1
|
Abu-Hashem AA, Al-Hussain SA. Design, Synthesis, Antimicrobial Activity, and Molecular Docking of Novel Thiazoles, Pyrazoles, 1,3-Thiazepinones, and 1,2,4-Triazolopyrimidines Derived from Quinoline-Pyrido[2,3- d] Pyrimidinones. Pharmaceuticals (Basel) 2024; 17:1632. [PMID: 39770474 PMCID: PMC11728477 DOI: 10.3390/ph17121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Recently, pyrido[2,3-d] pyrimidine, triazolopyrimidine, thiazolopyrimidine, quinoline, and pyrazole derivatives have gained attention due to their diverse biological activities, including antimicrobial, antioxidant, antitubercular, antitumor, anti-inflammatory, and antiviral effects. OBJECTIVE The synthesis of new heterocyclic compounds including 5-quinoline-pyrido[2,3-d] pyrimidinone (1-2, 4, 6-7), 6-quinoline-pyrido[2,3-d]thiazolo[3,2-a]pyrimidinone (3, 5, 8-10), 1,2,4-triazole-6-quinoline-pyrido[2,3-d]thiazolo[3,2-a]pyrimidinone (11-13), and pyrido[2,3-d]thiazolo[3,2-a]pyrimidine-ethyl-(pyridine)-9-thiaazabenzo[cd]azulenone (14) derivatives was performed with high yields while evaluating antimicrobial activities. METHODS A new series of quinoline-pyrido[2,3-d]thiazolo[3,2-a]pyrimidine derivatives were prepared using a modern style and advanced technology, resulting in high yields of these new compounds. Various reagents were utilized, specifically tailored to the production needs of each compound, through reactions that included alkylation, addition, condensation, acylation, the formation of Schiff bases, and intramolecular cyclization. RESULTS The chemical structures of the new compounds were determined using spectroscopy analyses, including IR, NMR, and MS, achieving good yields ranging from 68% to 90% under mild conditions in a regular system. All compounds were tested for in vitro antimicrobial activity and compared to standard drugs, specifically cefotaxime sodium and nystatin. The results showed that compounds 10 to 14 exhibited excellent antimicrobial activity, with a minimum inhibitory concentration (MIC) of 1 to 5 µmol/mL, compared to that of the standard drugs, which had MIC values of 1 to 3 µmol/mL. Furthermore, molecular docking studies were conducted to explore the interactions of specific compounds with antimicrobial target proteins. The findings revealed that compounds 10 to 14 displayed significant binding energies, with ΔG values ranging from -7.20 to -11.70 kcal/mol, indicating effective binding to the active sites of antimicrobial protein receptors. CONCLUSIONS The SAR study confirmed a relationship between antimicrobial activity and the tested compounds. Molecular docking demonstrated that compounds 10, 11, 12, 13, and 14 exhibited significant binding energy, effectively interacting with the active sites of antimicrobial protein receptors. This consistent finding supports that these new compounds' practical and theoretical studies align regarding their antimicrobial activity.
Collapse
Affiliation(s)
- Ameen Ali Abu-Hashem
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| |
Collapse
|
2
|
Li H, Guo J, Zhang G, Zhou J, Wang Q. Protective Effect of a Isothiazolinone Derivative on Acute Lung Injury by Regulating PI3K-AKT Signaling Pathway. Chem Biodivers 2024; 21:e202400892. [PMID: 38924251 DOI: 10.1002/cbdv.202400892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Acute lung injury (ALI) is a prevalent organ injury in sepsis, characterized by an inflammatory reactive disorder. Both the incidence and mortality rates of ALI have been steadily increasing. Isothiazolinone derivatives have displayed anti-inflammatory activity and have shown effectiveness in treating pneumonia. The objective of the study is to assess the effects and mechanisms of the isothiazolinone derivative 4-benzoyl-2-butyl-5-(ethylsulfinyl)isothiazol-3(2H)-one (C6) on sepsis-induced ALI.The analysis of biological function and signal pathway enrichment demonstrated that C6 primarily exhibited anti-inflammatory effects. Administration of different doses of C6 through intraperitoneal injection significantly improved the survival rate, body temperature, and body mass of mice with ALI induced by cecal ligation and puncture (CLP). Additionally, it mitigated lung tissue injury, pulmonary edema, lung permeability, inflammatory cell infiltration, apoptosis, and the expression of inflammatory cytokines. Network targeting analysis and experimental validation in mouse leukemia cells of monocyte macrophage (RAW264.7) cells and CLP-induced ALI mice revealed that the anti-inflammatory effect of C6 was mediated by the inhibition of the phosphatidylinositol 3 kinase -protein kinase B (PI3K-AKT) signaling pathway. The research suggest that C6 has protective effects against ALI by inhibiting the PI3K-AKT signaling pathway. This information could be valuable in developing potential treatments for ALI.
Collapse
Affiliation(s)
- Hua Li
- College of Acu-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Jie Guo
- The Second College of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Gaiyue Zhang
- College of Acu-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Jing Zhou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Qiang Wang
- College of Acu-Moxibustion and Tuina, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| |
Collapse
|
3
|
Saeed A, Soliman AM, Abdullah MMS, Abdel-Latif E, El-Demerdash A. Synthesis and Molecular Docking of some new Thiazolidinone and Thiadiazole Derivatives as Anticancer Agents. Chem Biodivers 2024; 21:e202301870. [PMID: 38538544 DOI: 10.1002/cbdv.202301870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 06/27/2024]
Abstract
New sets of functionalized thiazolidinone and thiadiazole derivatives were synthesized, and their cytotoxicity was evaluated on HepG2, MCF-7, HTC-116, and WI38 cells. The synthetic approach is based on the preparation of 4-(4-acetamidophenyl)thiosemicarbazide (4) and their thiosemicarbazones 5 a-e, which are converted to the corresponding thiazoldin-4-one compounds 6 a-e upon cyclization with ethyl bromoacetate. The thiadiazole compounds 9 and 12 were obtained by reacting 4-(4-acetamidophenyl)thiosemicarbazide with isothiocyanates and/or ethyl 2-cyano-3,3-bis(methylthio)acrylate, respectively. The thiazolidinone compounds 6 c and 6 e exhibited strong cytotoxicity against breast cancer cells, with an IC50 (6.70±0.5 μM) and IC50 (7.51±0.8 μM), respectively, very close to that of doxorubicin (IC50: 4.17±0.2 μM). In addition, the anti-cancer properties of the tested thiazolidinone and thiadiazole scaffolds were further explored by the molecular docking program (MOE)-(PDB Code-1DLS). Compounds 5 d, 5 e, 6 d, 6 e, and 7 have the best binding affinity, ranging from -8.5386 kcal.mol-1 to -8.2830 kcal.mol-1.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Chemistry, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Ahbarah M Soliman
- Department of Chemistry, Faculty of Science, Omar Al-Mukhtar University, 919, El-Bayda, Libya
| | - Mahmood M S Abdullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ehab Abdel-Latif
- Department of Chemistry, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Amr El-Demerdash
- Metabolic Biology & Biological Chemistry Department, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| |
Collapse
|
4
|
Yang F, Liu F, Min Y, Shi L, Liu M, Wang K, Ke S, Gong Y, Yang Z. Novel Steroidal[17,16-d]pyrimidines Derived from Epiandrosterone and Androsterone: Synthesis, Characterization and Configuration-Activity Relationships. Molecules 2023; 28:molecules28062691. [PMID: 36985662 PMCID: PMC10054084 DOI: 10.3390/molecules28062691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Two series of novel steroidal[17,16-d]pyrimidines derived from natural epiandrosterone and androsterone were designed and synthesized, and these compounds were screened for their potential anticancer activities. The preliminary bioassay indicated that some of these prepared compounds exhibited significantly good cytotoxic activities against human gastric cancer (SGC-7901), lung cancer (A549), and hepatocellular liver carcinoma (HepG2) cell lines compared with 5-fluorouracil (5-FU), epiandrosterone, and androsterone. Especially the respective pairs from epiandrosterone and androsterone showed significantly different inhibitory activities, and the possible configuration-activity relationships have also been summarized and discussed based on kinase assay and molecular docking, which indicated that the inhibition activities of these steroidal[17,16-d]pyrimidines might obviously be affected by the configuration of the hydroxyl group in the part of the steroidal scaffold.
Collapse
Affiliation(s)
- Fei Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yong Min
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liqiao Shi
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Manli Liu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Kaimei Wang
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaoyong Ke
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| | - Yan Gong
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| | - Ziwen Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Correspondence: (S.K.); (Y.G.); (Z.Y.)
| |
Collapse
|
5
|
Farzamnezhad I, Sheikhi-Mohammareh S, Beyzaei H, Yarmohammadi E, Shiri A. Synthesis of Novel DPPH-Free Radical Scavenger Se-Containing Fused Chalcogenophenes: 2-Alkyl-7-Cyano-4-Imino-3-Phenyl-6-(pyrrolidin-1-yl)-3,4-Dihydroselenopheno[3,2- d]Pyrimidines. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2181825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Iman Farzamnezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Elahe Yarmohammadi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Zaki RM, Kamal El-Dean AM, Radwan SM, Ammar MA. Efficient Synthesis, Reactions and Anti-Inflammatory Evaluation of Novel Cyclopenta[d]thieno[2,3-b]pyridines and Their Related Heterocycles. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
The Synthesis, Antimicrobial Activity, and Molecular Docking of New 1, 2, 4-Triazole, 1, 2, 4-Triazepine, Quinoline, and Pyrimidine Scaffolds Condensed to Naturally Occurring Furochromones. Pharmaceuticals (Basel) 2022; 15:ph15101232. [PMID: 36297343 PMCID: PMC9611066 DOI: 10.3390/ph15101232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022] Open
Abstract
This study aims to synthesize a new series of furochromone derivatives, evaluate their antimicrobial properties, and improve the permeability of potent compounds to inhibit different types of bacteria and fungi. Hence, Substituted furo[3,2-g]chromene-6-carbonitrile (3a,b) readily form 7-amino-5-methyl-furo [3,2-g]chromene-6-carbonitrile (4a,b) via reduction using sodium borohydride in methanol. The same compounds of (4a,b) were used as starting materials for the synthesis of new furochromone derivatives such as furochromeno [2,3-d]pyrimidines, N- (6-cyano- 5-methyl-furochromene) acetamide, N-(6-cyano-5-methyl-furo chromene)-2-phenyl acetamide, N- (6-cyano-5-methyl-furochromene) formimidate, furochromeno[1,2,4]triazepin-5-amine, furochrom ene-6-carboxamide, furochromeno[1,2,4]triazolopyrimidines, and furochromeno[2,3-b]quinolin- 6-amine. The structures of the new compounds were determined using spectroscopy: Nuclear Magnetic Resonance (1H, 13C), Mass spectra, Infrared, and elemental analysis. Molecular docking studies were conducted to investigate the binding patterns of the prepared compounds against DNA-gyrase (PDB 1HNJ). The results displayed that compounds furochromenotriazolopyrimidine (20a,b), furochromenoquinolin-6-amine (21a,b), furochromenotriazepin-amine (9a,b), and furo- chromenopyrimidine-amine (19a,b) were excellent antimicrobials.
Collapse
|
8
|
K.M. P, C.E. S, P. R, M.N.S. K, K. L, P.A. S, H. R. Synthesis, characterization, antibacterial, antifungal and antithrombotic activity studies of new chiral selenated Schiff bases and their Pd complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Jacob RG, Hartwig D, Nascimento JER, Abib PB, Ebersol CP, Nunes PP, Birmann PT, Casaril AM, Savegnago L, Schumacher RF. Sequential one-pot synthesis and antioxidant evaluation of 5-amino-4-(arylselanyl)-1H-pyrazoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Abdelrehim ESM, El-Sayed DS. Synthesis, screening as potential antitumor of new poly heterocyclic compounds based on pyrimidine-2-thiones. BMC Chem 2022; 16:16. [PMID: 35313953 PMCID: PMC8939104 DOI: 10.1186/s13065-022-00810-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Continuing our interest in preparing of new heterocyclic compounds and examining their various biological activities, this work was designed to prepare new condensed and non-condensed heterocyclic compounds 9a-c, 10a-c, 11a-c, 13a-c and 14a-c were synthesized starting with pyrimidine-2-thiones 4a-c. Results Thiazolo[3,2-a]pyrimidines 9a-c were synthesized by S-alkylation of pyrimidine-2-thiones,4a-c, internal cyclization in alkaline medium with ammonia, condensation with benzaldehyde and finally reaction with hydroxylamine hydrochloride.[1,2,4]thiadiazolo[4,5-a]pyrimidines 11a-c were formed by heating of the 4a-c with benzoylcholride to afford 10a-c followed by reaction with sodium hypochlorite, ammonia and sodium hydroxide. Cyclocondensation of 4a-c with ethyl acetoacetate or formic acid yielded pyrazol-3-ones 13a-c or [1,2,4] triazolo[4,3-a]pyrimidines 14a-c, respectively Elements analysis, IR, 1H-NMR, 13C-NMR and mass spectra were used to validate the structures of newly synthesized heterocycles. Screening of the selected compounds 4a, 6a, 7a, 9a, 10a, 13a and 14a against colon carcinoma cell lines (HCT-116) and hepatocellular carcinoma cell lines (HepG-2). Conclusions Elements analysis, IR, 1H-NMR, 13C-NMR and mass spectra were used to validate the structures of newly synthesized heterocycles. Screening of the selected compounds 4a, 6a, 7a, 9a, 10a, 13a and 14a against colon carcinoma cell lines (HCT-116) and hepatocellular carcinoma cell lines (HepG-2) showed that compound 10a exhibited the most cytotoxic, while compounds 4a, 6a and 14a exhibited considerable cytotoxic activity. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-022-00810-4.
Collapse
Affiliation(s)
| | - Doaa S El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Hou W, Xu H. Incorporating Selenium into Heterocycles and Natural Products─From Chemical Properties to Pharmacological Activities. J Med Chem 2022; 65:4436-4456. [PMID: 35244394 DOI: 10.1021/acs.jmedchem.1c01859] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selenium (Se)-containing compounds have emerged as potential therapeutic agents for the treatment of a range of diseases. Through tremendous effort, considerable knowledge has been acquired to understand the complex chemical properties and biological activities of selenium, especially after its incorporation into bioactive molecules. From this perspective, we compiled extensive literature evidence to summarize and critically discuss the relationship between the pharmacological activities and chemical properties of selenium compounds and the strategic incorporation of selenium into organic molecules, especially bioactive heterocycles and natural products. We also provide perspectives regarding the challenges in selenium-based medicinal chemistry and future research directions.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development and Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
12
|
Investigation of the electronic properties of solvents (water, benzene, methanol) using IEFPCM model, spectroscopic investigation with docking and MD simulations of a thiadiazole derivative with anti-tumor activities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Synthesis, antibacterial, antioxidant, and molecular docking studies of 6-methylpyrimidin-4(3H)-one and oxo-1,2,4-triazolo[4,3-a]pyrimidine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Pandey AK, Baboo V, Mishra VN, Singh VK, Dwivedi A. Comparative Study of Molecular Docking, Structural, Electronic, Vibrational Spectra and Fukui Function Studies of Thiadiazole Containing Schiff Base – A Complete Density Functional Study. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1712440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Vikas Baboo
- Department of Chemistry, GCRG Engineering College, Lucknow, India
| | | | - V. K. Singh
- Deptt of Physics, Saket Mahavidhyalaya, Ayodhya, Ayodhya, India
| | - Apoorva Dwivedi
- Department of Physics, Marwar Business School, Gorakhpur, India
| |
Collapse
|
15
|
K.M. PK, B.C. VK, M.N. SK, P. RK, S. D, R.J. B, H.D. R. Synthesis, structural characterization, CT-DNA interaction study and antithrombotic activity of new ortho-vanillin-based chiral (Se,N,O) donor ligands and their Pd complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Arshad M, Khan MS, Nami SAA, Ahmad SI, Kashif M, Anjum A. Synthesis, characterization, biological, and molecular docking assessment of bioactive 1,3-thiazolidin-4-ones fused with 1-(pyrimidin-2-yl)-1H-imidazol-4-yl) moieties. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02144-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Nayarisseri A, Khandelwal R, Tanwar P, Madhavi M, Sharma D, Thakur G, Speck-Planche A, Singh SK. Artificial Intelligence, Big Data and Machine Learning Approaches in Precision Medicine & Drug Discovery. Curr Drug Targets 2021; 22:631-655. [PMID: 33397265 DOI: 10.2174/1389450122999210104205732] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
Artificial Intelligence revolutionizes the drug development process that can quickly identify potential biologically active compounds from millions of candidate within a short period. The present review is an overview based on some applications of Machine Learning based tools, such as GOLD, Deep PVP, LIB SVM, etc. and the algorithms involved such as support vector machine (SVM), random forest (RF), decision tree and Artificial Neural Network (ANN), etc. at various stages of drug designing and development. These techniques can be employed in SNP discoveries, drug repurposing, ligand-based drug design (LBDD), Ligand-based Virtual Screening (LBVS) and Structure- based Virtual Screening (SBVS), Lead identification, quantitative structure-activity relationship (QSAR) modeling, and ADMET analysis. It is demonstrated that SVM exhibited better performance in indicating that the classification model will have great applications on human intestinal absorption (HIA) predictions. Successful cases have been reported which demonstrate the efficiency of SVM and RF models in identifying JFD00950 as a novel compound targeting against a colon cancer cell line, DLD-1, by inhibition of FEN1 cytotoxic and cleavage activity. Furthermore, a QSAR model was also used to predict flavonoid inhibitory effects on AR activity as a potent treatment for diabetes mellitus (DM), using ANN. Hence, in the era of big data, ML approaches have been evolved as a powerful and efficient way to deal with the huge amounts of generated data from modern drug discovery to model small-molecule drugs, gene biomarkers and identifying the novel drug targets for various diseases.
Collapse
Affiliation(s)
- Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Poonam Tanwar
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Nizam College, Osmania University, Hyderabad - 500001, Telangana State, India
| | - Diksha Sharma
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Garima Thakur
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Alejandro Speck-Planche
- Programa Institucional de Fomento a la Investigacion, Desarrollo e Innovacion, Universidad Tecnologica Metropolitana, Ignacio Valdivieso 2409, P.O. 8940577, San Joaquin, Santiago, Chile
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630003, Tamil Nadu, India
| |
Collapse
|
18
|
Sheena Mary Y, Shyma Mary Y, Krátký M, Vinsova J, Baraldi C, Gamberini MC. DFT, SERS-concentration and solvent dependent and docking studies of a bioactive benzenesulfonamide derivative. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Othman IM, Gad-Elkareem MA, Anouar EH, Snoussi M, Aouadi K, Kadri A. Novel fused pyridine derivatives containing pyrimidine moiety as prospective tyrosyl-tRNA synthetase inhibitors: Design, synthesis, pharmacokinetics and molecular docking studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128651] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Mohammad Arshad. Design, Drug-Likeness, Synthesis, Characterization, Antimicrobial Activity, Molecular Docking, and MTT Assessment of 1,3-Thiazolidin-4-one Bearing Piperonal and Pyrimidine Moieties. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Sanad SMH, Mekky AEM. Piperazine‐mediated
tandem synthesis of bis(thieno[2,3‐
b
]pyridines): Versatile precursors for related fused [1,2,4]triazolo[4,3‐
a
]pyrimidines. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Prabhu Kumar K, Vasantha Kumar B, Kumar PR, Butcher RJ, Vivek H, Suchetan P, Revanasiddappa H, Foro S. Synthesis, characterization, CT‐DNA binding and docking studies of novel selenated ligands and their palladium complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- K.M. Prabhu Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - B.C. Vasantha Kumar
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - P. Raghavendra Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | | | - H.K. Vivek
- Faculty of Natural SciencesAdichunchanagiri University B. G. Ngara Mandya Karnataka India
| | - P.A. Suchetan
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - H.D. Revanasiddappa
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - Sabine Foro
- Institute of Materials ScienceDarmstadt University of Technology Petersenstr. 23 D‐64287 Darmstadt Germany
| |
Collapse
|
23
|
Sekhar T, Thriveni P, Venkateswarlu A, Daveedu T, Peddanna K, Sainath SB. One-pot synthesis of thiazolo[3,2-a]pyrimidine derivatives, their cytotoxic evaluation and molecular docking studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118056. [PMID: 32006911 DOI: 10.1016/j.saa.2020.118056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
An economical, simple and efficient one-pot method has been developed for the synthesis of thiazolo[3,2-a]pyrimidine hydrobromide derivatives. 2,4-diaryl-6,7,8,9-tetrahydro-4H-benzo[4,5]thiazolo[3,2-a]pyrimidine hydrobromides were synthesized by the α-bromination of cyclohexanone with N-Bromosuccinamide (NBS) and followed by cyclization with 3,4-dihydropyrimidine-2(1H)-thiones, respectively, in the presence of p-toluenesulfonic acid (PTSA) in acetonitrile. However when cyclohexanone was replaced by acetyl acetone and alpha-tetralone gave the corresponding 1-(3-methyl-5,7-diaryl-5H-thiazolo[3,2-a]pyrimidin-2-yl)ethan-1-one hydrobromide and 9,11-diaryl-6,11-dihydro-5H-naphtho[1',2':4,5]thiazolo[3,2-a]pyrimidine hydrobromide derivatives, respectively. The significant features of this method are novel, simple, inexpensive experimental procedure, short reaction time, and good yield. The some of the synthesized compounds were evaluated for cytotoxic activity against human lung adenocarcinoma cell line (A549), human breast carcinoma cell line (MCF-7), human cervical cancer cell line (HeLa) and human neuronal carcinoma cell lines (SKNSH). Tested compounds 5(b-e) showed the excellent anticancer activity against various cell lines. Particularly compound 5c with IC50 value of 2.2 ± 0.6 μM against A549 and compound 5e with IC50 value of 5.6 ± 0.4 μM against HeLa showed best cytotoxic effects. Furthermore, Molecular docking study was performed for some of the synthesized compounds 5(b-e) against topoisomerase-II by using Auto dock method. Docking results of the compounds 5c, 5d, and 5e exhibited higher cytotoxic activity than the standard doxorubicin.
Collapse
Affiliation(s)
- Thuraka Sekhar
- Department of Chemistry, Vikrama Simhapuri University, Nellore 524320, India
| | - Pinnu Thriveni
- Department of Chemistry, Vikrama Simhapuri University, Nellore 524320, India.
| | | | - Thathapudi Daveedu
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524320, India
| | - Kotha Peddanna
- Department of Bio-Chemistry, Sri Venkateswara University, Tirupati 517 502, India
| | - Sri Bhashyam Sainath
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524320, India
| |
Collapse
|
24
|
Medjdoub A, Belhadj F, Saidi Merzouk A, Baba Hamed Y, Kibou Z, Choukchou-Braham N, Merzouk H. In vitro peripheral blood mononuclear cell proliferation, cytokine secretion and oxidative stress modulation by pyrido[2,3-d] pyrimidines. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-00924-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Zabiulla, Nagesh Khadri M, Bushra Begum A, Sunil M, Khanum SA. Synthesis, docking and biological evaluation of thiadiazole and oxadiazole derivatives as antimicrobial and antioxidant agents. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
26
|
Sanad SMH, Ahmed AAM, Mekky AEM. Efficient synthesis and molecular docking of novel antibacterial pyrimidines and their related fused heterocyclic derivatives. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3789] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Ahmed A. M. Ahmed
- Chemistry Department, Faculty of ScienceCairo University Giza Egypt
- Preparatory Year DeanshipJouf University Sakaka Saudi Arabia
| | | |
Collapse
|
27
|
Adly ME, Gedawy EM, El-Malah AA, El-Telbany FA. Synthesis and Anticancer Activity of Certain Selenophene Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019080189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Karrouchi K, Fettach S, Radi S, Yousfi EB, Taoufik J, Mabkhot YN, Alterary S, Faouzi MEA, Ansar M. Synthesis, Characterization, Free-radical Scavenging Capacity and Antioxidant Activity of Novel Series of Hydrazone, 1,3,4-oxadiazole and 1,2,4- triazole Derived from 3,5-dimethyl-1H-pyrazole. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180516103050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Pyrazole is an important class of heterocyclic compound, has been shown
to exhibit diverse biological and pharmacological activities such as anti-inflammatory, anti-cancer,
antioxidant, etc.
Methods:
In this study, a series of novel 3,5-dimethyl-1H-pyrazole derivatives containing hydrazine
4a-l have been synthesized via the reaction of the 2-(3,5-dimethyl-1H-pyrazol-1-yl)acetohydrazide.
All synthesized compounds have been tested for their in vitro antioxidant activities via utilization of
1,1-biphenyl-2-picrylhydrazyl (DPPH) as a free radical scavenging reagent.
Results:
The data reported herein indicates that compound 4k showed potential radical scavenging
capacity and compounds 4f and 4g exhibited best activity for the iron binding while comparing with
positive controls.
Conclusion:
Good activity was noted for some compounds. In particular, compound 4k showed the
highest antioxidant activity with IC50 values of 22.79 ± 3.64 and 1.35 ± 0.66 μg/mL in the DPPH
and ABTS tests, respectively.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco
| | - Saad Fettach
- Laboratory of Pharmacology and Toxicology, Pharmacokinetic Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco
| | | | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco
| | - Yahia Nasser Mabkhot
- Departement of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Seham Alterary
- Department of Chemistry, Faculty of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Pharmacokinetic Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Muhammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco
| |
Collapse
|
29
|
Tolba MS, Kamal El‐Dean AM, Ahmed M, Hassanien R. Synthesis, reactions, and biological study of some new thienopyrimidine derivatives as antimicrobial and anti‐inflammatory agents. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahmoud S. Tolba
- Chemistry DepartmentFaculty of Science, New Valley University Assiut Egypt
| | | | - Mostafa Ahmed
- Chemistry DepartmentFaculty of Science, New Valley University Assiut Egypt
| | - Reda Hassanien
- Chemistry DepartmentFaculty of Science, New Valley University Assiut Egypt
| |
Collapse
|
30
|
Abstract
A series of novel coumarin derivatives carrying 1,2,4-triazole or 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole moieties were prepared and evaluated in vitro as anticancer in the human colon cancer (HCT116) cell line. The derivatives 4c and 8c exhibited marked anticancer activity with IC50 values 4.363 and 2.656 µM, respectively. The molecular docking studies suggested possible interaction with tyrosine kinases (CDK2).
Collapse
|
31
|
Kumar S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA. Design, Synthesis and Biological Potential of 5-(2-Amino-6-(3/4-bromophenyl)pyrimidin-4-yl)benzene-1,3-diol Scaffolds as Promising Antimicrobial and Anticancer Agents. Mini Rev Med Chem 2018; 19:851-864. [PMID: 30306864 DOI: 10.2174/1389557518666181009141924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/15/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND A series of 5-(2-amino-6-(3/4-bromophenyl)pyrimidin-4-yl)benzene-1,3-diol scaffolds was synthesized by Claisen-Schmidt condensation and characterized by NMR, IR, Mass and elemental analyses. METHODS The synthesized pyrimidine scaffolds were screened for their antimicrobial activity by tube dilution method as well for antiproliferative activity (human colorectal (HCT116) cancer cell line) by SRB assay. RESULTS The antimicrobial screening results demonstrated that compounds, k6, k12, k14 and k20 were found to be the most potent ones against selected microbial species. The anticancer screening results indicated that compounds, k8 and k14 displayed potent anticancer activity against cancer cell line (HCT116). CONCLUSION Further, the molecular docking study carried to find out the interaction between active pyrimidine compounds with CDK-8 protein indicated that compound k14 showed best dock score with better potency within the ATP binding pocket and may be used as a lead for rational drug designing of the anticancer molecule.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | | | - Siong Meng Lim
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
32
|
Liu X, Song X, Liu Y, Xie M, Yu W, Yan S, Lin J, Jin Y. Novel 5H-[1,2,4]oxadiazolo[4,5-a]pyrimidin-5-one derivatives as antibacterial and anticancer agents: Synthesis and biological evaluation. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Almutairi MS, Soumya S, Al-Wabli RI, Joe IH, Attia MI. Density functional theory calculations, vibration spectral analysis and molecular docking of the antimicrobial agent 6-(1,3-benzodioxol-5-ylmethyl)-5-ethyl-2-{[2-(morpholin-4-yl)ethyl] sulfanyl}pyrimidin-4(3H)-one. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractVibrational spectral analysis and quantum chemical computations based on density functional theory have been performed on the antimicrobial agent 6-(1,3-benzodioxol-5-ylmethyl)-5-ethyl-2-{[2-(morpholin- 4-yl)ethyl]sulfanyl}pyrimidin-4-(3H)-one.The equilibrium structural geometry, various bonding features and harmonic vibrational wavenumbers of the title compound have been investigated using DFT-B3LYP function at 6-311++G(d, p) basis set. The detailed interpretations of the vibrational spectra have been carried out with the aid of VEDA 4 program. The various intramolecular interactions of the title compound have been exposed by natural bond orbital analysis. The FT-IR and FT-Raman spectra of the title molecule have been recorded and analyzed. Blue-shifting of the C-H wavenumber along with a decrease in the C-H bond length attribute for the formation of the C-H...O hydrogrn bonding provide an evidence for a charge transfer interaction. Also, the distribution of natural atomic charges reflects the presence of intramolecular hydrogen bonding. The analysis of the electron density of HOMO and LUMO gives an idea of the delocalization and the low value of energy gap indicates electron transfer within the molecule. Moreover, molecular docking studies revealed the possible binding of the title molecule to different antimicrobial target proteins.
Collapse
Affiliation(s)
- Maha S. Almutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O.Box 2457, Riyadh, 11451, Saudi Arabia
| | - S. Soumya
- Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College(Autonomous), Thiruvananthapuram-695 015, Kerala, India
| | - Reem I. Al-Wabli
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O.Box 2457, Riyadh, 11451, Saudi Arabia
| | - I. Hubert Joe
- Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College(Autonomous), Thiruvananthapuram-695 015, Kerala, India
| | - Mohamed I. Attia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O.Box 2457, Riyadh, 11451, Saudi Arabia
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), El Bohooth Street, Dokki, Giza, 12622, Egypt
| |
Collapse
|
34
|
Synthesis, Spectroscopic Identification and Molecular Docking of Certain N-(2-{[2-(1 H-Indol-2-ylcarbonyl) Hydrazinyl](oxo)Acetylphenyl)Acetamides and N-[2-(2-{[2-(Acetylamino)Phenyl](oxo)Acetylhydrazinyl)-2-Oxoethyl]-1 H-Indole-2-Carboxamides: New Antimicrobial Agents. Molecules 2018; 23:molecules23051043. [PMID: 29710842 PMCID: PMC6102541 DOI: 10.3390/molecules23051043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Abstract
N-(2-{[2-(1H-Indol-2-ylcarbonyl)hydrazinyl](oxo)acetyl}phenyl)acetamides (5a–h) and N-[2-(2-{[2-(acetylamino)phenyl](oxo)acetyl}hydrazinyl)-2-oxoethyl]-1H-indole-2-carboxamides (5i–l) were synthesized and characterized with different analytical tools. N-Acetylisatines 4a–d were subjected to ring opening at their C2 carbons with the aid of different indole-bearing hydrazides 3a,b and 7 to afford the respective glyoxylamides 5a–l. The antimicrobial activity of the target compounds 5a–l was assessed with the aid of Diameter of the Inhibition Zone (DIZ) and Minimum Inhibitory Concentration (MIC) assays against a panel of Gram-positive and Gram-negative bacteria and certain fungal strains. The antimicrobial screening revealed that Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans are the most sensitive microorganisms towards the synthesized compounds 5a–l. In addition, compounds 5c and 5h emerged as the most active congeners towards Staphylococcus aureus and Candida albicans, respectively. Molecular docking studies revealed the possible binding mode of compounds 5c and 5h to their target proteins.
Collapse
|
35
|
Shingare RM, Patil YS, Sangshetti JN, Damale MG, Rajani DP, Madje BR. Synthesis, Antimicrobial Evaluation and Docking Study of Some Pyrazole Bearing [1, 2,4]Triazolo[3, 4-b][1, 3,4]thiadiazole Derivatives. ChemistrySelect 2018. [DOI: 10.1002/slct.201800373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ramesh M. Shingare
- Department of Chemistry; Vasantrao Naik Mahavidyalaya; Aurangabad 431003, Maharashtra India
| | - Yogesh S. Patil
- Department of Chemistry; Vasantrao Naik Mahavidyalaya; Aurangabad 431003, Maharashtra India
| | - Jaiprakash N. Sangshetti
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus; Aurangabad 431001, Maharashtra India
| | - Manoj G. Damale
- Shri. Bhagwan College of Pharmacy; Aurangabad 431003, Maharashtra India
| | - Dhanji P. Rajani
- Microcare Laboratory and Tuberculosis Research Center; Surat 395003, Gujarat India
| | - Balaji R. Madje
- Department of Chemistry; Vasantrao Naik Mahavidyalaya; Aurangabad 431003, Maharashtra India
| |
Collapse
|
36
|
Kumar S, Narasimhan B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem Cent J 2018; 12:38. [PMID: 29619583 PMCID: PMC5884769 DOI: 10.1186/s13065-018-0406-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/21/2018] [Indexed: 01/31/2023] Open
Abstract
Heterocyclic compounds offer a high degree of structural diversity and have proven to be broadly and economically useful as therapeutic agents. Comprehensive research on diverse therapeutic potentials of heterocycles compounds has confirmed their immense significance in the pathophysiology of diseases. Heterocyclic pyrimidine nucleus, which is an essential base component of the genetic material of deoxyribonucleic acid, demonstrated various biological activities. The present review article aims to review the work reported on therapeutic potentials of pyrimidine scaffolds which are valuable for medical applications during new generation.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | | |
Collapse
|
37
|
Guda R, Korra R, Balaji S, Palabindela R, Eerla R, Lingabathula H, Yellu NR, Kumar G, Kasula M. Design, synthesis and biological evaluation of 8-substituted-6-hydrazonoindolo[2,1- b ]quinazolin-12(6 H )-one scaffolds as potential cytotoxic agents: IDO-1 targeting molecular docking studies. Bioorg Med Chem Lett 2017; 27:4741-4748. [DOI: 10.1016/j.bmcl.2017.08.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/20/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
|
38
|
Kumar S, Lim SM, Ramasamy K, Vasudevan M, Shah SAA, Narasimhan B. Bis-pyrimidine acetamides: design, synthesis and biological evaluation. Chem Cent J 2017; 11:80. [PMID: 29086907 PMCID: PMC5548699 DOI: 10.1186/s13065-017-0312-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/01/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND In the past few years, increased resistance of microorganisms towards antimicrobial agents become a serious health problem, so there is a need for the discovery of new antimicrobial agents. On the other hand, bis-pyrimidines possess various types of biological activity. In view of this, in the present study we have designed and synthesized a new series of bis-pyrimidine acetamides by Claisen-Schmidt condensation and screened for its in vitro antimicrobial and anticancer activities. RESULTS The synthesized bis-pyrimidine acetamide derivatives were confirmed by IR, 1H/13C-NMR, Mass spectral studies as well C, H, N analyses. The synthesized compounds were evaluated for their in vitro antimicrobial potential against Gram positive (Staphylococcus aureus and Bacillus subtilis); Gram negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica) bacterial and fungal (Candida albicans and Aspergillus niger) strains by tube dilution technique and the minimum inhibitory concentration (MIC) recorded in µmol/mL was comparable to reference drugs, cefadroxil (antibacterial) and fluconazole (antifungal). The in vitro anticancer activity (IC50 value) determined against human colorectal carcinoma (HCT116) cancer cell line by Sulforhodamine B (SRB) technique and 5-fluorouracil used as reference drug. CONCLUSIONS The biological study demonstrated that compounds 3, 13, 16, 17 and 18 were found to be most active antimicrobial agents with best MIC values than the cefadroxil (antibacterial) and fluconazole (antifungal) and compounds 12, 16 and 18 found to have better anticancer activity against human colorectal carcinoma (HCT116) cancer cell line with best IC50 value than the 5-fluorouracil (anticancer). Graphical abstract SAR of bis-pyrimidine acetamides.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001 India
| | - Siong Meng Lim
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan Malaysia
- Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan Malaysia
| | - Kalavathy Ramasamy
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan Malaysia
- Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan Malaysia
| | - Mani Vasudevan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, 51452 Kingdom of Saudi Arabia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E Malaysia
| | | |
Collapse
|
39
|
De B, Adhikari I, Nandy A, Saha A, Goswami BB. In silico modelling of thiazolidine derivatives with antioxidant potency: Models quantify the degree of contribution of molecular fragments towards the free radical scavenging ability. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.02.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Cui P, Li X, Zhu M, Wang B, Liu J, Chen H. Design, synthesis and antimicrobial activities of thiouracil derivatives containing triazolo-thiadiazole as SecA inhibitors. Eur J Med Chem 2016; 127:159-165. [PMID: 28039774 DOI: 10.1016/j.ejmech.2016.12.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 11/28/2022]
Abstract
A series of novel thiouracil derivatives containing a triazolo-thiadiazole moiety (7a-7l) have been synthesized by structural modifications on a lead SecA inhibitor, 2. All the compounds have been evaluated for their antibacterial activities against Bacillus amyloliquefaciens, Staphylococcus aureus, and Bacillus subtilis. Compounds 7d and 7g were also tested for their inhibitory activities against SecA ATPase due to their promising antimicrobial activities. The inhibitory activity of compound 7d was found to be higher than that of 2. Molecular docking work suggests that compound 7d might bind at a pocket close to the ATPase ATP-binding domain.
Collapse
Affiliation(s)
- Penglei Cui
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; College of Science, Agricultural University of Hebei, Baoding 071001, China
| | - Xiaoliu Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Jing Liu
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
41
|
Al-Omary FAM, Ghabbour HA, AlRabiah H, Al-Wahaibi LH, El-Emam AA. Crystal structure of 6-(4-chlorophenyl)-3-(thiophen-2-yl)-[1,2,4]triazolo[3,4- b][1,3,4]-thiadiazole, C 13H 7ClN 4S 2. Z KRIST-NEW CRYST ST 2016. [DOI: 10.1515/ncrs-2016-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C13H7ClN4S2, monoclinic, P21/c (no. 14), a = 10.2342 (9) Å, b = 11.9953(10) Å, c = 12.0980(9) Å, β = 116.283(6)°, V = 1331.6(2) Å3, Z = 4, R
gt
(F) = 0.0573, wR
ref
(F
2
) = 0.1675, T = 100 K.
Collapse
Affiliation(s)
- Fatmah A. M. Al-Omary
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O.Box 2457, Riaydh 11451, Saudi Arabia
| | | | - Haitham AlRabiah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O.Box 2457, Riaydh 11451, Saudi Arabia
| | - Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ali A. El-Emam
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O.Box 2457, Riaydh 11451, Saudi Arabia
| |
Collapse
|
42
|
An expeditious four-component domino protocol for the synthesis of novel thiazolo[3,2-a]thiochromeno[4,3-d]pyrimidine derivatives as antibacterial and antibiofilm agents. Bioorg Med Chem 2016; 24:3808-17. [PMID: 27344213 DOI: 10.1016/j.bmc.2016.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/13/2022]
Abstract
An efficient domino protocol has been developed for the synthesis of new pyrimidine scaffolds, through a one-pot four-component cascade transformation via [Bmim]HSO4 ionic liquid mediated reaction, using an equimolar mixture of thiochroman-4-one, benzaldehyde, thiourea and 3-bromo-1-phenylpropan-1-one leading to the formation of a double electrophilic pyrimidine-2(5H)-thione intermediate. The intermediate regioselectively undergoes cyclization through intramolecular NH bond activation followed by CS bond formation leading to highly functionalized thiazolo[3,2-a]thiochromeno[4,3-d]pyrimidines. The ionic liquid operates efficiently under mild conditions. The recyclability and scope for recovery of the ionic liquid makes this protocol environmentally benign. Further, the compounds 5d, 5g and 5k showed promising antimicrobial activity against the tested Gram-positive bacterial strains. Among them, the compound 5d was identified as a lead molecule exhibiting promising anti-biofilm activity towards Staphylococcus aureus MTCC 96, Bacillus subtilis MTCC 121, Staphylococcus aureus MLS16 MTCC 2940 and Micrococcus luteus MTCC 2470 with IC50 values of 2.1, 1.9, 2.4 and 5.3μg/mL, respectively. Further, the compound 5d showed increased levels of intracellular ROS accumulation in Staphylococcus aureus MTCC 96 suggesting that oxidative stress resulted in bacterial cell lysis and death.
Collapse
|
43
|
Al-Alshaikh MA, Ghabbour HA, Abdelbaky MSM, García-Granda S, El-Emam AA. Crystal structure of 6-(2-fluorophenyl)-3-phenyl-[1,2,4]-triazolo[3,4- b][1,3,4]thiadiazole, C 15H 9FN 4S. Z KRIST-NEW CRYST ST 2016. [DOI: 10.1515/ncrs-2015-0236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C15H9FN4S, orthorhombic, Pna21 (no. 33), a = 18.9361(2) Å, b = 11.5248(1) Å, c = 6.0142(1) Å, V = 1312.52(3) Å3, Z = 4, R
gt
(F) = 0.0263, wR
ref
(F
2
) = 0.0706, T = 100 K.
Collapse
Affiliation(s)
- Monirah A. Al-Alshaikh
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mohammed S. M. Abdelbaky
- Departamento de Química Física Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/Julán Clavería, 8, 33006 Oviedo, (Asturias), Spain
| | - Santiago García-Granda
- Departamento de Química Física Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/Julán Clavería, 8, 33006 Oviedo, (Asturias), Spain
| | - Ali A. El-Emam
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
44
|
Dubey N, Sharma P, Kumar A. Clay-Supported Cu(II) Catalyst: An Efficient, Heterogeneous, and Recyclable Catalyst for Synthesis of 1,4-Disubstituted 1,2,3-Triazoles from Alloxan-Derived Terminal Alkyne and Substituted Azides Using Click Chemistry. SYNTHETIC COMMUN 2015. [DOI: 10.1080/00397911.2015.1099675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Synthesis, antimicrobial activity and molecular docking studies of pyrano[2,3-d]pyrimidine formimidate derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2243-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|