1
|
Chawla R, Singh AK, Dutta PK. Arylazo sulfones: multifaceted photochemical reagents and beyond. Org Biomol Chem 2024; 22:869-893. [PMID: 38196324 DOI: 10.1039/d3ob01599h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The photochemical action of arylazo sulfones under visible light irradiation has recently gained considerable attention for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. The inherent dyedauxiliary group (-N2SO2R) embedded in the reagent is responsible for the absorption of visible light even in the absence of a photocatalyst, additive or oxidant, leading to the generation of three different radicals, viz. aryl (carbon-centred), sulfonyl (sulphur-centred) and diazenyl (nitrogen-centred) radicals, under different reaction conditions. Encountering a reagent with such a versatile behaviour is quite rare, which makes arylazo sulfones a highly interesting class of compounds. The mild reaction conditions under which these reagents can operate are an added advantage. Recently, they are also being used as non-ionic photoacid generators (PAGs), electron acceptors, and hydrogen atom transfer (HAT) and imination reagents in a number of synthetic transformations. They have displayed substantial damaging effect on the structure of DNA in the presence of light which can lead to their use as phototoxic pharmaceuticals for cancer treatment. Moreover, their photochemistry is also being exploited in polymerization reactions (as photoinitiators) and in materials chemistry (surface modification).
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Atul K Singh
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Pradip K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
2
|
Kapri A, Gupta N, Nain S. Recent Advances in the Synthesis of Xanthines: A Short Review. SCIENTIFICA 2022; 2022:8239931. [PMID: 36398136 PMCID: PMC9666039 DOI: 10.1155/2022/8239931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Xanthine and its derivatives are considered a pharmacologically potential moiety that manifests immense biological activities. Owing to this much diversity in the biological field, this scaffold has fascinated the attention of many researchers around the globe to scrutinize its basic structure chemically as well as biologically. In recent years, xanthine derivatives have been used therapeutically in different pathological conditions due to their presence in day-to-day life. Herein, we review the recent progress in the synthesis of xanthine and its derivatives. Some of the widely used synthetic strategies such as (a) Traube's synthesis, (b) one-pot synthesis, (c) xanthine-anneleated synthesis, and (d) miscellaneous synthesis were compiled in this review paper. The results obtained from this review paper highlight the significance of various xanthine derivatives as possible leads to the development of new drugs. The data compiled in this review paper could help the medicinal chemist in designing new active compounds from the modification of the already existing compounds in the search for novel drug leads. This report concludes that the various synthetic procedures exemplified in this review paper may serve as a support system for the designing of new molecules with a xanthine scaffold. Thus, we hope that this molecule may serve as the prototype in order to find out more active xanthine derivatives.
Collapse
Affiliation(s)
- Anandi Kapri
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Nitin Gupta
- Agilent Technologies Pvt. Ltd., 181/46, Industrial Area, Phase-1, Chandigarh, India
| | - Sumitra Nain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
3
|
Yadav K, Yadav D, Bhandari DD, Yadav R. Identification of 1,3‐(Dimethyl / Propyl)‐8‐Susbtituted (Cinnamic acid/Furan) Xanthine Derivatives with Anti‐bronchospasmodic Activity Using
in silico
and
in vivo
Techniques. ChemistrySelect 2022. [DOI: 10.1002/slct.202200377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kavita Yadav
- Department of Pharmacy Faculty of Life Sciences Banasthali Vidyapith, Banasthali 304022 India
| | - Divya Yadav
- Department of Pharmacy Faculty of Life Sciences Banasthali Vidyapith, Banasthali 304022 India
| | - Divya Dhawal Bhandari
- University Institute of Pharma Sciences Chandigarh University Gharuan (Mohali) 140413 India
| | - Rakesh Yadav
- Amity Institute of Pharmacy Faculty of Health & Allied Sciences Amity University Haryana 122413 India
| |
Collapse
|
4
|
Annatelli M, Trapasso G, Salaris C, Salata C, Castellano S, Aricò F. Mustard Carbonate Analogues as Sustainable Reagents for the Aminoalkylation of Phenols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mattia Annatelli
- Department of Environmental Sciences Informatics and Statistics Ca' Foscari University Campus Scientifico, Via Torino 155 30172 Venezia Mestre Italy
| | - Giacomo Trapasso
- Department of Environmental Sciences Informatics and Statistics Ca' Foscari University Campus Scientifico, Via Torino 155 30172 Venezia Mestre Italy
| | - Claudio Salaris
- Department of Molecular Medicine Padua University via Gabelli 63 35121 Padova Italy
| | - Cristiano Salata
- Department of Molecular Medicine Padua University via Gabelli 63 35121 Padova Italy
| | - Sabrina Castellano
- Department of Pharmacy University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano, Salerno Italy
| | - Fabio Aricò
- Department of Environmental Sciences Informatics and Statistics Ca' Foscari University Campus Scientifico, Via Torino 155 30172 Venezia Mestre Italy
| |
Collapse
|
5
|
Borowiecki P, Młynek M, Dranka M. Chemoenzymatic synthesis of enantiomerically enriched diprophylline and xanthinol nicotinate. Bioorg Chem 2020; 106:104448. [PMID: 33229120 DOI: 10.1016/j.bioorg.2020.104448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023]
Abstract
A concise chemoenzymatic route toward enantiomerically enriched active pharmaceutical ingredients (API) - diprophylline and xanthinol nicotinate - is reported for the first time. The decisive step is an enantioselective lipase-mediated methanolysis of racemic chlorohydrin-synthon acetate, namely 1-chloro-3-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)propan-2-yl acetate, performed under kinetically-controlled conditions on a preparative 500 mg-scale. The best results in terms of reaction enantioselectivity (E = 14) were obtained for the enantiomers resolution performed with lipase type B from Candida antarctica immobilized on acrylic resin (CAL-B, Novozym 435) suspended in homophasic acetonitrile-methanol mixture. The elaborated biocatalytic system furnished the key chlorohydrin intermediate (in 71% ee and 38% yield), which was then smoothly converted into enantioenriched active agents: (R)-(-)-diprophylline (57% ee) and (S)-(+)-xanthinol nicotinate (65% ee). To support the assignment of absolute configurations of EKR-products as well as to confirm the stereochemical outcome of the remaining reaction steps, docking studies toward the prediction of enantiomers binding selectivity in CAL-B active site as well as the respective chemical correlations with enantiomerically enriched analytical standards obtained from commercially available (R)-(-)-epichlorohydrin, were applied. In addition, single-crystal X-ray diffraction (XRD) analyses were performed for the synthesized optically active APIs furnishing by this manner a first crystal structures of nicotinic acid salt of xanthinol.
Collapse
Affiliation(s)
- Paweł Borowiecki
- Warsaw University of Technology, Department of Drugs Technology and Biotechnology, Laboratory of Biocatalysis and Biotransformations, Koszykowa St. 75, 00-662 Warsaw, Poland.
| | - Mateusz Młynek
- Warsaw University of Technology, Department of Drugs Technology and Biotechnology, Laboratory of Biocatalysis and Biotransformations, Koszykowa St. 75, 00-662 Warsaw, Poland
| | - Maciej Dranka
- Warsaw University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry and Solid State Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
6
|
Al-Attraqchi OH, Attimarad M, Venugopala KN, Nair A, Al-Attraqchi NH. Adenosine A2A Receptor as a Potential Drug Target - Current Status and Future Perspectives. Curr Pharm Des 2019; 25:2716-2740. [DOI: 10.2174/1381612825666190716113444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Adenosine receptors (ARs) are a class of G-protein coupled receptors (GPCRs) that are activated by
the endogenous substance adenosine. ARs are classified into 4 subtype receptors, namely, the A1, A2A, A2B and A3
receptors. The wide distribution and expression of the ARs in various body tissues as well as the roles they have
in controlling different functions in the body make them potential drug targets for the treatment of various pathological
conditions, such as cardiac diseases, cancer, Parkinson’s disease, inflammation and glaucoma. Therefore,
in the past decades, there have been extensive investigations of ARs with a high number of agonists and antagonists
identified that can interact with these receptors. This review shall discuss the A2A receptor (A2AAR) subtype
of the ARs. The structure, properties and the recent advances in the therapeutic potential of the receptor are discussed
with an overview of the recent advances in the methods of studying the receptor. Also, molecular modeling
approaches utilized in the design of A2AAR ligands are highlighted with various recent examples.
Collapse
Affiliation(s)
- Omar H.A. Al-Attraqchi
- Faculty of Pharmacy, Philadelphia University-Jordan, P.O BOX (1), Philadelphia University-19392, Amman, Jordan
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | |
Collapse
|
7
|
Abdulla HO, Amin AA, Raviola C, Opatz T, Protti S, Fagnoni M. Smooth Metal-Free Photoinduced Preparation of Valuable 8-Arylxanthines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Havall Othman Abdulla
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
- Chemistry Department; College of Science; Salahaddin University; Erbil Iraq
| | - Ahmed A. Amin
- Chemistry Department; College of Education; Salahaddin University; Erbil Iraq
| | - Carlotta Raviola
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| | - Till Opatz
- Institute of Organic Chemistry; College of Education; Johannes Gutenberg University of Mainz; 55128 Mainz Germany
| | - Stefano Protti
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| |
Collapse
|
8
|
Rohilla S, Bansal R, Kachler S, Klotz KN. Synthesis, biological evaluation and molecular modelling studies of 1,3,7,8-tetrasubstituted xanthines as potent and selective A 2A AR ligands with in vivo efficacy against animal model of Parkinson's disease. Bioorg Chem 2019; 87:601-612. [PMID: 30933785 DOI: 10.1016/j.bioorg.2019.03.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
In the present study, an attempt has been made to develop a new series of 1,3,7,8-tetrasubstituted xanthine based potent and selective AR ligands for the treatment of Parkinson's disease. Antagonistic interactions between dopamine and A2A adenosine receptors serve as the basis for the development of AR antagonists as potential drug candidates for PD. All the synthesized compounds have been evaluated for their affinity toward AR subtypes using in vitro radioligand binding assays. 1,3-Dipropylxanthine 7a with a methyl substituent at N-7 position represents the most potent compound of the series and displayed highest affinity (A2A, Ki = 0.108 µM), however incorporation of a propargyl group at 7-positon of the xanthine nucleus seems to be the most appropriate substitution to improve selectivity towards the A2A subtype along with reasonable potency. Antiparkinsonian activity has been evaluated using perphenazine induced catatonia in rats. Most of the synthesized xanthines significantly lowered the catatonic score as compared to control and displayed antiparkinsonian effects comparable to standard drug. All the synthesized compounds were subjected to grid-based molecular docking studies to understand the key structural requirements for the development of new molecules well-endowed with intrinsic efficacy and selectivity as adenosine receptor ligands. In silico studies carried out on newly synthesized xanthines provided further support to the pharmacological results.
Collapse
Affiliation(s)
- Suman Rohilla
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh
| | - Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh.
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Germany
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Germany
| |
Collapse
|
9
|
Bansal R, Kumar G, Rohilla S, Klotz KN, Kachler S, Young LC, Harvey AL. Synthesis and Evaluation of a New Series of 8-(2-Nitroaryl)Xanthines as Adenosine Receptor Ligands. Drug Dev Res 2016; 77:241-50. [DOI: 10.1002/ddr.21317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/29/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University; Chandigarh India
| | - Gulshan Kumar
- University Institute of Pharmaceutical Sciences, Panjab University; Chandigarh India
| | - Suman Rohilla
- University Institute of Pharmaceutical Sciences, Panjab University; Chandigarh India
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg; Wurzburg, Germany
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Universität Würzburg; Wurzburg, Germany
| | - Louise C. Young
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde; 161 Cathedral Street Glasgow G4 0RE United Kingdom
| | - Alan L. Harvey
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde; 161 Cathedral Street Glasgow G4 0RE United Kingdom
| |
Collapse
|
10
|
Gobouri AA. Organic selenium compounds: Synthesis and reactions of some new 7-alkyl-8-selenotheophyllines. PHOSPHORUS SULFUR 2016. [DOI: 10.1080/10426507.2015.1119137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Adil A. Gobouri
- Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
11
|
Yadav R, Bansal R, Rohilla S, Kachler S, Klotz KN. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity. Bioorg Chem 2016; 65:26-37. [PMID: 26851736 DOI: 10.1016/j.bioorg.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
Abstract
The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs.
Collapse
Affiliation(s)
- Rakesh Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Suman Rohilla
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Germany
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Germany
| |
Collapse
|
12
|
Preti D, Baraldi PG, Moorman AR, Borea PA, Varani K. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev 2015; 35:790-848. [PMID: 25821194 DOI: 10.1002/med.21344] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD.
Collapse
Affiliation(s)
- Delia Preti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | | | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| | - Katia Varani
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
13
|
Venkatesan G, Paira P, Cheong S, Federico S, Klotz K, Spalluto G, Pastorin G. A facile and novel synthesis of N2-, C6-substituted pyrazolo[3,4-d]pyrimidine-4 carboxylate derivatives as adenosine receptor antagonists. Eur J Med Chem 2015; 92:784-98. [DOI: 10.1016/j.ejmech.2015.01.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 11/26/2022]
|