atom economy, cleaner reaction profile and catalyst recovery which will help scientists to probe and stimulate the study of these scaffolds.
Collapse
Affiliation(s)
- Nusrat Sahiba
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Jay Soni
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Dinesh K. Agarwal
- Department of Pharmacy, B. N. University, MLSU, Udaipur, 313001 India
| | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| |
Collapse
|
6
|
da Silveira EF, Ferreira LM, Gehrcke M, Cruz L, Pedra NS, Ramos PT, Bona NP, Soares MSP, Rodrigues R, Spanevello RM, Cunico W, Stefanello FM, Azambuja JH, Horn AP, Braganhol E. 2-(2-Methoxyphenyl)-3-((Piperidin-1-yl)ethyl)thiazolidin-4-One-Loaded Polymeric Nanocapsules: In Vitro Antiglioma Activity and In Vivo Toxicity Evaluation. Cell Mol Neurobiol 2019; 39:783-797. [PMID: 31115733 DOI: 10.1007/s10571-019-00678-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Among gliomas types, glioblastoma is considered the most malignant and the worst form of primary brain tumor. It is characterized by high infiltration rate and great angiogenic capacity. The presence of an inflammatory microenvironment contributes to chemo/radioresistance, resulting in poor prognosis for patients. Recent data show that thiazolidinones have a wide range of pharmacological properties, including anti-inflammatory and antiglioma activities. Nanocapsules of biodegradable polymers become an alternative to cancer treatment since they provide targeted drug delivery and could overcome blood-brain barrier. Therefore, here we investigated the in vitro antiglioma activity and the potential in vivo toxicity of 2- (2-methoxyphenyl) -3- ((piperidin-1-yl) ethyl) thiazolidin-4-one-loaded polymeric nanocapsules (4L-N). Nanocapsules were prepared and characterized in terms of particle size, polydispersity index, zeta potential, pH, molecule content and encapsulation efficiency. Treatment with 4L-N selectively decreased human U138MG and rat C6 cell lines viability and proliferation, being even more efficient than the free-form molecule (4L). In addition, 4L-N did not promote toxicity to primary astrocytes. We further demonstrated that the treatment with sub-therapeutic dose of 4L-N did not alter weight, neither resulted in mortality, toxicity or peripheral damage to Wistar rats. Finally, 4L as well as 4L-N did not alter makers of oxidative damage, such as TBARS levels and total sulfhydryl content, and did not change antioxidant enzymes SOD and CAT activity in liver and brain of treated rats. Taken together, these data indicate that the nanoencapsulation of 4L has potentiated its antiglioma effect and does not cause in vivo toxicity.
Collapse
Affiliation(s)
- Elita Ferreira da Silveira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| | - Luana Mota Ferreira
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Mailine Gehrcke
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Letícia Cruz
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Nathália Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Priscila Treptow Ramos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rosélia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wilson Cunico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliana Hofstatter Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 - Prédio Principal - sala 304, Porto Alegre, RS, CEP: 90.050-170, Brazil.
| | - Ana Paula Horn
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 - Prédio Principal - sala 304, Porto Alegre, RS, CEP: 90.050-170, Brazil.
| |
Collapse
|
7
|
Kaur A, Kaur AP, Gautam P, Gautam D, Chaudhary RP. Ultrasound‐Assisted Facile Synthesis and Antimicrobial Studies of Alkanediyl‐bis‐thiazolidin‐4‐ones and Alkanediyl‐bis‐thiazinan‐4‐ones. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Amritpal Kaur
- Department of ChemistrySant Longowal Institute of Engineering and Technology Longowal (Sangrur) Punjab‐148106 India
| | - Avneet Pal Kaur
- Department of ChemistrySant Baba Bhag Singh University Jalandhar Punjab 144030 India
| | - Poonam Gautam
- Department of ChemistrySant Longowal Institute of Engineering and Technology Longowal (Sangrur) Punjab‐148106 India
| | - Deepika Gautam
- Department of ChemistrySant Baba Bhag Singh University Jalandhar Punjab 144030 India
| | - Ram Pal Chaudhary
- Department of ChemistrySant Longowal Institute of Engineering and Technology Longowal (Sangrur) Punjab‐148106 India
| |
Collapse
|
8
|
Synthesis and evaluation of steroidal thiazoline conjugates as potential antiviral agents. Future Med Chem 2018; 10:2589-2605. [PMID: 30499701 DOI: 10.4155/fmc-2018-0075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Many heterocyclic compounds derived from natural steroids exhibited broad activities, so this work focused on the investigations on a series of steroidal thiazoline conjugates as antiviral agents. Materials & methods: A series of steroid derivatives containing thiazoline heterocycles were designed and synthesized via a convenient condensation procedure. The compounds were screened for their potential antivirus activities against Enterovirus 71 (EV71) and Coxsackie Virus Type B (CVB3). Results and Conclusion: The in vitro bioassay indicated that compounds 5b, 5g and 5i exhibited excellent antiviral effects on EV71, and compounds 5b, 5e, 6c and 6g presented better antiviral activities against CVB3 compared with the controls ribavirin or pirodavir. These results indicate that these steroidal thiazoline conjugates might be feasible therapeutic candidates against EV71 infection, which might also be considered as promising compounds for optimization of potential antivirus agents.
Collapse
|
9
|
Güzel-Akdemir Ö, Angeli A, Demir K, Supuran CT, Akdemir A. Novel thiazolidinone-containing compounds, without the well-known sulphonamide zinc-binding group acting as human carbonic anhydrase IX inhibitors. J Enzyme Inhib Med Chem 2018; 33:1299-1308. [PMID: 30249139 PMCID: PMC6161604 DOI: 10.1080/14756366.2018.1499628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A small collection of 26 structurally novel thiazolidinone-containing compounds, without the well-known sulphonamide zinc-binding group, were synthesised and tested in enzyme inhibition assays against the tumour-associated hCA IX enzyme. Inhibition constants in the lower micromolar region (KI < 25 μM) have been measured for 17 of the 26 compounds. Even though the KI values are relatively weak, the fact that they do not contain a sulphonamide moiety suggests that these compounds do not interact with the active site zinc ion. Therefore, docking studies and molecular dynamics simulations have been performed to suggest binding poses for these structurally novel inhibitors.
Collapse
Affiliation(s)
- Özlen Güzel-Akdemir
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Istanbul University , Istanbul , Turkey
| | - Andrea Angeli
- b Department of NEUROFARBA , Sezione di Scienze Farmaceutiche Universita degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| | - Kübra Demir
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Istanbul University , Istanbul , Turkey
| | - Claudiu T Supuran
- b Department of NEUROFARBA , Sezione di Scienze Farmaceutiche Universita degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| | - Atilla Akdemir
- c Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy , Bezmialem Vakif University , Istanbul , Turkey
| |
Collapse
|
10
|
Experimental and theoretical investigations on acid catalysed stereoselective synthesis of new indazolyl-thiazole derivatives. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Yedage DB, Patil DV. Environmentally Benign Deep Eutectic Solvent for Synthesis of 1,3-Thiazolidin-4-ones. ChemistrySelect 2018. [DOI: 10.1002/slct.201800157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dattatray B. Yedage
- Department of Chemistry; Deccan Education Society's; Kirti M. Doongursee College, V.S. Marg; Kashinath Dhuru Road, Near Agar Bazar, Dadar (W) Mumbai - 400028 India
| | - Dattatray V. Patil
- Department of Chemistry; Deccan Education Society's; Kirti M. Doongursee College, V.S. Marg; Kashinath Dhuru Road, Near Agar Bazar, Dadar (W) Mumbai - 400028 India
| |
Collapse
|
12
|
Liaras K, Fesatidou M, Geronikaki A. Thiazoles and Thiazolidinones as COX/LOX Inhibitors. Molecules 2018; 23:E685. [PMID: 29562646 PMCID: PMC6017610 DOI: 10.3390/molecules23030685] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a natural process that is connected to various conditions and disorders such as arthritis, psoriasis, cancer, infections, asthma, etc. Based on the fact that cyclooxygenase isoenzymes (COX-1, COX-2) are responsible for the production of prostaglandins that play an important role in inflammation, traditional treatment approaches include administration of non-steroidal anti-inflammatory drugs (NSAIDs), which act as selective or non-selective COX inhibitors. Almost all of them present a number of unwanted, often serious, side effects as a consequence of interference with the arachidonic acid cascade. In search for new drugs to avoid side effects, while maintaining high potency over inflammation, scientists turned their interest to the synthesis of dual COX/LOX inhibitors, which could provide numerous therapeutic advantages in terms of anti-inflammatory activity, improved gastric protection and safer cardiovascular profile compared to conventional NSAIDs. Τhiazole and thiazolidinone moieties can be found in numerous biologically active compounds of natural origin, as well as synthetic molecules that possess a wide range of pharmacological activities. This review focuses on the biological activity of several thiazole and thiazolidinone derivatives as COX-1/COX-2 and LOX inhibitors.
Collapse
Affiliation(s)
- Konstantinos Liaras
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| | - Maria Fesatidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| |
Collapse
|
13
|
The antinociceptive evaluation of 2,3-substituted-1,3-thiazolidin-4-ones through thermal stimulation in mice. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2052-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Mahmoodi NO, Mohammadgholipour S, Ghanbari Pirbasti F. Microwave-assisted one-pot three-component synthesis of thiazolidinones using KSF@Ni as an efficient heterogeneous catalyst. J Sulphur Chem 2017. [DOI: 10.1080/17415993.2017.1343334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nosrat O. Mahmoodi
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | | | | |
Collapse
|
15
|
Pansare DN, Shelke RN, Shinde DB. A Facial Synthesis and Anticancer Activity of (Z)-2-((5-(4-nitrobenzylidene)-4-oxo-4,5-dihydrothiazol-2-yl)amino)-substituted Acid. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Dattatraya N. Pansare
- Department of Chemical Technology; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad 431 004 MS India
| | - Rohini N. Shelke
- Department of Chemistry; Deogiri College; Station Road Aurangabad 431 005 MS India
| | | |
Collapse
|
16
|
Aguiar ACC, Figueiredo FJB, Neuenfeldt PD, Katsuragawa TH, Drawanz BB, Cunico W, Sinnis P, Zavala F, Krettli AU. Primaquine-thiazolidinones block malaria transmission and development of the liver exoerythrocytic forms. Malar J 2017; 16:110. [PMID: 28279180 PMCID: PMC5345155 DOI: 10.1186/s12936-017-1755-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/26/2017] [Indexed: 02/06/2023] Open
Abstract
Background Primaquine is an anti-malarial used to prevent Plasmodium vivax relapses and malaria transmission. However, PQ metabolites cause haemolysis in patients deficient in the enzyme glucose-6-phosphate dehydrogenase (G6PD). Fifteen PQ-thiazolidinone derivatives, synthesized through one-post reactions from primaquine, arenealdehydes and mercaptoacetic acid, were evaluated in parallel in several biological assays, including ability to block malaria transmission to mosquitoes. Results All primaquine derivatives (PQ-TZs) exhibited lower cell toxicity than primaquine; none caused haemolysis to normal or G6PD-deficient human erythrocytes in vitro. Sera from mice pretreated with the test compounds thus assumed to have drug metabolites, caused no in vitro haemolysis of human erythrocytes, whereas sera from mice pretreated with primaquine did cause haemolysis. The ability of the PQ-TZs to block malaria transmission was evaluated based on the oocyst production and percentage of mosquitoes infected after a blood meal in drug pre-treated animals with experimental malaria caused by either Plasmodium gallinaceum or Plasmodium berghei; four and five PQ-TZs significantly inhibited sporogony in avian and in rodent malaria, respectively. Selected PQ-TZs were tested for their inhibitory activity on P. berghei liver stage development, in mice and in vitro, one compound (4m) caused a 3-day delay in the malaria pre-patent period. Conclusions The compound 4m was the most promising, blocking malaria transmissions and reducing the number of exoerythrocytic forms of P. berghei (EEFs) in hepatoma cells in vitro and in mice in vivo. The same compound also caused a 3-day delay in the malaria pre-patent period. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1755-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Caroline C Aguiar
- Centro de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil.,Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, Belo Horizonte, MG, 30130-100, Brazil.,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD, 21205, USA
| | - Flávio Jr B Figueiredo
- Centro de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil
| | - Patrícia D Neuenfeldt
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, UFPel, Campus Universitário s/no, Pelotas, RS, 98001-970, Brazil
| | - Tony H Katsuragawa
- Laboratório de Epidemiologia, Fundação Osvaldo Cruz-Fiocruz Rondônia, Bairro Lagoa, Porto Velho, RO, Brazil
| | - Bruna B Drawanz
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, UFPel, Campus Universitário s/no, Pelotas, RS, 98001-970, Brazil
| | - Wilson Cunico
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, UFPel, Campus Universitário s/no, Pelotas, RS, 98001-970, Brazil
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD, 21205, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD, 21205, USA
| | - Antoniana U Krettli
- Centro de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil. .,Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, Belo Horizonte, MG, 30130-100, Brazil.
| |
Collapse
|
17
|
da Silveira EF, Azambuja JH, de Carvalho TR, Kunzler A, da Silva DS, Teixeira FC, Rodrigues R, Beira FT, de Cássia Sant Anna Alves R, Spanevello RM, Cunico W, Stefanello FM, Horn AP, Braganhol E. Synthetic 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones exhibit selective in vitro antitumoral activity and inhibit cancer cell growth in a preclinical model of glioblastoma multiforme. Chem Biol Interact 2017; 266:1-9. [PMID: 28174097 DOI: 10.1016/j.cbi.2017.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/03/2017] [Indexed: 01/21/2023]
Abstract
Glioblastoma multiforme (GBM) is the worst form of primary brain tumor, which has a high rate of infiltration and resistance to radiation and chemotherapy, resulting in poor prognosis for patients. Recent studies show that thiazolidinones have a wide range of pharmacological properties including antimicrobial, anti-inflammatory, anti-oxidant and anti-tumor. Here, we investigate the effect antiglioma in vitro of a panel of sixteen synthetic 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones where 13 of these decreased the viability of glioma cells 30-65% (100 μM) compared with controls. The most promising compounds such as 4d, 4l, 4m and 4p promoted glioma reduction of viability greater than 50%, were further tested at lower concentrations (12.5, 25, 50 and 100 μM). Also, the data showed that the compounds 4d, 4l, 4m and 4p induced cell death primarily through necrosis and late apoptosis mechanisms. Interestingly, none of these 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones were cytotoxic for primary astrocytes, which were used as a non-transformed cell model, indicating selectivity. Our results also show that the treatment with sub-therapeutic doses of 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones (4d, 4l and 4p) reduced in vivo glioma growth as well as malignant characteristics of implanted tumors such as intratumoral hemorrhage and peripheral pseudopalisading. Importantly, 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones treatment did not induce mortality or peripheral damage to animals. Finally, 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones also changed the nitric oxide metabolism which may be associated with reduced growth and malignity characteristics of gliomas. These data indicates for the first time the therapeutic potential of synthetic 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidin-4-ones to GBM treatment.
Collapse
Affiliation(s)
- Elita F da Silveira
- Programa de Pós-Graduação em Ciências Fisiológicas, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| | - Juliana H Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Taíse Rosa de Carvalho
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Alice Kunzler
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Daniel S da Silva
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fernanda C Teixeira
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo Rodrigues
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fátima T Beira
- Departamento de Fisiologia e Farmacologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rita de Cássia Sant Anna Alves
- Departamento de Patologia e de Medicina Legal, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roselia M Spanevello
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wilson Cunico
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana P Horn
- Programa de Pós-Graduação em Ciências Fisiológicas, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
da Silva DS, da Silva CEH, Soares MSP, Azambuja JH, de Carvalho TR, Zimmer GC, Frizzo CP, Braganhol E, Spanevello RM, Cunico W. Thiazolidin-4-ones from 4-(methylthio)benzaldehyde and 4-(methylsulfonyl)benzaldehyde: Synthesis, antiglioma activity and cytotoxicity. Eur J Med Chem 2016; 124:574-582. [PMID: 27614406 DOI: 10.1016/j.ejmech.2016.08.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 11/19/2022]
Abstract
The present study assessed the biological potential of fourteen 1,3-thiazolidin-4-ones evaluating the antiglioma effect through decreasing of cell viability of glioblastoma multiform cells. The new compounds were efficient synthesized through multicomponent or multicomponent one-pot procedures in moderate to good yields (22-86%) from two arenealdehydes (4-(methylthio)benzaldehyde and 4-(methylsulfonyl)benzaldehyde), seven amines (aromatic and aliphatic) and mercaptoacetic acid. The compounds were identified and characterized by GC/MS and NMR, five of them by HRMS. Six thiazolidinones showed significant effect of decreasing cell viability compared to standard drug TMZ at 100 μM in 72 h in C6 cell line by MTT assay. The compounds 5b, 5e, 5g and 6e showed the best results in the screening at 100 μM and were analyzed at different concentrations (5, 25, 50, 100 and 250 μM). Compounds 5b and 5e showed statistical difference at 5 μM, 6e at 25 μM and 5g at 50 μM in 72 h of treatment. The cytotoxicity study in primary astrocytes cells was evaluated and none of fourteen compounds showed toxicity at 100 μM, eight of them were not cytotoxic at 250 μM, both in 72 h. In addition, the propidium iodide assay demonstrated that the compounds might induce cell death by necrosis. In conclusion, this work reports at least four compounds (5b, 5e, 5g and 6e) with potential anti-tumor effect against glioblastoma multiform cell presenting activity at low concentrations and safe profile of cytotoxicity.
Collapse
Affiliation(s)
- Daniel Schuch da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil; Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil
| | - Cesar Emiliano Hoffmann da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil; Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil; Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil
| | - Juliana Hofstatter Azambuja
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil; Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil
| | - Taíse Rosa de Carvalho
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil; Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil
| | - Geórgia Cristiane Zimmer
- Núcleo de Estudos Químicos e Complexidade Molecular (NEOQCOM), Universidade Federal de Santa Maria, RS, Brazil
| | - Clarissa Piccinin Frizzo
- Núcleo de Estudos Químicos e Complexidade Molecular (NEOQCOM), Universidade Federal de Santa Maria, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil; Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil; Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil
| | - Wilson Cunico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil; Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Brazil.
| |
Collapse
|
19
|
Chen N, Duan W, Lin G, Liu L, Zhang R, Li D. Synthesis and antifungal activity of dehydroabietic acid-based 1,3,4-thiadiazole-thiazolidinone compounds. Mol Divers 2016; 20:897-905. [PMID: 27480629 DOI: 10.1007/s11030-016-9691-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
In an attempt to search for new natural products-based antifungal agents, a series of novel dehydroabietic acid derivatives bearing a 1,3,4-thiadiazole-thiazolidinone moiety were designed and synthesized. The primary bioassay used showed that at a concentration of [Formula: see text], the target compounds 3c, 3f, and 3n exhibited excellent antifungal activity (91.3 % inhibition) against Gibberella zeae, which was equivalent to the commercial antifungal drug azoxystrobin (positive control).
Collapse
Affiliation(s)
- Naiyuan Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China.
| | - Guishan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Luzhi Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Dianpeng Li
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, Guangxi, People's Republic of China
| |
Collapse
|
20
|
Rad MNS, Behrouz S, Behrouz M, Sami A, Mardkhoshnood M, Zarenezhad A, Zarenezhad E. Design, synthesis and biological evaluation of novel 1,2,3-triazolyl $$\upbeta $$ β -hydroxy alkyl/carbazole hybrid molecules. Mol Divers 2016; 20:705-18. [DOI: 10.1007/s11030-016-9678-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/22/2016] [Indexed: 12/14/2022]
|
21
|
Pires Gouvea D, Vasconcellos FA, Dos Anjos Berwaldt G, Neto ACPS, Fischer G, Sakata RP, Almeida WP, Cunico W. 2-Aryl-3-(2-morpholinoethyl)thiazolidin-4-ones: Synthesis, anti-inflammatory in vivo, cytotoxicity in vitro and molecular docking studies. Eur J Med Chem 2016; 118:259-65. [PMID: 27131068 DOI: 10.1016/j.ejmech.2016.04.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/16/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
Seven new 4-thiazolidinones bearing the morpholino moiety were easily synthesized by one-pot reactions of 4-(2-aminoethyl)morpholine (2-morpholinoethylamine), arenealdehydes and mercaptoacetic acid refluxing toluene for 19 h with moderate to good yields (45-97%). These novel compounds were fully identified and characterized by NMR spectroscopy and mass spectrometry. Thiazolidin-4-ones in vivo anti-inflammatory activities were determined using a croton oil-induced ear edema model of inflammation in BALB C mice. The best results were found for compounds 4c (49.20 mmol/kg), 4d (49.20 mmol/kg) and 4f (52.48 mmol/kg), which showed the ability to decrease the ear edema in mice by 50%, 48% and 54%, respectively, when compared to the standard drug indomethacin. In addition, the in vitro cytotoxicity activity of thiazolidin-4-ones against Vero cells was also performed and four compounds (4a, 4c, 4d and 4f) showed no toxic effect at 500 μg/mL. A docking simulation of compounds into the 1Q4G (COX-1) and 4PH9 (COX-2) enzymes binding site was conducted. This preliminary result will guide us in for further studies to improve the anti-inflammatory activity.
Collapse
Affiliation(s)
- Daniela Pires Gouvea
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimento, Universidade Federal de Pelotas, Brazil
| | - Flávia Aleixo Vasconcellos
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimento, Universidade Federal de Pelotas, Brazil.
| | - Gabriele Dos Anjos Berwaldt
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimento, Universidade Federal de Pelotas, Brazil
| | - Amilton Clair Pinto Seixas Neto
- Laboratório do Grupo de Estudos em Doenças Transmitidas por Animais, Faculdade de Veterinária, Universidade Federal de Pelotas, Brazil
| | - Gerferson Fischer
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal de Pelotas, Brazil
| | - Renata Parruca Sakata
- Laboratório de Desenvolvimento de Fármacos, Instituto de Química e Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Brazil
| | - Wanda Pereira Almeida
- Laboratório de Desenvolvimento de Fármacos, Instituto de Química e Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Brazil
| | - Wilson Cunico
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimento, Universidade Federal de Pelotas, Brazil.
| |
Collapse
|
22
|
Novel 1,3-thiazolidin-4-one derivatives as promising anti-Candida agents endowed with anti-oxidant and chelating properties. Eur J Med Chem 2016; 117:144-56. [PMID: 27100030 DOI: 10.1016/j.ejmech.2016.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/23/2016] [Accepted: 04/05/2016] [Indexed: 11/20/2022]
Abstract
Pursuing our recent outcomes regarding the antifungal activity of N-substituted 1,3-thiazolidin-4-ones, we synthesized thirty-six new derivatives introducing aliphatic, cycloaliphatic and heteroaromatic moieties at N1-hydrazine connected with C2 position of the thiazolidinone nucleus and functionalizing the lactam nitrogen with differently substituted (NO2, NH2, Cl and F) benzyl groups. These compounds were tested to evaluate their minimum inhibitory concentration (MIC) against several clinical Candida spp. with respect to topical and systemic reference drugs (clotrimazole, fluconazole, ketoconazole, miconazole, tioconazole, amphotericin B). Moreover, anti-oxidant properties were also evaluated by using different protocols including free radical scavenging (DPPH and ABTS), reducing power (CUPRAC and FRAP), metal chelating and phosphomolybdenum assays. Moreover, for the most active derivatives we assessed the toxicity (CC50) against Hep2 human cells in order to characterize them as multi-target agents for fungal infections.
Collapse
|
23
|
Subhedar DD, Shaikh MH, Kalam Khan FA, Sangshetti JN, Khedkar VM, Shingate BB. Facile synthesis of new N-sulfonamidyl-4-thiazolidinone derivatives and their biological evaluation. NEW J CHEM 2016. [DOI: 10.1039/c6nj00021e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot three-component facile synthesis of N-sulfonamidyl-4-thiazolidinone derivatives using a [HDBU][HSO4] reusable ionic liquid was carried out, together with an investigation into their antifungal and antioxidant properties and a molecular docking study.
Collapse
Affiliation(s)
| | - Mubarak H. Shaikh
- Department of Chemistry
- Dr. Babasaheb Ambedkar Marathwada University
- Aurangabad
- India
| | - Firoz A. Kalam Khan
- Department of Pharmaceutical Chemistry
- Y. B. Chavan College of Pharmacy
- Aurangabad
- India
| | | | - Vijay M. Khedkar
- Combichem-Bioresource Centre
- National Chemical Laboratory
- Pune 411 008
- India
- School of Health Sciences
| | - Bapurao B. Shingate
- Department of Chemistry
- Dr. Babasaheb Ambedkar Marathwada University
- Aurangabad
- India
| |
Collapse
|
24
|
Anti-Candida activity and cytotoxicity of a large library of new N-substituted-1,3-thiazolidin-4-one derivatives. Eur J Med Chem 2015; 107:82-96. [PMID: 26562544 DOI: 10.1016/j.ejmech.2015.10.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/22/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
On the basis of the recent findings about the biological properties of thiazolidinones and taking into account the encouraging results about the antifungal activity of some (thiazol-2-yl)hydrazines, new N-substituted heterocyclic derivatives were designed combining the thiazolidinone nucleus with the hydrazonic portion. In details, 1,3-thiazolidin-4-ones bearing (cyclo)aliphatic or (hetero)aromatic moieties linked to the N1-hydrazine at C2 were synthesized and classified into three series according to the aromatic or bicyclic rings connected to the lactam nitrogen of the thiazolidinone. These molecules were assayed for their anti-Candida effects in reference to the biological activity of the conventional topic (clotrimazole, miconazole, tioconazole) and systemic drugs (fluconazole, ketoconazole, amphotericin B). Finally, we investigated the selectivity against fungal cells by testing the compounds endowed with the best MICs on Hep2 cells in order to assess their cell toxicity (CC50) and we noticed that two derivatives were less cytotoxic than the reference drug clotrimazole. Moreover, a preliminary molecular modelling approach has been performed against lanosterol 14-α demethylase (CYP51A1) to rationalize the activity of the tested compounds and to specify the target protein or enzyme.
Collapse
|
25
|
Ramírez-Villalva A, González-Calderón D, González-Romero C, Morales-Rodríguez M, Jauregui-Rodríguez B, Cuevas-Yáñez E, Fuentes-Benítes A. A facile synthesis of novel miconazole analogues and the evaluation of their antifungal activity. Eur J Med Chem 2015; 97:275-9. [DOI: 10.1016/j.ejmech.2015.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
26
|
Gautam D, Chaudhary RP. Synthesis, X-ray, DFT and photophysical properties of some new ferrocenyl hydrazono thiazolidin-4-ones and their derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 143:256-264. [PMID: 25733253 DOI: 10.1016/j.saa.2015.01.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/03/2014] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Cyclocondensation of thiosemicarbazone of 2-acetylferrocene with α-haloacids and α-haloketones afford new ferrocenyl hydrazono thiazolidin-4-ones and ferrocenyl hydrazono thiazoles respectively. Ferrocenyl hydrazono thiazolidin-4-one is easily converted into enamino ketone with N,N-dimethylformamide dimethyl acetal (DMF-DMA). The compounds were characterized by spectroscopic means and the structure of the new ferrocenyl hydrazono thiazolidin-4-one (3a) was determined by means of X-ray crystallography. The photophysical properties of these compounds were studied by means of UV/visible absorption spectroscopy and fluorescence spectroscopy. Density functional theory (DFT) calculations have been carried out with Gaussian 09W using B3LYP density functional method and 6-31G (d) basis set. (1)H and (13)C Nuclear Magnetic Resonance (NMR) have been calculated and correlated with experimental results. Antimicrobial activity studies of some new compounds have been reported.
Collapse
Affiliation(s)
- Deepika Gautam
- Department of Chemistry, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab 148106, India
| | - R P Chaudhary
- Department of Chemistry, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab 148106, India.
| |
Collapse
|
27
|
Moreno-Fuquen R, Castillo JC, Abonia R, Ellena J, De Simone CA. Crystal structure of (±)-3-[(benzo[d][1,3]dioxol-5-yl)meth-yl]-2-(3,4,5-tri-meth-oxy-phen-yl)-1,3-thia-zolidin-4-one. Acta Crystallogr Sect E Struct Rep Online 2014; 70:o1235-6. [PMID: 25553018 PMCID: PMC4257375 DOI: 10.1107/s160053681402340x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/23/2014] [Indexed: 11/14/2022]
Abstract
In the title thia-zolidine-4-one derivative, C20H21NO6S, the central thia-zolidine ring is essentially planar (r.m.s. deviation for all non-H atoms = 0.0287 Å) and forms a dihedral angle of 88.25 (5)° with the meth-oxy-substituted benzene ring and 74.21 (4)° with the 1,3-benzodioxole ring. The heterocyclic ring (with two O atoms) fused to benzene ring adopts an envelope conformation with the non-ring-junction C atom as the flap. In the crystal, the mol-ecules are linked into chains along [001] through weak C-H⋯O inter-actions, forming R (4) 4(28) edge-fused rings.
Collapse
Affiliation(s)
- Rodolfo Moreno-Fuquen
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, AA 25360, Santiago de Cali, Colombia
| | - Juan C. Castillo
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, AA 25360, Santiago de Cali, Colombia
| | - Rodrigo Abonia
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, AA 25360, Santiago de Cali, Colombia
| | - Javier Ellena
- Instituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
| | - Carlos A. De Simone
- Instituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
| |
Collapse
|
28
|
3,4-(Methylenedioxy)aniline as precursor to the synthesis of thiazolidin-4-ones. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1338-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Design, synthesis, and biological activities of novel azole-bonded β-hydroxypropyl oxime O-ethers. Mol Divers 2014; 18:797-808. [PMID: 25081563 DOI: 10.1007/s11030-014-9539-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/13/2014] [Indexed: 10/25/2022]
Abstract
The synthesis and biological effects of 15 novel azole-bonded β-hydroxypropyl oxime O-ethers have been described. In this synthesis, the oximation of aromatic ketones followed by an O-alkylation reaction with epichlorohydrin and/or epibromohydrin led to the corresponding O-oxime ether adducts. Subsequently, the attained O-oxime ether adducts were used to synthesize the target molecules after treating them with the appropriate azole derivatives. The in vitro antifungal and antibacterial activities of title compounds were obtained against several pathogenic fungi, Gram-positive and/or Gram-negative bacteria. Benzophenone O-2-hydroxy-3-(2-phenyl-1 H-imidazol-1-yl) propyl oxime and 9H-fluoren-9-one O-2-hydroxy-3-(2-phenyl-1 H-imidazol-1-yl)propyl oxime proved to have considerable antifungal activity against Candida albicans, Candida krusei, Aspergillus niger, and Trichophyton rubrum. These two compounds demonstrated comparable antifungal activity to clotrimazole and fluconazole (standard drugs). All compounds were also tested against Escherichia coli and Staphylococcus aureus as Gram-negative and Gram-positive bacteria, respectively, and their activities were compared to gentamycin and ampicillin (reference drugs). In general, marginal antibacterial activity against tested bacteria was observed for the title compounds. A molecular docking study is also discussed for the two most potent compounds against fungi. The docking study reveals a considerable interaction between the two most potent compounds and the active site of Mycobacterium P450DM. Moreover, these two compounds are much strongly bound to the active site of Mycobacterium P450DM compared to fluconazole.
Collapse
|
30
|
Bosenbecker J, Bareño VDO, Difabio R, Vasconcellos FA, Dutra FSP, Oliveira PS, Barschak AG, Stefanello FM, Cunico W. Synthesis and antioxidant activity of 3-(Pyridin-2-ylmethyl)-1,3-thiazinan(thiazolidin)-4-ones. J Biochem Mol Toxicol 2014; 28:425-32. [PMID: 24939323 DOI: 10.1002/jbt.21581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 12/24/2022]
Abstract
The antioxidant properties of two series of thiazolidinones and thiazinanones were reported. The novel six-membered thiazinanones were synthesized from the efficient multicomponent reaction of 2-picolylamine (2-aminomethylpyridine), arenaldehydes, and the 3-mercaptopropionic acid in moderate to excellent yields. These novel compounds were fully identified and characterized by NMR and GC-MS techniques. In vitro antioxidant activities of all compounds were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) tests. The antioxidant assays of thiobarbituric acid reactive species and total thiol content levels in the cerebral cortex and liver of rats were also performed. Thiazinanone 5a showed the best radical scavenging activity in DPPH and ABTS tests, as well as reduced lipid peroxidation and increased total thiol group in biological systems. Altogether, the results may be considered a good starting point for the discovery of a new radical scavenger.
Collapse
Affiliation(s)
- Juliano Bosenbecker
- Laboratório de Química Aplicada a Bioativos (LaQuiABio), Universidade Federal de Pelotas, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Campus Universitário, Pelotas, 96010-900, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Alegaon S, Alagawadi K, Garg M, Dushyant K, Vinod D. 1,3,4-Trisubstituted pyrazole analogues as promising anti-inflammatory agents. Bioorg Chem 2014; 54:51-9. [DOI: 10.1016/j.bioorg.2014.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 11/27/2022]
|
32
|
Campos JC, Gouvêa DP, Ribeiro CDS, Dutra FSP, Stefanello FM, Pereira CMP, Cunico W, Siqueira GM. Efficient Synthesis and Antioxidant Evaluation of 2-Aryl-3-(Pyrimidin-2-yl)-Thiazolidinones. J Biochem Mol Toxicol 2013; 27:445-50. [DOI: 10.1002/jbt.21506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/16/2013] [Accepted: 05/31/2013] [Indexed: 11/08/2022]
Affiliation(s)
- José C. Campos
- Laboratório de Química (LAQUIABIO); Universidade Federal de Pelotas; Pelotas Rio Grande do Sul Brazil
| | - Daniela P. Gouvêa
- Laboratório de Química (LAQUIABIO); Universidade Federal de Pelotas; Pelotas Rio Grande do Sul Brazil
| | - Camila da S. Ribeiro
- Laboratório de Química (LAQUIABIO); Universidade Federal de Pelotas; Pelotas Rio Grande do Sul Brazil
| | - Filipe S. P. Dutra
- Laboratório de Biomarcadores; Universidade Federal de Pelotas; Pelotas Rio Grande do Sul Brazil
| | - Francieli M. Stefanello
- Laboratório de Biomarcadores; Universidade Federal de Pelotas; Pelotas Rio Grande do Sul Brazil
| | - Claudio M. P. Pereira
- Laboratório de Heterociclos Bioativos e Bioprospecção (LAHBBIO); Universidade Federal de Pelotas; Pelotas Rio Grande do Sul Brazil
| | - Wilson Cunico
- Laboratório de Química (LAQUIABIO); Universidade Federal de Pelotas; Pelotas Rio Grande do Sul Brazil
| | - Geonir M. Siqueira
- Laboratório de Química (LAQUIABIO); Universidade Federal de Pelotas; Pelotas Rio Grande do Sul Brazil
| |
Collapse
|