1
|
Saravanakumar N, Poorani ASA, Dhanabalan AK, Sugapriya S, Kumaresan G, Suresh P. Novel Fused Pyrimidines as Potent Cyclin-Dependent Kinases Inhibitor for Gastric Adenocarcinoma: Combined In Vitro, In Silico Anticancer Studies. Chem Biol Drug Des 2024; 104:e70013. [PMID: 39543948 DOI: 10.1111/cbdd.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Our research aims to design novel pyrimidine derivatives inspired by the common pyrimidine core found in many FDA-approved drugs. However, extensive prior research on the pyrimidine scaffold has made discovering new molecules more challenging. To overcome this obstacle, we employed a molecular hybridisation strategy, opting to hybridise tetralin and pyrimidine, recognising their potential in cancer therapeutics. The fused pyrimidine was synthesised through a base-mediated condensation of chalcone with amidine. The reaction conditions were further optimised for base, solvent, temperature and time to produce a series of 21 novel derivatives. These compounds were subsequently screened for anticancer activity against gastric adenocarcinoma cell lines using the MTT assay. Among the synthesised compounds, 2-(pyridin-3-yl)-4-(pyridin-3-yl)-5,6-dihydrobenzo[h]quinazoline 8b and 4-(2-(pyridin-3-yl)-5,6 dihydrobenzo[h]quinazolin-4-yl) phenol 5g exhibited potent anticancer activity compared to (R)-Roscovitine. Additionally, a molecular docking study was conducted to assess the reactivity of compound 5g, revealing that the presence of a phenolic hydroxyl group enables hydrogen bonding with CDKs and enhances anticancer activity. Furthermore, the efficacy of compound 5g was validated through an in vitro CDK2/cyclin A2 enzyme inhibition assay. Interestingly, the observed CDK2 inhibitory activity showed a good correlation with the corresponding value for the antiproliferative activity of the tested compounds.
Collapse
Affiliation(s)
- Natarajan Saravanakumar
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| | - Arunagiri Sivanesan Aruna Poorani
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| | | | - Selvam Sugapriya
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Ganesan Kumaresan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Palaniswamy Suresh
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
2
|
Teli G, Pal R, Maji L, Purawarga Matada GS, Sengupta S. Explanatory review on pyrimidine/fused pyrimidine derivatives as anticancer agents targeting Src kinase. J Biomol Struct Dyn 2024; 42:1582-1614. [PMID: 37144746 DOI: 10.1080/07391102.2023.2205943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The pyrimidine and fused pyrimidine ring systems play vital roles to inhibit the c-Src kinase. The Src kinase is made of different domains but the kinase domain is responsible for inhibition of Src kinase. In which the kinase domain is the main domain that is made of several amino acids. The Src kinase is inhibited by its inhibitors when it is activated by phosphorylation. Although dysregulation of Src kinase caused cancer in the late nineteenth century, medicinal chemists have not explored it extensively; therefore it is still regarded as a cult pathway. There are numerous FDA-approved drugs on the market, yet novel anticancer drugs are still in demand. Existing medications have adverse effects and drug resistance owing to rapid protein mutation. In this review, we discussed the activation process of Src kinase, chemistry of pyrimidine ring and its different synthetic routes, as well as the recent development in c-Src kinase inhibitors containing pyrimidine and their biological activity, SAR, and selectivity. The c-Src binding pocket has been predicted in detail to discover the vital amino acids which will interact with inhibitors. The potent derivatives were docked to discover the binding pattern. The derivative 2 established three hydrogen bonds with the amino acid residues Thr341 and Gln278 and had the greatest binding energy of -13.0 kcal/mol. The top docked molecules were further studied for ADMET studies. The derivative 1, 2, and 43 did not show any violation of Lipinski's rule. All derivatives used for the prediction of toxicity showed toxicity.
Collapse
Affiliation(s)
- Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
He H, Liu JQ, Wang XS. Synthesis of pyrimidine-fused skeletons through copper-catalyzed consecutive Sonogashira coupling and aminocyclization. Org Biomol Chem 2023; 21:7886-7890. [PMID: 37743708 DOI: 10.1039/d3ob01248d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A copper-catalyzed sequence involving a Sonogashira coupling reaction and 5-exo-dig aminocyclization between a terminal alkyne and a 2-(2-bromophenyl)pyrimidine analog based on six-membered rings is presented. This protocol provides a controlled and modular approach to access a variety of synthetically useful pyrimidine-fused skeletons with high efficiency, broad substrate scope, and excellent functional group compatibility. Under acidic conditions, the (Z)-configuration of products spontaneously converts into (E)-9-benzylidene-1,9-dihydro-11H-pyrazolo[4',3':4,5]pyrimido[2,1-a]isoindol-11-ones.
Collapse
Affiliation(s)
- Heng He
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
4
|
Teli G, Pal R, Maji L, Sengupta S, Raghavendra NM, Matada GSP. Medicinal Chemistry Perspectives on Recent Advances in Src Kinase Inhibitors as a Potential Target for the Development of Anticancer Agents: Biological Profile, Selectivity, Structure-Activity Relationship. Chem Biodivers 2023; 20:e202300515. [PMID: 37563848 DOI: 10.1002/cbdv.202300515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
The physiological Src proto-oncogene is a protein tyrosine kinase receptor that served as the essential signaling pathway in different types of cancer. Src kinase receptor is divided into different domains: a unique domain, an SH3 domain, an SH2 domain, a protein tyrosine kinase domain, and a regulatory tail, which runs from the N-terminus to the C-terminus. Src kinase inhibitors bind in the kinase domain and are activated by phosphorylation. The etiology of cancer involved various signaling pathways and Src signaling pathways are also involved in those clusters. Although the dysregulation of Src kinase resulted in cancer being discovered in the late 19th century it is still considered a cult pathway because it is not much explored by different medicinal chemists and oncologists. The Src kinase regulated through different kinase pathways (MAPK, PI3K/Akt/mTOR, JAK/STAT3, Hippo kinase, PEAK1, and Rho/ROCK pathways) and proceeded downstream signaling to conduct cell proliferation, angiogenesis, migration, invasion, and metastasis of cancer cells. There are numerous FDA-approved drugs flooded the market but still, there is a huge demand for the creation of novel anticancer drugs. As the existing drugs are accompanied by several adverse effects and drug resistance due to rapid mutation in proteins. In this review, we have elaborated about the structure and activation of Src kinase, as well as the development of Src kinase inhibitors. Our group also provided a comprehensive overview of Src inhibitors throughout the last two decades, including their biological activity, structure-activity relationship, and Src kinase selectivity. The Src binding pocket has been investigated in detail to better comprehend the interaction of Src inhibitors with amino acid residues. We have strengthened the literature with our contribution in terms of molecular docking and ADMET studies of top compounds. We hope that the current analysis will be a useful resource for researchers and provide glimpse of direction toward the design and development of more specific, selective, and potent Src kinase inhibitors.
Collapse
Affiliation(s)
- Ghanshyam Teli
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | | |
Collapse
|
5
|
Design, synthesis and anti-tumor activity studies of novel pyrido[3, 4-d]pyrimidine derivatives. Bioorg Med Chem Lett 2022; 76:129020. [PMID: 36216031 DOI: 10.1016/j.bmcl.2022.129020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/27/2022]
|
6
|
Design, synthesis and anti-tumor activity evaluation of 4,6,7-substitute quinazoline derivatives. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02897-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Wang Z, Dai H, Si X, Gao C, Liu L, Zhang L, Zhang Y, Song Y, Zhao P, Zheng J, Ke Y, Liu H, Zhang Q. Synthesis and Antitumor Activity of 2,4,6-Trisubstituted Novel Quinazoline Derivatives Containing Trifluoromethyl. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Synthesis, characterization, DFT calculation, antifungal, antioxidant, CT-DNA/pBR322 DNA interaction and molecular docking studies of heterocyclic analogs. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Yalçın E. Synthesis of novel fused acenaphtopyrimidine hybrid, its photophysical properties and HSA interaction. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.1975710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ergin Yalçın
- Iskenderun Technical University(ISTE), Department of Engineering Basic Sciences, Turkey
- ISTE Centre for Science and Technology Studies and Research (ISTE-CSTSR), Iskenderun, Turkey
| |
Collapse
|
10
|
Chaika N, Shvydenko K, Shvydenko T, Nazarenko K, Kostyuk A. One‐Step Method for Alicyclic Ring‐Fused Pyrimidine‐2,4‐diones. ChemistrySelect 2021. [DOI: 10.1002/slct.202102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nikita Chaika
- Department of Organophosphorus Chemistry Institute of Organic Chemistry Murmanska 5 Kyiv-94 02660 Ukraine
| | - Kostiantyn Shvydenko
- Department of Organophosphorus Chemistry Institute of Organic Chemistry Murmanska 5 Kyiv-94 02660 Ukraine
| | - Tetiana Shvydenko
- Department of Organophosphorus Chemistry Institute of Organic Chemistry Murmanska 5 Kyiv-94 02660 Ukraine
| | - Kostiantyn Nazarenko
- Department of Organophosphorus Chemistry Institute of Organic Chemistry Murmanska 5 Kyiv-94 02660 Ukraine
| | - Aleksandr Kostyuk
- Department of Organophosphorus Chemistry Institute of Organic Chemistry Murmanska 5 Kyiv-94 02660 Ukraine
| |
Collapse
|
11
|
ElZahabi HSA, Nafie MS, Osman D, Elghazawy NH, Soliman DH, El-Helby AAH, Arafa RK. Design, synthesis and evaluation of new quinazolin-4-one derivatives as apoptotic enhancers and autophagy inhibitors with potent antitumor activity. Eur J Med Chem 2021; 222:113609. [PMID: 34119830 DOI: 10.1016/j.ejmech.2021.113609] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
This work presents the design and synthesis of a series of new quinazolin-4-one derivatives, based on the established effectiveness of quinazoline-based small molecules as anticancer agents. Synthesized compounds were more potent against MCF-7 than A-549 with low to submicromolar IC50s. Compound 17 exhibited the best IC50 being equipotent with the positive control doxorubicin (IC50 = 0.06 μM) and better than 5-fluorouracil (IC50 = 2.13 μM). Compound 17 was further tested against MDA-MB-231 and MCF-10A and was found to be > 2 folds more cytotoxic on MCF-7. Significant apoptotic activity was elicited by 17 on MCF-7 where it increased apoptotic cell death along with induction of pre-G1 and G1-phase cell cycle arrest. Similarly, 17 was able to induce apoptosis in MD-MB-231 treated cells associated with a disruption of the cell cycle causing arrest at the pre-G1 and S phases. Investigation of gene expression in MCF-7 demonstrated an increased expression of the proapoptotic genes P53, PUMA, Bax, caspases 3, 8 and 9 and a decrease of the anti-apoptotic gene Bcl2. Also, 17 reduced autophagy giving way for apoptosis to induce cancer cells death. This latter observation was associated with downregulation of EGFR and its downstream effectors PI3K, AKT and mTor. As its biomolecular target, 17 also inhibited EGFR similar to erlotinib (IC50 = 0.072 and 0.087 μM, respectively). Additionally, in vivo testing in a mouse model of breast cancer affirmed the anti-tumor efficacy of 17. Finally, docking of 17 against EGFR ATP binding site demonstrated its ability to bind with EGFR resembling erlotinib.
Collapse
Affiliation(s)
- Heba S A ElZahabi
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Girls Branch, Cairo, Egypt
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Osman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, MSA University, Egypt
| | - Nehal H Elghazawy
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Dalia H Soliman
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Girls Branch, Cairo, Egypt
| | - Abdelghany Ali H El-Helby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Boys Branch, Cairo, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
12
|
Synthesis of new hexahydropyrimido[1,2- a]azepine derivatives bearing functionalized aryl and heterocyclic moieties as anti-inflammatory agents. Future Med Chem 2021; 13:625-641. [PMID: 33624540 DOI: 10.4155/fmc-2020-0298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
New hexahydropyrimido[1,2-a]azepine derivatives bearing functionalized aryl and heterocyclic moieties were synthesized as anti-inflammatory agents with better safety profiles. All synthesized compounds were assessed in vitro for their COX-1 and COX-2 inhibition activities. The most selective compounds, 2f, 5 and 6, were further evaluated for their in vivo anti-inflammatory activity and PGE2 inhibitory activity. To rationalize their selectivity, molecular docking within COX-1 and COX-2 binding sites was performed. Their physicochemical properties and drug-like nature profile were also calculated. The good activity and selectivity of compounds 2f, 5 and 6 were rationalized using a molecular docking study and supported by in vivo studies. These promising findings are encouraging for performing future investigations of these derivatives.
Collapse
|
13
|
Wang S, Yuan XH, Wang SQ, Zhao W, Chen XB, Yu B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. Eur J Med Chem 2021; 214:113218. [PMID: 33540357 DOI: 10.1016/j.ejmech.2021.113218] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
Considerable progress has been made in the development of anticancer agents over the past few decades, and a lot of new anticancer agents from natural and synthetic sources have been produced. Among heterocyclic compounds, pyrimidine-fused bicyclic heterocycles possess a variety of biological activities such as anticancer, antiviral, etc. To date, 147 pyrimidine-fused bicyclic heterocycles have been approved for clinical assessment or are currently being used in clinic, 57 of which have been approved by FDA for clinical treatment of various diseases, and 22 of them are being used in the clinic for the treatment of different cancers. As the potentially privileged scaffolds, pyrimidine-fused bicyclic heterocycles may be used to discover new drugs with similar biological targets and improved therapeutic efficacy. This review aims to provide an overview of the anticancer applications and synthetic routes of 22 approved pyrimidine-fused bicyclic heterocyclic drugs in clinic.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiao-Han Yuan
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, NO.127, Dongming Road, Zhengzhou, 450008, PR China
| | - Wen Zhao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Cancer Institute, NO.127, Dongming Road, Zhengzhou, 450008, PR China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
14
|
Ruan B, Zhang Y, Tadesse S, Preston S, Taki AC, Jabbar A, Hofmann A, Jiao Y, Garcia-Bustos J, Harjani J, Le TG, Varghese S, Teguh S, Xie Y, Odiba J, Hu M, Gasser RB, Baell J. Synthesis and structure-activity relationship study of pyrrolidine-oxadiazoles as anthelmintics against Haemonchus contortus. Eur J Med Chem 2020; 190:112100. [PMID: 32018095 DOI: 10.1016/j.ejmech.2020.112100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Parasitic roundworms (nematodes) are significant pathogens of humans and animals and cause substantive socioeconomic losses due to the diseases that they cause. The control of nematodes in livestock animals relies heavily on the use of anthelmintic drugs. However, their extensive use has led to a widespread problem of drug resistance in these worms. Thus, the discovery and development of novel chemical entities for the treatment of parasitic worms of humans and animals is needed. Herein, we describe our medicinal chemistry optimization efforts of a phenotypic hit against Haemonchus contortus based on a pyrrolidine-oxadiazole scaffold. This led to the identification of compounds with potent inhibitory activities (IC50 = 0.78-22.4 μM) on the motility and development of parasitic stages of H. contortus, and which were found to be highly selective in a mammalian cell counter-screen. These compounds could be used as suitable chemical tools for drug target identification or as lead compounds for further optimization.
Collapse
Affiliation(s)
- Banfeng Ruan
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia; Key Lab of Biofabrication of Anhui Higher Education, Institution Centre for Advanced Biofabrication, Hefei University, Hefei, 230601, PR China
| | - Yuezhou Zhang
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia; State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Solomon Tadesse
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia; School of Health and Life Sciences, Federation University, Ballarat, Victoria, 3353, Australia
| | - Aya C Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yaqing Jiao
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jose Garcia-Bustos
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jitendra Harjani
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Thuy Giang Le
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Swapna Varghese
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Silvia Teguh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Yiyue Xie
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Jephthah Odiba
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, 3052, Australia; School of Pharmaceutical Sciences, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia; Australian Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
15
|
Daraie M, Heravi MM, Mirzaei M, Lotfian N. Synthesis of Pyrazolo‐[4́,3́:5,6]pyrido[2,3‐d]pyrimidine‐diones Catalyzed by a Nano‐sized Surface‐GraftedNeodymiumComplex of the TungstosilicateviaMulticomponent Reaction. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mansoureh Daraie
- Department of Chemistry, School of SciencesAlzahra University Vanak Tehran Iran
| | - Majid M. Heravi
- Department of Chemistry, School of SciencesAlzahra University Vanak Tehran Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad Iran
| | - Nahid Lotfian
- Department of Chemistry, School of SciencesAlzahra University Vanak Tehran Iran
| |
Collapse
|
16
|
Kuznetsov DM, Kutateladze AG. Step-Economical Photoassisted Diversity-Oriented Synthesis: Sustaining Cascade Photoreactions in Oxalyl Anilides to Access Complex Polyheterocyclic Molecular Architectures. J Am Chem Soc 2017; 139:16584-16590. [PMID: 29053265 DOI: 10.1021/jacs.7b07598] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atom- and step-economy in photoassisted diversity-oriented synthesis (DOS) is achieved with a versatile oxalyl linker offering rapid access to complex alkaloid mimics in very few experimentally simple steps: (i) it allows for fast tethering of the photoactive core to the unsaturated pendants, especially important in the case of (hetero)aromatic amines-essentially a one-pot reaction with no isolation of intermediates; (ii) the α-dicarbonyl tether acts as a chromophore enhancer, extending the conjugation chain and facilitating the "harvest" of the lower energy photons for the primary and secondary photoreactions; (iii) it enhances the quantum yield of intersystem crossing (ISC), i.e., it is capable of sensitizing secondary photochemical processes in the cascade; and (iv) the tether forms an additional heterocyclic moiety, imidazolidine-4,5-dione, a known pharmacophore. The overall photoassisted cascade is an efficient complexity-building process as quantified by computed step-normalized complexity indices, leading to extended polyheterocyclic molecular architectures comparable in complexity to natural products such as paclitaxel while requiring only 2-4 simple synthetic steps from readily available chemical feedstock.
Collapse
Affiliation(s)
- Dmitry M Kuznetsov
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| |
Collapse
|
17
|
Konnert L, Lamaty F, Martinez J, Colacino E. Recent Advances in the Synthesis of Hydantoins: The State of the Art of a Valuable Scaffold. Chem Rev 2017. [PMID: 28644621 DOI: 10.1021/acs.chemrev.7b00067] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The review highlights the hydantoin syntheses presented from the point of view of the preparation methods. Novel synthetic routes to various hydantoin structures, the advances brought to the classical methods in the aim of producing more sustainable and environmentally friendly procedures for the preparation of these biomolecules, and a critical comparison of the different synthetic approaches developed in the last twelve years are also described. The review is composed of 95 schemes, 8 figures and 528 references for the last 12 years and includes the description of the hydantoin-based marketed drugs and clinical candidates.
Collapse
Affiliation(s)
- Laure Konnert
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Frédéric Lamaty
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Jean Martinez
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Evelina Colacino
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| |
Collapse
|
18
|
Remennikov GY. Synthesis of Condensed Heterocycles, Containing Partially Saturated Pyrimidine Nuclei, from Aromatic Pyrimidine Derivatives. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Mahdavi M, Dianat S, Khavari B, Moghimi S, Abdollahi M, Safavi M, Mouradzadegun A, Kabudanian Ardestani S, Sabourian R, Emami S, Akbarzadeh T, Shafiee A, Foroumadi A. Synthesis and biological evaluation of novel imidazopyrimidin-3-amines as anticancer agents. Chem Biol Drug Des 2016; 89:797-805. [DOI: 10.1111/cbdd.12904] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/08/2016] [Accepted: 10/31/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad Mahdavi
- Drug Design and Development Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Shima Dianat
- Department of Chemistry; Faculty of Sciences; Shahid Chamran University; Ahvaz Iran
| | - Behnaz Khavari
- Institute of Biochemistry and Biophysics; Department of Biochemistry; University of Tehran; Tehran Iran
| | - Setareh Moghimi
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Maliheh Safavi
- Department of Biotechnology; Iranian Research Organization for Science and Technology; Tehran Iran
| | - Arash Mouradzadegun
- Department of Chemistry; Faculty of Sciences; Shahid Chamran University; Ahvaz Iran
| | | | - Reyhaneh Sabourian
- Persian Medicine and Pharmacy Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center; Faculty of Pharmacy; Mazandaran University of Medical Sciences; Sari Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Tehran University of Medical Sciences; Tehran Iran
- Persian Medicine and Pharmacy Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Abbas Shafiee
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Alireza Foroumadi
- Drug Design and Development Research Center; Tehran University of Medical Sciences; Tehran Iran
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
20
|
Goel K, Bera S, Singh M, Mondal D. Synthesis of dual functional pyrimidinium ionic liquids as reaction media and antimicrobial agents. RSC Adv 2016. [DOI: 10.1039/c6ra21865b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This article describes a two-step synthesis of twenty N-alkyl pyrimidinium ionic liquids through N-alkylation of pyrimidine with n-alkyl (C1–C10) halides followed by anion metathesis and their dual applications as reaction media and antibacterial agents.
Collapse
Affiliation(s)
- Kamna Goel
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Smritilekha Bera
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Man Singh
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Dhananjoy Mondal
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| |
Collapse
|
21
|
Ibrahim MA, Abou-Seri SM, Hanna MM, Abdalla MM, El Sayed NA. Design, synthesis and biological evaluation of novel condensed pyrrolo[1,2-c]pyrimidines featuring morpholine moiety as PI3Kα inhibitors. Eur J Med Chem 2015; 99:1-13. [DOI: 10.1016/j.ejmech.2015.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/30/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022]
|