1
|
Zhang H, Sun RR, Liu YF, Guo X, Li CL, Nan ZD, Jiang ZB. Research Progress on Sesquiterpenes from the Genus Ainsliaea. Molecules 2024; 29:5483. [PMID: 39598872 PMCID: PMC11597153 DOI: 10.3390/molecules29225483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/28/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Sesquiterpenes constitute the principal components of the genus Ainsliaea, encompassing guaiane, germacrane, eudesmane, and polymer sesquiterpene lactones types. These secondary metabolites exhibit diverse pharmacological activities, including antitumor, antibacterial, anti-inflammatory, antiviral, antioxidant, hepatoprotective, and neuroprotective effects. Through a comprehensive literature search of the Web of Science, PubMed, SciFinder, and CNKI databases, it was discovered that there are as many as 145 main sesquiterpenoids in the genus Ainsliaea. However, the nuclear magnetic resonance (NMR) data for the sesquiterpenes in this genus have not been systematically compiled and summarized. Therefore, this review aims to highlight the chemical structures, NMR data, and pharmacological activities of sesquiterpenes in Ainsliaea. By meticulously analyzing published scholarly literature, our goal is to provide a solid foundation for further exploration of new sesquiterpenes and extensive utilization of this genus.
Collapse
Affiliation(s)
- Hui Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China; (H.Z.); (R.-R.S.); (Y.-F.L.); (X.G.); (C.-L.L.)
| | - Ru-Ru Sun
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China; (H.Z.); (R.-R.S.); (Y.-F.L.); (X.G.); (C.-L.L.)
| | - Ya-Feng Liu
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China; (H.Z.); (R.-R.S.); (Y.-F.L.); (X.G.); (C.-L.L.)
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Xin Guo
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China; (H.Z.); (R.-R.S.); (Y.-F.L.); (X.G.); (C.-L.L.)
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Chong-Long Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China; (H.Z.); (R.-R.S.); (Y.-F.L.); (X.G.); (C.-L.L.)
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Ze-Dong Nan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China; (H.Z.); (R.-R.S.); (Y.-F.L.); (X.G.); (C.-L.L.)
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Zhi-Bo Jiang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China; (H.Z.); (R.-R.S.); (Y.-F.L.); (X.G.); (C.-L.L.)
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
2
|
Peng Y, Guo Y, Zhang S, Chang Y, Zhang S, Wang X, Zhao W, Ma X. Identification of diverse sesquiterpenoids with anti-fibrotic potential from Inula japonica Thunb. Bioorg Chem 2024; 143:107084. [PMID: 38176376 DOI: 10.1016/j.bioorg.2023.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
In the chemical investigation of Inula japonica, a total of 29 sesquiterpenoids (1-29) were obtained, including pseudoguaine-, xanthane-, eudesmane-, and 1,10-secoeudesmane-type compounds, as well as their dimers. Among them, six new dimeric sesquiterpenoids, bisinulains A-F (1-5, 7), characterized by a [4 + 2] biogenetic pathway between different sesquiterpenoid monomers were identified. Additionally, three new monomers named inulaterins A-C (13, 18 and 21) were discovered. The structures of these compounds were determined through analysis of spectroscopic data, X-ray crystallographic data, and ECD experiments. To assess their potential anti-inflammatory activities, the sesquiterpenoid dimers were tested for their ability to inhibit NO production in LPS-stimulated RAW 264.7 cells. Furthermore, the compounds that exhibited anti-inflammatory effects underwent evaluation for their anti-fibrotic potential using a TGF-β-induced epithelial-mesenchymal transition model in A549 cells. As a result, bisinulain B (2) was screened out to significantly inhibit the production of cytokines involved in pulmonary fibrosis such as NO, α-SMA, collagen I and fibronectin.
Collapse
Affiliation(s)
- Yulin Peng
- College (Institute) of Integrative Medicine, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuxin Guo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Shuyuan Zhang
- College (Institute) of Integrative Medicine, Second Affiliated Hospital, Dalian Medical University, Dalian, China; The 967th Hospital of Joint Logistics Force, Dalian, China
| | - Yibo Chang
- College (Institute) of Integrative Medicine, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shujing Zhang
- College (Institute) of Integrative Medicine, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- College (Institute) of Integrative Medicine, Second Affiliated Hospital, Dalian Medical University, Dalian, China; The 967th Hospital of Joint Logistics Force, Dalian, China.
| | - Wenyu Zhao
- College (Institute) of Integrative Medicine, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Xiaochi Ma
- College (Institute) of Integrative Medicine, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Li J, Guo X, Luo Z, Wu D, Shi X, Xu L, Zhang Q, Xie C, Yang C. Chemical constituents from the flowers of Inula japonica and their anti-inflammatory activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117052. [PMID: 37597674 DOI: 10.1016/j.jep.2023.117052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The flowers of Inula japonica (Inulae Flos) can be used to treat cough and asthma and remove phlegm in traditional Chinese medicine (TCM). AIM OF THE STUDY Our research aimed to obtain active components with the inhibition of inflammation and MUC5AC production to alleviate asthma symptoms from I. japonica. MATERIALS AND METHODS These compounds were separated from the MeOH extract of Inulae Flos by column chromatography over silica gel, AB-8 macroporous resin column, MPLC, and semipreparative HPLC. Their structures were elucidated by detailed spectroscopic data analysis, ECD calculations, and chemical methods. NO production was determined to evaluate anti-inflammatory activity in RAW 264.7 cells. The expression of MUC5AC, IL-1β, and IL-4 were measured in NCI-H292 cells by qRT-PCR. The anti-asthma activity assessments in vivo were performed through H & E and PAS staining, pulmonary function analysis, and cytokines determination by qRT-PCR or ELISA. The expression levels of PI3K, p-PI3K, AKT, p-AKT, MEK, p-MKE, ERK, p-MEK, and IL-1β were analyzed through western blotting. RESULTS One undescribed 1,10-seco-eudesmanolide derivative (1), two previously unreported 1,10-seco-eudesmanolide glycosides (2 and 3), and thirty-two known compounds (4-35) were obtained from Inulae Flos. Compound 11 had the most inhibitory effect against LPS-induced NO production in RAW 264.7 murine macrophages. Meanwhile, compound 11 also attenuated the increase in MUC5AC, IL-1β, and IL-4 mRNA expression in NCI-H292 cells. The results of the animal experiment confirmed that compound 11 significantly ameliorated OVA-induced asthma in a murine model of allergic asthma demonstrated by elevated pulmonary function, reduced inflammatory cell infiltration and mucus production. In addition, compound 11 significantly inhibited the levels of OVA-specific IgE in serum, of IL-4 and IL-6 in BALF, and of MUC5AC, IL-1β , IL-4, IL-5, IL-6 and IL-13 in lung tissue. Finally, compound 11 suppressed PI3K/AKT/MEK/ERK signaling pathway in lung tissue of mice. CONCLUSION This study indicated that compound 11 might be a potential therapeutic candidate ameliorating airway inflammation and mucus hypersecretion via PI3K/AKT/MEK/ERK signaling pathway in allergic asthma.
Collapse
Affiliation(s)
- Jiahang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Xiaowei Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Zhilin Luo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Dan Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Xue Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Lixin Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
4
|
Cao F, Chu C, Qin JJ, Guan X. Research progress on antitumor mechanisms and molecular targets of Inula sesquiterpene lactones. Chin Med 2023; 18:164. [PMID: 38111074 PMCID: PMC10726648 DOI: 10.1186/s13020-023-00870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
The pharmacological effects of natural product therapy have received sigificant attention, among which terpenoids such as sesquiterpene lactones stand out due to their biological activity and pharmacological potential as anti-tumor drugs. Inula sesquiterpene lactones are a kind of sesquiterpene lactones extracted from Inula species. They have many pharmacological activities such as anti-inflammation, anti-asthma, anti-tumor, neuroprotective and anti-allergic. In recent years, more and more studies have proved that they are important candidate drugs for the treatment of a variety of cancers because of its good anti-tumor activity. In this paper, the structure, structure-activity relationship, antitumor activities, mechanisms and targets of Inula sesquiterpene lactones reported in recent years were reviewed in order to provide clues for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Fei Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Chu Chu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Xiaoqing Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Zhi XY, Zhang Y, Li YF, Liu Y, Niu WP, Li Y, Zhang CR, Cao H, Hao XJ, Yang C. Discovery of Natural Sesquiterpene Lactone 1- O-Acetylbritannilactone Analogues Bearing Oxadiazole, Triazole, or Imidazole Scaffolds for the Development of New Fungicidal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37463456 DOI: 10.1021/acs.jafc.3c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In recent decades, natural products have been considered important resources for developing of new agrochemicals because of their novel architectures and multibioactivities. Consequently, herein, 1-O-acetylbritannilactone (ABL), a natural sesquiterpene lactone from Inula britannica L., was used as a lead for further modification to discover fungicidal candidates. Six series of ABL-based derivatives containing an oxadiazole, triazole, or imidazole moiety were designed and synthesized, and their antifungal activities were also evaluated in vitro and in vivo. Bioassay results revealed that compounds 8d, 8h, and 8j (EC50 = 61.4, 30.9, and 12.4 μg/mL, respectively) exhibited more pronounced inhibitory activity against Fusarium oxysporum than their precursor ABL (EC50 > 500 μg/mL) and positive control hymexazol (EC50 = 77.2 μg/mL). Derivatives 8d and 11j (EC50 = 19.6 and 41.5 μg/mL, respectively) exhibited more potent antifungal activity toward Cytospora mandshurica than ABL (EC50 = 68.3 μg/mL). Compound 10 exhibited excellent and broad-spectrum antifungal activity against seven phytopathogenic fungal mycelia. Particularly, the inhibitory activity of compound 10 against the mycelium of Botrytis cinerea was more than 10.8- and 2.3-fold those of ABL and hymexazol, respectively. Meanwhile, derivative 10 (IC50 = 47.7 μg/mL) displayed more pronounced inhibitory activity against the spore of B. cinerea than ABL (IC50 > 500 μg/mL) and difenoconazole (IC50 = 80.8 μg/mL). Additionally, the in vivo control efficacy of compound 10 against B. cinerea was further studied using infected tomatoes (protective effect = 58.4%; therapeutic effect = 48.7%). The preliminary structure-activity relationship analysis suggested that the introduction of the 1,3,4-oxadiazole moiety (especially the 1,3,4-oxadiazole heterocycle containing the 4-chlorophenyl, 2-furyl, or 2-pyridinyl group) on the skeleton of ABL was more likely to produce potential antifungal compounds. These findings pave the way for further design and development of ABL-based derivatives as potential antifungal agents.
Collapse
Affiliation(s)
- Xiao-Yan Zhi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. China
| | - Yuan Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Yang-Fan Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Ying Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Wen-Peng Niu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Yang Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Cheng-Ran Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Hui Cao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Xiao-Juan Hao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
| | - Chun Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. China
| |
Collapse
|
6
|
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L, Chen S, Ge J. Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review. Biomed Pharmacother 2023; 164:114312. [PMID: 37210894 DOI: 10.1016/j.biopha.2023.114312] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are characterized by massive loss of specific neurons. It is a progressive disabling, severe and fatal complex disease. Due to its complex pathogenesis and limitations of clinical treatment strategies, it poses a serious medical challenge and medical burden worldwide. The pathogenesis of AD is not clear, and its potential biological mechanisms include aggregation of soluble amyloid to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFT), neuroinflammation, ferroptosis, oxidative stress and metal ion disorders. Among them, ferroptosis is a newly discovered programmed cell death induced by iron-dependent lipid peroxidation and reactive oxygen species. Recent studies have shown that ferroptosis is closely related to AD, but the mechanism remains unclear. It may be induced by iron metabolism, amino acid metabolism and lipid metabolism affecting the accumulation of iron ions. Some iron chelating agents (deferoxamine, deferiprone), chloroiodohydroxyquine and its derivatives, antioxidants (vitamin E, lipoic acid, selenium), chloroiodohydroxyquine and its derivatives Fer-1, tet, etc. have been shown in animal studies to be effective in AD and exert neuroprotective effects. This review summarizes the mechanism of ferroptosis in AD and the regulation of natural plant products on ferroptosis in AD, in order to provide reference information for future research on the development of ferroptosis inhibitors.
Collapse
Affiliation(s)
- Da Zhao
- Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Chen
- Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
7
|
Sary HG, Khedr MA, Orabi KY. Novel Vulgarin Derivatives: Chemical Transformation, In Silico and In Vitro Studies. Molecules 2023; 28:molecules28083421. [PMID: 37110654 PMCID: PMC10143240 DOI: 10.3390/molecules28083421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Vulgarin, an eudesmanolide sesquiterpene isolated from Artemisia judaica, was refluxed with iodine to produce two derivatives (1 and 2), which were purified and spectroscopically identified as naproxen methyl ester analogs. The reaction mechanism by which 1 and 2 were formed is explained using a sigmatropic reaction with a 1,3 shift. The scaffold hopping via lactone ring opening enabled the new derivatives of vulgarin (1 and 2) to fit well inside the COX-2 active site with ΔG of -7.73 and -7.58 kcal/mol, respectively, which was better than that of naproxen (ΔG of -7.04 kcal/mol). Moreover, molecular dynamic simulations showed that 1 was able to achieve a faster steady-state equilibrium than naproxen. The novel derivative 1 showed promising cytotoxic activities against HepG-2, HCT-116, MCF-7, and A-549 cancer cell lines compared to those of vulgarin and naproxen.
Collapse
Affiliation(s)
- Hanan G Sary
- Department of Pharmaceutical Chemistry, College of Pharmacy, Kuwait University, Safat 13110, Kuwait
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Mohammed A Khedr
- Department of Pharmaceutical Chemistry, College of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Khaled Y Orabi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
8
|
Inhibition effect of 1-acetoxy-6α-(2-methylbutyryl)eriolanolide toward soluble epoxide hydrolase: Multispectral analysis, molecular dynamics simulation, biochemical, and in vitro cell-based studies. Int J Biol Macromol 2023; 235:123911. [PMID: 36878397 DOI: 10.1016/j.ijbiomac.2023.123911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Soluble epoxide hydrolase (sEH) serves as a potential target in inflammation-related diseases. Based on the bioactivity-guided separation, a new sesquiterpenoid inulajaponoid A (1) was isolated from Inula japonica with a sEH inhibitory effect, together with five known compounds, such as 1-O-acetyl-6-O-isobutyrylbritannilactone (2), 6β-hydroxytomentosin (3), 1β,8β-dihydroxyeudesma-4(15),11(13)-dien-12,6α-olide (4), (4S,6S,7S,8R)-1-O-acetyl-6-O-(3-methylvaleryloxy)-britannilactone (5), and 1-acetoxy-6α-(2-methylbutyryl)eriolanolide (6). Among them, compounds 1 and 6 were assigned as mixed and uncompetitive inhibitors, respectively. The result of immunoprecipitation (IP)-MS demonstrated the specific binding of compound 6 to sEH in the complex system, which was further confirmed by the fluorescence-based binding assay showing its equilibrium dissociation constant (Kd = 2.43 μM). The detail molecular stimulation revealed the mechanism of action of compound 6 with sEH through the hydrogen bond of amino acid residue Gln384. Furthermore, this natural sEH inhibitor (6) could suppress the MAPK/NF-κB activation to regulate inflammatory mediators, such as NO, TNF-α, and IL-6, which confirmed the anti-inflammatory effect of inhibition of sEH by 6. These findings provided a useful insight to develop sEH inhibitors upon the sesquiterpenoids.
Collapse
|
9
|
Deng H, Xu Q, Guo HY, Huang X, Chen F, Jin L, Quan ZS, Shen QK. Application of cinnamic acid in the structural modification of natural products: A review. PHYTOCHEMISTRY 2023; 206:113532. [PMID: 36470328 DOI: 10.1016/j.phytochem.2022.113532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Natural products can generally exhibit a variety of biological activities, but most show mediocre performance in preliminary activity evaluation. Natural products often require structural modification to obtain promising lead compounds. Cinnamic acid (CA) is readily available and has diverse biological activities and low cytotoxicity. Introducing CA into natural products may improve their performance, enhance biological activity, and reduce toxic side effect. Herein, we aimed to discuss related applications of CA in the structural modification of natural products and provide a theoretical basis for future derivatization and drug development of natural products. Published articles, web databases (PubMed, Science Direct, SCI Finder, and CNKI), and clinical trial websites (https://clinicaltrials.gov/) related to natural products and CA derivatives were included in the discussion. Based on the inclusion criteria, 128 studies were selected and discussed herein. Screening natural products of CA derivatives allowed for classification by their biological activities. The full text is organized according to the biological activities of the derivatives, with the following categories: anti-tumor, neuroprotective, anti-diabetic, anti-microbial, anti-parasitic, anti-oxidative, anti-inflammatory, and other activities. The biological activity of each CA derivative is discussed in detail. Notably, most derivatives exhibited enhanced biological activity and reduced cytotoxicity compared with the lead compound. CA has various advantages and can be widely used in the synthesis of natural product derivatives to enhance the properties of drug candidates or lead compounds.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Fener Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
10
|
The Regulatory Effects of Traditional Chinese Medicine on Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4578381. [PMID: 36193068 PMCID: PMC9526626 DOI: 10.1155/2022/4578381] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Traditional Chinese medicine (TCM) has significantly contributed to protecting human health and promoting the progress of world civilization. A total of 2,711 TCMs are included in the 2020 version of the Chinese Pharmacopoeia, which is an integral part of the world’s medical resources. Tu Youyou and her team discovered and purified artemisinin. And their contributions made the values and advantageous effects of TCM more and more recognized by the international community. There has been a lot of studies on TCM to treat diseases through antioxidant mechanisms, the reports on the new mechanisms beyond antioxidants of TCM has also increased year by year. Recently, many TCMs appear to have significant effects in regulating ferroptosis. Ferroptosis is an iron-dependent, non-apoptotic, regulated cell death characterized by intracellular lipid peroxide accumulation and oxidative membrane damage. Recently, accumulating studies have demonstrated that numerous organ injuries and pathophysiological process of many diseases are companied with ferroptosis, such as cancer, neurodegenerative disease, acute renal injury, arteriosclerosis, diabetes, and ischemia-reperfusion injury. This work mainly introduces dozens of TCMs that can regulate ferroptosis and their possible mechanisms and targets.
Collapse
|
11
|
Xie LY, Yang Z, Wang Y, Hu JN, Lu YW, Zhang H, Jiang S, Li W. 1- O-Actylbritannilactone Ameliorates Alcohol-Induced Hepatotoxicity through Regulation of ROS/Akt/NF-κB-Mediated Apoptosis and Inflammation. ACS OMEGA 2022; 7:18122-18130. [PMID: 35664604 PMCID: PMC9161245 DOI: 10.1021/acsomega.2c01681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/04/2022] [Indexed: 05/20/2023]
Abstract
1-O-Acetylbritannilactone (ABL) is a marker component of Inula britannica L. and is reported to exhibit multiple pharmacological activities, including antiaging, anti-inflammatory, and antidiabetic properties. Although the protective effect of Inula britannica L. on animal models of liver injury has been widely reported, the effect of ABL on alcohol-induced liver damage has not been confirmed. The present study was designed to investigate the protective effect of ABL against alcohol-induced LO2 human normal liver cell injury and to further clarify the underlying mechanism. Our results revealed that ABL at concentrations of 0.5, 1, and 2 μM could remarkably suppress the decreased viability of LO2 cells stimulated by alcohol. In addition, ABL pretreatment improved alcohol-induced oxidative damage by decreasing the level of reactive oxygen species (ROS) and the excessive consumption of glutathione peroxidase (GSH-Px), while increasing the level of catalase (CAT) in LO2 cells. Moreover, Western blotting analysis showed that ABL pretreatment activated protein kinase B (Akt) phosphorylation, increased downstream antiapoptotic protein Bcl-2 expression, and decreased the phosphorylation level of the caspase family including caspase 9 and caspase 3 proteins, thereby attenuating LO2 cell apoptosis. Importantly, we also found that ABL significantly inhibits the activation of the nuclear factor-kappa B (NF-κB) signaling pathway by reducing the secretion of proinflammatory factors including tumor necrosis factor-α (TNF-α) and interleukin (IL-1β). In conclusion, the current research clearly suggests that the protective effect of ABL on alcohol-induced hepatotoxicity may be achieved in part through regulation of the ROS/Akt/NF-κB signaling pathway to inhibit inflammation and apoptosis in LO2 cells. (The article path map has not been seen.).
Collapse
Affiliation(s)
- Li-ya Xie
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Zhen Yang
- Jilin
Academy of Chinese Medicine Sciences, Changchun 130012, China
| | - Ying Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Jun-nan Hu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Ya-wei Lu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Hao Zhang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Shuang Jiang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- E-mail: . Phone/Fax: +86-431-84533304
| | - Wei Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- E-mail: . Phone/Fax: +86-431-84533304
| |
Collapse
|
12
|
Tang JJ, Huang LF, Deng JL, Wang YM, Guo C, Peng XN, Liu Z, Gao JM. Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer's disease mice model. Redox Biol 2022; 50:102229. [PMID: 35026701 PMCID: PMC8760418 DOI: 10.1016/j.redox.2022.102229] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease in which oxidative stress and neuroinflammation were demonstrated to be associated with neuronal loss and cognitive deficits. However, there are still no specific treatments that can prevent the progression of AD. In this study, a screening of anti-inflammatory hits from 4207 natural compounds of two different molecular libraries indicated 1,6-O,O-diacetylbritannilactone (OABL), a 1,10-seco-eudesmane sesquiterpene lactone isolated from the herb Inula britannica L., exhibited strong anti-inflammatory activity in vitro as well as favorable BBB penetration property. OABL reduced LPS-induced neuroinflammation in BV-2 microglial cells as assessed by effects on the levels of inflammatory mediators including NO, PGE2, TNF-α, iNOS, and COX-2, as well as the translocation of NF-κB. Besides, OABL also exhibited pronounced neuroprotective effects against oxytosis and ferroptosis in the rat pheochromocytoma PC12 cell line. For in vivo research, OABL (20 mg/kg B.W., i.p.) for 21 d attenuated the impairments in cognitive function observed in 6-month-old 5xFAD mice, as assessed with the Morris water maze test. OABL restored neuronal damage and postsynaptic density protein 95 (PSD95) expression in the hippocampus. OABL also significantly reduced the accumulation of amyloid plaques, the Aβ expression, the phosphorylation of Tau protein, and the expression of BACE1 in AD mice brain. In addition, OABL attenuated the overactivation of microglia and astrocytes by suppressing the expressions of inflammatory cytokines, and increased glutathione (GSH) and reduced malondialdehyde (MDA) and super oxide dismutase (SOD) levels in the 5xFAD mice brain. In conclusion, these results highlight the beneficial effects of the natural product OABL as a novel treatment with potential application for drug discovery in AD due to its pharmacological profile.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Lan-Fang Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Jia-Le Deng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yi-Meng Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Xiao-Na Peng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
13
|
Li N, Wang Y, Wang X, Sun N, Gong YH. Pathway network of pyroptosis and its potential inhibitors in acute kidney injury. Pharmacol Res 2021; 175:106033. [PMID: 34915124 DOI: 10.1016/j.phrs.2021.106033] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is a worldwide problem, and there is no effective drug to eliminate AKI. The death of renal cells is an important pathological basis of intrinsic AKI. At present, targeted therapy for TEC death is a research hotspot in AKI therapy. There are many ways of cell death involved in the occurrence and development of AKI, such as apoptosis, necrosis, ferroptosis, and pyroptosis. This article mainly focuses on the role of pyroptosis in AKI. The assembly and activation of NLRP3 inflammasome is a key event in the occurrence of pyroptosis, which is affected by many factors, such as the activation of the NF-κB signaling pathway, mitochondrial instability and excessive endoplasmic reticulum (ER) stress. The activation of NLRP3 inflammasome can trigger its downstream inflammatory cytokines, which will lead to pyroptosis and eventually induce AKI. In this paper, we reviewed the possible mechanism of pyroptosis in AKI and the potential effective inhibitors of various key targets in this process. It may provide potential therapeutic targets for novel intrinsic AKI therapies based on pyroptosis, so as to develop better therapeutic strategies.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Na Sun
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Yan-Hua Gong
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China.
| |
Collapse
|
14
|
Wang MR, Huang LF, Guo C, Yang J, Dong S, Tang JJ, Gao JM. Identification of NLRP3 as a covalent target of 1,6-O,O-diacetylbritannilactone against neuroinflammation by quantitative thiol reactivity profiling (QTRP). Bioorg Chem 2021; 119:105536. [PMID: 34894577 DOI: 10.1016/j.bioorg.2021.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
Neuroinflammation plays a key etiological role in the progressive neuronal damage of neurodegenerative diseases. Our phenotypic-based screening discovered 1,6-O,O-diacetylbritannilactone (OABL, 1) from Inula britannica exhibited the potential anti-neuroinflammatory activity as well as a favorable blood-brain barrier penetration. 1 and its active derivative Br-OABL (2) with insert of Br at the C-14 position both modulated TLR4/NF-kB/MAPK pathways. However, proteome-wide identification of 1 binding proteins remains unclear. Here, we employed an adapted isoTOP-ABPP, quantitative thiol reactivity profiling (QTRP) approach, to identify and quantify thiol reactivity binding proteins in murine microglia BV-2 cells. We screened out 15 proteins co-targeted by 1 and 2, which are involved in cellular response to oxidative stress and negative regulation NF-κB transcription factor in biological processes. In site-specific profiling, NLRP3 was identified as a covalent target of 1 and 2 for the first time, and the Cys483 of NLRP3 NACHT domain was identified as one active-site of NLRP3 cysteine residues that can be covalently modified by the α-methylene-γ-lactone moiety. Furthermore, NLRP3 was validated to be directly binded by 1 and 2 by cellular thermo shift assay (CETSA) and activity-based protein profiling (ABPP), and NLRP3 functions were also verified by small interfering RNA approach. Notably, OABL treatment (i.p., 20 mg/kg/day) for 21 days reduced inflammation in 5XFAD mice brain. Together, we applied the QTRP to uncover the binding proteins of OABL in BV-2 cells, among which NLRP3 was revealed as a new covalent target of 1 and 2 against neuroinflammation.
Collapse
Affiliation(s)
- Min-Ran Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Lan-Fang Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
15
|
Tang JJ, Guo C, Peng XN, Guo XC, Zhang Q, Tian JM, Gao JM. Chemical characterization and multifunctional neuroprotective effects of sesquiterpenoid-enriched Inula britannica flowers extract. Bioorg Chem 2021; 116:105389. [PMID: 34601295 DOI: 10.1016/j.bioorg.2021.105389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/05/2023]
Abstract
Dried flowers of Inula britannica commercially serve as pharmaceutical/nutraceutical herbs in the manufacture of medicinal products and functional tea that has been reported to possess extensive biological property. However, the neuroprotective constituents in I. britannica flowers are not known. In the current study, phytochemicals of sesquiterpenoid-enriched I. britannica flowers extract and their potential multifunctional neuroprotective effects were investigated. Nineteen structurally diverse sesquiterpenoids, including two new sesquiterpenoid dimers, namely, inubritanolides A and B (1, 2), and four new sesquiterpenoid monomers (3-6), namely, 1-O-acetyl-6-O-chloracetylbritannilactone (3), 6-methoxybritannilactone (4), 1-hydroxy-10β-methoxy-4αH-1,10-secoeudesma-5(6),11(13)-dien-12,8β-olide (5) and 1-hydroxy-4αH-1,10-secoeudesma-5(6),10(14),11(13)-trien-12,8β-olide (6), as well as 13 known congeners (7-19) were isolated from this source. The structures of compounds 1-6 were elucidated by 1D- and 2D- NMR and HR-ESI-MS data, and their absolute configurations were discerned by electronic circular dichroism (ECD) data analysis and single crystal X-ray diffraction. Interestingly, inubritannolide A (1) is a new type [4 + 2] Diels-Alder dimer featuring a hepta-membered cycloether skeleton. Most of the compounds showed potential multifunctional neuroprotective effects, including antioxidative, anti-neuroinflammatory, and microglial polarization properties. Specifically, 1 and 6 displayed slight strong neuroprotective potency against different types of neuronal cells mediated by various inducers including H2O2, 6-hydroxydopamine (6-OHDA), and lipopolysaccharide (LPS). Overall, this is the first report on multifunctional neuroprotective effects of sesquiterpenoid-enriched I. britannica flowers extract, which supports its potential pharmaceutical/nutraceutical application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xiao-Na Peng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xiao-Chen Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Jun-Mian Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
16
|
Tang JJ, Wang MR, Dong S, Huang LF, He QR, Gao JM. 1,10-Seco-Eudesmane sesquiterpenoids as a new type of anti-neuroinflammatory agents by suppressing TLR4/NF-κB/MAPK pathways. Eur J Med Chem 2021; 224:113713. [PMID: 34315042 DOI: 10.1016/j.ejmech.2021.113713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022]
Abstract
Dysregulation of neuroinflammation is a key pathological factor in the progressive neuronal damage of neurodegenerative diseases. An in-house natural products library of 1407 compounds were screened against neuroinflammation in lipopolysaccharide (LPS)-activated microglia cells to identify a novel hit 1,6-O,O-diacetylbritannilactone (OABL) with anti-neuroinflammatory activity. Furthermore, a 1,10-seco-eudesmane sesquiterpenoid library containing 33 compounds was constructed by semisynthesis of a major component 1-O-acetylbritannilactone (ABL) from the traditional Chinese medicinal herb Inula Britannica L. Compound 15 was identified as a promising anti-neuroinflammatory agent by nitrite oxide (NO) production screening. 15 could attenuate tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) productions, and inhibit the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at a submicromolar level. Mechanistic study revealed that 15 significantly modulated TLR4/NF-kB and p38 MAPK pathways, and upregulated the anti-oxidant response HO-1. Besides, 15 promoted the conversion of the microglia from M1 to M2 phenotype by increasing levels of arginase-1 and IL-10. The structure-activity relationships (SARs) analysis indicated that the α-methylene-γ-lactone motifs, epoxidation of C5=C10 bond and bromination of C14 were important to the activity. Parallel artificial membrane permeation assay (PAMPA) also demonstrated that 15 and OABL can overcome the blood-brain barrier (BBB). In all, compound 15 is a promising anti-neuroinflammatory lead with potent anti-inflammatory effects via the blockage of TLR4/NF-κB/MAPK pathways, favorable BBB penetration property, and low cytotoxicity.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, PR China.
| | - Min-Ran Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, PR China
| | - Shuai Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, PR China
| | - Lan-Fang Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, PR China
| | - Qiu-Rui He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, PR China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
17
|
Zheng S, Li L, Li N, Du Y, Zhang N. 1, 6-O, O-Diacetylbritannilactone from Inula britannica Induces Anti-Tumor Effect on Oral Squamous Cell Carcinoma via miR-1247-3p/LXRα/ABCA1 Signaling. Onco Targets Ther 2020; 13:11097-11109. [PMID: 33149621 PMCID: PMC7605651 DOI: 10.2147/ott.s263014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy affecting the oral cavity and is associated with severe morbidity and high mortality. 1, 6-O, O-Diacetylbritannilactone (OODBL) isolated from the medicinal herb of Inula britannica has various biological activities such as anti-inflammation and anti-cancer. However, the effect of OODBL on OSCC progression remains unclear. Here, we were interested in the function of OODBL in the development of OSCC. Methods The effect of OODBL on OSCC progression was analyzed by MTT assays, colony formation assays, transwell assays, apoptosis analysis, cell cycle analysis, and in vivo tumorigenicity analysis. The mechanism investigation was performed by qPCR assays, Western blot analysis, and luciferase reporter gene assays. Results We found that OODBL inhibits the proliferation of OSCC cells in vitro. Moreover, the migration and invasion were attenuated by OODBL treatment in the OSCC cells. OODBL arrested cells at the G0/G1 phase and induced cell apoptosis. OODBL was able to up-regulate the expression of LXRα, ABCA1, and ABCG1 in the system. In addition, OODBL activated LXRα/ABCA1 signaling by targeting miR-1247-3p. Furthermore, the expression levels of cytochrome c in the cytoplasm, cleaved caspase-9, and cleaved caspase-3 were dose-dependently reduced by OODBL. Besides, OODBL increased the expression ratio of Bax to Bcl-2. Moreover, OODBL repressed tumor growth of OSCC cells in vivo. Discussion Thus, we conclude that OODBL inhibits OSCC progression by modulating miR-1247-3p/LXRα/ABCA1 signaling. Our finding provides new insights into the mechanism by which OODBL exerts potent anti-tumor activity against OSCC. OODBL may be a potential anti-tumor candidate, providing a novel clinical treatment strategy of OSCC.
Collapse
Affiliation(s)
- Shaohua Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shanxi Province, 710061, People's Republic of China
| | - Lihua Li
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People's Republic of China
| | - Na Li
- Department of Stomatology, Xi'an Shiyou University Hospital, Xi'an City, Shanxi Province, 710065, People's Republic of China
| | - Yi Du
- Jinan Stomatological Hospital, Jinan City, Shandong Province 250001, People's Republic of China
| | - Nan Zhang
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xian City, Shanxi Province 710061, People's Republic of China
| |
Collapse
|
18
|
Majhi S. Diterpenoids: Natural Distribution, Semisynthesis at Room Temperature and Pharmacological Aspects‐A Decade Update. ChemistrySelect 2020. [DOI: 10.1002/slct.202002836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sasadhar Majhi
- Department of Chemistry (UG & PG Dept.) Triveni Devi Bhalotia College Raniganj, West Bengal 713347 India
| |
Collapse
|
19
|
Outahar F, Moumou M, Hannioui A, Rakib EM, El Ammari L, Saadi M, Akssira M. Synthesis of novel spiro-pyrazole and spiro-isoxazoline derivatives of 9α- and 9β-hydroxyparthenolide. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Ding Y, Wang T, Chen T, Xie C, Zhang Q. Sesquiterpenoids isolated from the flower of Inula japonica as potential antitumor leads for intervention of paclitaxel-resistant non-small-cell lung cancer. Bioorg Chem 2020; 101:103973. [DOI: 10.1016/j.bioorg.2020.103973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022]
|
21
|
Singh M, Ravichandiran V, Bharitkar YP, Hazra A. Natural Products Containing Olefinic Bond: Important Substrates for Semi-synthetic Modification Towards Value Addition. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200312125734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
:
Semi-synthesis, the way of preparing novel bioactive molecules via modification
of compounds isolated from natural sources is very much useful nowadays in the drug discovery
process. The modification is based on the reaction of functional group(s) present in a
natural compound. Among the examples of functional group transformation, double bond
modification is also common in the literature. Several reactions like hydrogenation, cyclopropanation,
epoxidation, addition reaction (halogenations, hydroxylation), Michael addition,
Heck reaction, cycloaddition, dipolar cycloaddition, etc. are employed for this purpose.
In this review, we have tried to gather the reactions performed with several double bond
containing classes of natural products like diterpenes, xanthones, sesquiterpene exomethylene lactones, diaryl
heptanoids, steroidal lactones, triterpenoids, limonoids, and alkamides. Where available, the effects of transformations
on the biological activities of the molecules are also mentioned.
Collapse
Affiliation(s)
- Meenakshi Singh
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata - 700 054, India
| | - V. Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata - 700 054, India
| | - Yogesh P. Bharitkar
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata - 700 054, India
| | - Abhijit Hazra
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata - 700 054, India
| |
Collapse
|
22
|
Exploring Diverse-Ring Analogues on Combretastatin A4 (CA-4) Olefin as Microtubule-Targeting Agents. Int J Mol Sci 2020; 21:ijms21051817. [PMID: 32155790 PMCID: PMC7084768 DOI: 10.3390/ijms21051817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022] Open
Abstract
Combretastatin-4 (CA-4) as a tubulin polymerization inhibitor draws extensive attentions. However, due to its weak stability of cis-olefin and poor metabolic stability, structure modifications on cis-configuration are being performed. In this work, we constructed a series of novel CA-4 analogues with linkers on olefin containing diphenylethanone, cis-locked dihydrofuran, α-substituted diphenylethanone, cyclobutane and cyclohexane on its cis-olefin. Cytotoxic activity of all analogues was measured by an SRB assay. Among them, compound 6b, a by-product in the preparation of diphenylethanone analogues, was found to be the most potent cytotoxic agents against HepG2 cells with IC50 values of less than 0.5 μM. The two isomers of 6b induced cellular apoptosis tested by Annexin V-FITC and propidium iodide (PI) double staining, arrested cells in the G2/M phase by PI staining analysis, and disrupted microtubule network by immunohistochemistry study in HepG2 cells. Moreover, 6b-(E) displayed a dose-dependent inhibition effect for tubulin assembly in in vitro tubulin polymerization assay. In addition, molecular docking studies showed that two isomers of 6b could bind efficiently at colchicine binding site of tubulin similar to CA-4.
Collapse
|
23
|
Tavares WR, Seca AML. Inula L. Secondary Metabolites against Oxidative Stress-Related Human Diseases. Antioxidants (Basel) 2019; 8:E122. [PMID: 31064136 PMCID: PMC6562470 DOI: 10.3390/antiox8050122] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
An imbalance in the production of reactive oxygen species in the body can cause an increase of oxidative stress that leads to oxidative damage to cells and tissues, which culminates in the development or aggravation of some chronic diseases, such as inflammation, diabetes mellitus, cancer, cardiovascular disease, and obesity. Secondary metabolites from Inula species can play an important role in the prevention and treatment of the oxidative stress-related diseases mentioned above. The databases Scopus, PubMed, and Web of Science and the combining terms Inula, antioxidant and secondary metabolites were used in the research for this review. More than 120 articles are reviewed, highlighting the most active compounds with special emphasis on the elucidation of their antioxidative-stress mechanism of action, which increases the knowledge about their potential in the fight against inflammation, cancer, neurodegeneration, and diabetes. Alantolactone is the most polyvalent compound, reporting interesting EC50 values for several bioactivities, while 1-O-acetylbritannilactone can be pointed out as a promising lead compound for the development of analogues with interesting properties. The Inula genus is a good bet as source of structurally diverse compounds with antioxidant activity that can act via different mechanisms to fight several oxidative stress-related human diseases, being useful for development of new drugs.
Collapse
Affiliation(s)
- Wilson R Tavares
- Faculty of Sciences and Technology, University of Azores, 9501-801 Ponta Delgada, Portugal.
| | - Ana M L Seca
- cE3c-Centre for Ecology, Evolution and Environmental Changes/ Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal.
- QOPNA & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
24
|
Khlebnikov AI, Schepetkin IA, Kishkentaeva AS, Shaimerdenova ZR, Atazhanova GA, Adekenov SM, Kirpotina LN, Quinn MT. Inhibition of T Cell Receptor Activation by Semi-Synthetic Sesquiterpene Lactone Derivatives and Molecular Modeling of Their Interaction with Glutathione and Tyrosine Kinase ZAP-70. Molecules 2019; 24:molecules24020350. [PMID: 30669433 PMCID: PMC6358946 DOI: 10.3390/molecules24020350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 11/25/2022] Open
Abstract
A variety of natural compounds have been shown to modulate T cell receptor (TCR) activation, including natural sesquiterpene lactones (SLs). In the present studies, we evaluated the biological activity of 11 novel semi-synthetic SLs to determine their ability to modulate TCR activation. Of these compounds, α-epoxyarglabin, cytisinyl epoxyarglabin, 1β,10α-epoxyargolide, and chloroacetate grosheimin inhibited anti-CD3-induced Ca2+ mobilization and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in Jurkat T cells. We also found that the active SLs depleted intracellular glutathione (GSH) in Jurkat T cells, supporting their reactivity towards thiol groups. Because the zeta-chain associated tyrosine kinase 70 kDa (ZAP-70) is essential for TCR signaling and contains a tandem SH2 region that is highly enriched with multiple cysteines, we performed molecular docking of natural SLs and their semi-synthetic derivatives into the ZAP-70 binding site. The docking showed that the distance between the carbon atom of the exocyclic methylene group and the sulfur atom in Cys39 of the ZAP-70 tandem SH2 module was 3.04–5.3 Å for active compounds. Furthermore, the natural SLs and their derivatives could be differentiated by their ability to react with the Cys39 SH-group. We suggest that natural and/or semi-synthetic SLs with an α-methylene-γ-lactone moiety can specifically target GSH and the kinase site of ZAP-70 and inhibit the initial phases of TCR activation.
Collapse
Affiliation(s)
- Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
- Scientific Research Institute of Biological Medicine, Altai State University, Barnaul 656049, Russia.
| | - Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Anarkul S Kishkentaeva
- International Research and Production Holding "Phytochemistry", Karaganda 100009, Kazakhstan.
| | - Zhanar R Shaimerdenova
- International Research and Production Holding "Phytochemistry", Karaganda 100009, Kazakhstan.
| | - Gayane A Atazhanova
- International Research and Production Holding "Phytochemistry", Karaganda 100009, Kazakhstan.
| | - Sergazy M Adekenov
- International Research and Production Holding "Phytochemistry", Karaganda 100009, Kazakhstan.
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
25
|
Marques RA, Gomes AO, de Brito MV, dos Santos AL, da Silva GS, de Lima LB, Nunes FM, de Mattos MC, de Oliveira FC, do Ó Pessoa C, de Moraes MO, de Fátima Â, Franco LL, Silva MDM, Dantas MDDA, Santos JC, Figueiredo IM, da Silva-Júnior EF, de Aquino TM, de Araújo-Júnior JX, de Oliveira MC, Leslie Gunatilaka A. Annonalide and derivatives: Semisynthesis, cytotoxic activities and studies on interaction of annonalide with DNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:156-166. [DOI: 10.1016/j.jphotobiol.2018.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/23/2022]
|
26
|
Tang JJ, He QR, Dong S, Guo X, Wang YG, Lei BL, Tian JM, Gao JM. Diversity Modification and Structure-Activity Relationships of Two Natural Products 1β-hydroxy Alantolactone and Ivangustin as Potent Cytotoxic Agents. Sci Rep 2018; 8:1722. [PMID: 29379131 PMCID: PMC5789092 DOI: 10.1038/s41598-018-20192-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/16/2018] [Indexed: 01/31/2023] Open
Abstract
Sesquiterpene lactones (STLs) are a class of plant secondary metabolites widely found in nature with potent antitumor activities. In this work, two isolated STLs 1β-hydroxy alantolactone (1) and ivangustin (2) were derivatized through diversity-oriented strategy, and in vitro cytotoxic activity assessments were conducted against six cell lines including HeLa, PC-3, HEp-2, HepG2, CHO and HUVEC. The cytotoxic structure-activity relationship showed that the double bond between C5 and C6 was beneficial to improve activity; C1-OH oxidized derivatives showed a slight stronger activity, comparable to the positive drug etoposide (VP-16). Yet, C1-OH esterified derivatives decreased the potency which were different from those of 1-O-acetylbritannilactone (ABL) reported previously by us, and C13-methylene reductive and spiro derivatives resulted in almost complete ablation of cytotoxic activity. Mechanistic basis of cytotoxicity of the representative compound 1i was assayed to relate with apoptosis and cell cycle arrest. Furthermore, 1i inhibited TNF-α-induced canonical NF-κB signaling in PC-3 cells. Molecular modeling studies exhibited additional hydrogen bond interaction between 1i and the residue Lys37 of p65, indicating that 1i could form covalent protein adducts with Cys38 on p65.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Qiu-Rui He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Shuai Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xin Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Yu-Gong Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Bei-Lei Lei
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jun-Mian Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
27
|
Niwetmarin W, Rego Campello H, Sparkes HA, Aggarwal VK, Gallagher T. (−)-Cytisine: Access to a stereochemically defined and functionally flexible piperidine scaffold. Org Biomol Chem 2018; 16:5823-5832. [DOI: 10.1039/c8ob01456f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cytisine undergoes ready fragmentation to provide a highly flexible (and “privileged”) piperidine scaffold capable of exploring a diversity of chemical space.
Collapse
|
28
|
Chen L, Zhang JP, Liu X, Tang JJ, Xiang P, Ma XM. Semisynthesis, an Anti-Inflammatory Effect of Derivatives of 1β-Hydroxy Alantolactone from Inula britannica. Molecules 2017; 22:molecules22111835. [PMID: 29077042 PMCID: PMC6150205 DOI: 10.3390/molecules22111835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 12/30/2022] Open
Abstract
1β-hydroxy alantolactone, a sesquiterpene lactone mainly isolated from Inula genus plants, exhibits potent anti-inflammatory and anticancer activities. In this work, 1β-hydroxy alantolactone was isolated and five derivatives were prepared through different reactions at the C1-OH and C13-methylene motifs. The structure-activity relationships (SAR) of anti-inflammatory effects against NO production in RAW264.7 cells showed that the α-methylene-γ-butyrolactone motif was essential for NO production suppression and that retaining the C1-OH group can remarkably improve this effect. The NF-κB signaling pathway plays a pivotal role in the regulation of NO expression. Moreover, the levels of p65 and p50 phosphorylation were investigated and active compound 1 inhibited phosphorylation of p65 and p50 in TNF-α-induced NF-κB signaling. Further molecular docking suggested that 1 may target the p65 of NF-κB.
Collapse
Affiliation(s)
- Lin Chen
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
- Department of Infectious Disease, the First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Jian-Ping Zhang
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Xin Liu
- Department of Infectious Disease, the First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Jiang-Jiang Tang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Ping Xiang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| | - Xing-Ming Ma
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
29
|
Song MY, Cao CY, He QR, Dong QM, Li D, Tang JJ, Gao JM. Constructing novel dihydrofuran and dihydroisoxazole analogues of isocombretastatin-4 as tubulin polymerization inhibitors through [3+2] reactions. Bioorg Med Chem 2017; 25:5290-5302. [PMID: 28803799 DOI: 10.1016/j.bmc.2017.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Abstract
[3+2] reactions play a key role in constructing various pharmaceutical moleculars. In this study, using Mn(OAc)3 mediated and 1,3-dipolar [3+2] cyclization reactions, 38 novel dihydrofuran and dihydroisoxazole analogues of isoCA-4 were synthesized as inhibitors of tubulin polymerization. Among them, compound 6g was found to be the most potent cytotoxic agents against PC-3 cells with IC50 value of 0.47μM, and compound 5p exhibted highest activity on HeLa cells with IC50 vaule of 2.32µM. Tubulin polymerization assay revealed that 6g was a dose-dependent and effective inhibitor of tubulin assembly. Immunohistochemistry studies and cell cycle distribution analysis indicated that 6g severely disrupted microtubule network and significantly arrested most cells in the G2/M phase of the cell cycle in PC-3 cells. In addition, molecular docking studies showed that two chiral isomers of 6g can bind efficiently and similarly at colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Ming-Yu Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Chen-Yu Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Qiu-Rui He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Qing-Miao Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
30
|
Yu H, Dai G, He QR, Tang JJ. Enantioselective synthesis and evaluation of 4-styryldihydropyrimidin-2-thiones as anti-proliferative agents. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1790-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
A new semisynthetic 1- O -acetyl-6- O -lauroylbritannilactone induces apoptosis of human laryngocarcinoma cells through p53-dependent pathway. Toxicol In Vitro 2016; 35:112-20. [DOI: 10.1016/j.tiv.2016.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/19/2016] [Accepted: 05/31/2016] [Indexed: 12/12/2022]
|
32
|
Wu XD, Ding LF, Tu WC, Yang H, Su J, Peng LY, Li Y, Zhao QS. Bioactive sesquiterpenoids from the flowers of Inula japonica. PHYTOCHEMISTRY 2016; 129:68-76. [PMID: 27452450 DOI: 10.1016/j.phytochem.2016.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/04/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Phytochemical investigation of the flowers of Inula japonica led to isolation of nine sesquiterpenoids, inujaponins A-I, as well as eighteen known ones. These sesquiterpenoids belong to six skeletal-types, including eudesmane, 1,10-seco-eudesmane, germacrane, guaiane, 4,5-seco-guaiane, and pseudoguaiane sesquiterpenoids. Their structures were established by extensive spectroscopic analysis. The absolute configurations of inujaponin A, eupatolide, and deacetylovatifolin were determined by Cu-Kα X-ray crystallographic analysis. Most of the isolated compounds exhibited potent cytotoxicity against HL-60, SMMC-7721, A-549, MCF-7, and SW-480 cancer cell lines, with IC50 values ranging from 1.57 to 22.58 μM. Some selected compounds also possessed significant inhibitory activity against LPS-induced NO production in RAW264.7 macrophages with IC50 values ranging from 1.42 to 8.99 μM.
Collapse
Affiliation(s)
- Xing-De Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lin-Fen Ding
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Wen-Chao Tu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Hui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Jia Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li-Yan Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
33
|
(S)-4-[(3aR,4S,7aR)-4-Methoxy-6-methyl-3-methylene-2-oxo-2,3,3a,4,7,7a-hexahydrobenzofuran-5-yl]pentyl Acetate. MOLBANK 2016. [DOI: 10.3390/m890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Herbal Formulation C168 Attenuates Proliferation and Induces Apoptosis in HCT 116 Human Colorectal Carcinoma Cells: Role of Oxidative Stress and DNA Damage. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2091085. [PMID: 26884792 PMCID: PMC4739220 DOI: 10.1155/2016/2091085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/08/2015] [Indexed: 11/18/2022]
Abstract
The use of herbal formulations has gained scientific interest, particularly in cancer treatment. In this study, the herbal formulation of interest, denoted as C168, is a mixture of eight genera of plants. This study aims to investigate the antiproliferative effect of C168 methanol extract (CME) on various cancer cells and its underlying mechanism of action on the most responsive cell line, namely, HCT 116 cells. CME exerted antiproliferative activities on HCT 116 colorectal carcinoma cells and HepG2 hepatocellular carcinoma cells but not on CCD-841-CoN normal colon epithelial cells, Jurkat E6.1 lymphoblastic leukemic cells, and V79-4 Chinese hamster lung fibroblasts. Further investigation on HCT 116 cells showed that CME induced G2/M cell-cycle arrest and apoptosis. Treatment of CME induced oxidative stress in HCT 116 cells by increasing the superoxide anion level and decreasing the intracellular glutathione. CME also increased tail moment value and H2AX phosphorylation in HCT 116 cells, suggesting DNA damage as an early signal of CME induced apoptosis. Loss of mitochondrial membrane potential in CME-treated cells also indicated the involvement of mitochondria in CME induced apoptosis. This study indicated the selectivity of CME toward colon cancer cells with the involvement of oxidative damage as its possible mechanism of action.
Collapse
|
35
|
Barnes EC, Kumar R, Davis RA. The use of isolated natural products as scaffolds for the generation of chemically diverse screening libraries for drug discovery. Nat Prod Rep 2016; 33:372-81. [DOI: 10.1039/c5np00121h] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This Highlight examines the use of isolated natural products as scaffolds in the semi-synthesis of drug discovery libraries, and the potential of this rarely used method to contribute to successful natural product library generation strategies.
Collapse
Affiliation(s)
- Emma C. Barnes
- Eskitis Institute for Drug Discovery
- Griffith University
- Brisbane
- Australia
- Leibniz Institute for Natural Product Research and Infection Biology HKI
| | - Rohitesh Kumar
- Eskitis Institute for Drug Discovery
- Griffith University
- Brisbane
- Australia
| | - Rohan A. Davis
- Eskitis Institute for Drug Discovery
- Griffith University
- Brisbane
- Australia
| |
Collapse
|
36
|
Xiang P, Guo X, Han YY, Gao JM, Tang JJ. Cytotoxic and Pro-apoptotic Activities of Sesquiterpene Lactones from Inula Britannica. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, five known sesquiterpene lactones (STL) with an α-methylene-γ-lactone motif, including two eudesmanolides, 1β-hydroxyalantolactone (1) and ivangustin (2), and three 1,10-seco-eudesmanolides, 1- O-acetylbritannilactone (3), 1,6- O, O-diacetylbritannilactone (4), and 6α- O(2-methylbutyryl)britannilactone (5) were isolated from the flower heads of the medicinal plant Inula britannica. Their structures were characterized by spectroscopic methods. X-ray data of 2 is reported for the first time. Among them, eudesmanolides 1 and 2 exhibited remarkable cytotoxicity against HEp2, SGC-7901 and HCT116 human cancer cell lines, comparable with etoposide (Vp-16) used as reference drug. Furthermore, treatment of HEp2 cells with 1 induced apoptosis associated with cleaved procaspase-3 and PARP. The biological assays carried out with normal cells (CHO) revealed that all sesquiterpenes were weakly selective against the cancer cell lines tested.
Collapse
Affiliation(s)
- Ping Xiang
- College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Xin Guo
- College of Science, Northwest A&F University, Yangling, 712100, China
| | - Yang-Yang Han
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jin-Ming Gao
- College of Science, Northwest A&F University, Yangling, 712100, China
| | - Jiang-Jiang Tang
- College of Science, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
37
|
Xie C, Wang H, Sun X, Meng L, Wang M, Bartlam M, Guo Y. Isolation, Characterization, and Antiproliferative Activities of Eudesmanolide Derivatives from the Flowers of Inula japonica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9006-9011. [PMID: 26429144 DOI: 10.1021/acs.jafc.5b03075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Inula japonica belongs to the family Asteraceae, and its flowers have been used as dietary supplements and health tea in China. The study aimed to identify the bioactive components with the antiproliferative property. Ten 1,10-seco-eudesmanolide derivatives, including four new compounds (1-4), were isolated from the flowers of I. japonica. Their structures were established on the basis of the interpretation of spectroscopic data and electronic circular dichroism (ECD) calculations. All of these isolates were evaluated for their antiproliferative activities against MCF-7 and MDA-MB-231 human breast cancer cells. Compound 4 possessed the most potent effects, with the IC50 values of 0.20 ± 0.04 and 6.22 ± 1.30 μM against MCF-7 and MDA-MB-231 cells, respectively. The present investigation indicated that eudesmanolide derivatives from the flowers of I. japonica, especially compound 4, might be used as potential antitumor chemotherapy agent candidates.
Collapse
Affiliation(s)
- Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
| | - Xiaocong Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
| | - Linghao Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
| | - Meicheng Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University , Tianjin 300071, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300071, People's Republic of China
| |
Collapse
|
38
|
Zhang CC, Yin X, Cao CY, Wei J, Zhang Q, Gao JM. Chemical constituents from Hericium erinaceus and their ability to stimulate NGF-mediated neurite outgrowth on PC12 cells. Bioorg Med Chem Lett 2015; 25:5078-82. [PMID: 26481911 DOI: 10.1016/j.bmcl.2015.10.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/04/2015] [Accepted: 10/07/2015] [Indexed: 11/17/2022]
Abstract
One new meroterpenoid, named hericenone K (11), along with 10 known compounds (1-10), ergosterol peroxide (1), cerevisterol (2), 3β,5α,9α-trihydroxy-ergosta-7,22-dien-6-one (3), inoterpene A (4), astradoric acid C (5), betulin (6), oleanolic acid (7), ursolic acid (8), hemisceramide (9), and 3,4-dihydro-5-methoxy-2-methyl-2-(4'-methyl-2'-oxo-3'-pentenyl)-9(7H)-oxo-2H-furo[3,4-h]benzopyran (10), was isolated from the fruiting bodies of the mushroom Hericium erinaceus. Their structures were characterized on the basis of spectroscopic methods, as well as through comparison with previously reported data. Compounds 3-6, 8, and 9 were isolated from Hericium species for the first time. Compounds 10 and 11 was suggested to be racemic by the CD spectrum data and specific rotations, which ware resolved by chiral HPLC into respective enantiomers. Compounds 1-3, (±)-10, (-)-10 and (+)-10 in the presence of NGF (20 ng/mL) exerted a significant increase in neurite-bearing cells.
Collapse
Affiliation(s)
- Cheng-Chen Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Xia Yin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Chen-Yu Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Jing Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, People's Republic of China.
| |
Collapse
|
39
|
Zhengfu H, Hu Z, Huiwen M, Zhijun L, Jiaojie Z, Xiaoyi Y, Xiujun C. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling. Biochem Biophys Res Commun 2015; 464:422-7. [DOI: 10.1016/j.bbrc.2015.06.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 11/24/2022]
|
40
|
Li H, Li W, Yu M, Jiang L. LC-MS/MS determination of 1-O-acetylbritannilactone in rat plasma and its application to a preclinical pharmacokinetic study. Biomed Chromatogr 2015; 30:419-25. [PMID: 26179842 DOI: 10.1002/bmc.3564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/23/2015] [Accepted: 07/03/2015] [Indexed: 01/06/2023]
Abstract
A novel, rapid and sensitive LC-MS/MS method for the determination of 1-O-Acetylbritannilactone (ABL), a sesquiterpene lactone abundant in Inula britannica, was developed and validated using heteroclitin D as internal standard. Separation was achieved on a reversed phase Hypersil Gold C18 column (50 × 4.6 mm, i.d., 3.0 µm) using isocratic elution with methanol-5 mM ammonium acetate buffer aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min. Calibration curve was linear (r > 0.99) in a concentration range of 1.60-800 ng/mL with the lower limit of quantification of 1.60 ng/mL. Intra- and inter-day accuracy and precision were validated by relative error (RE) and relative standard deviation (RSD) values, respectively, which were both less than ±15%. The validated method has been successfully applied to a pharmacokinetic study of ABL in rats. The elimination half-lives were 0.412 ± 0.068, 0.415 ± 0.092 and 0.453 ± 0.071 h after a single intravenous administration of 0.14, 0.42, and 1.26 mg/kg ABL, respectively. The area under the plasma concentration-time curve from time zero to the last quantifiable time point and from time zero to infinity and the plasma concentrations at 2 min were linearly related to the doses tested.
Collapse
Affiliation(s)
- Huajun Li
- Cadres Ward, Air Force General Hospital, PLA, Beijing, 100142, China
| | - Wei Li
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, 132011, China
| | - Min Yu
- Health Center, 9524 Command, PLA, Beijing, 100195, China
| | - Ligang Jiang
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, 132011, China
| |
Collapse
|
41
|
Zhang Z, Guo K, Bai Y, Dong J, Gao Z, Yuan Y, Wang Y, Liu L, Yue T. Identification, synthesis, and safety assessment of forchlorfenuron (1-(2-chloro-4-pyridyl)-3-phenylurea) and its metabolites in kiwifruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3059-3066. [PMID: 25757044 DOI: 10.1021/acs.jafc.5b01100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Identification and evaluation of safety of forchlorfenuron ((1-(2-chloro-4-pyridyl)-3-phenylurea)), 1, metabolites after biotransformation in kiwifruit is the objective of this study. To elucidate properties of these metabolites, liquid chromatography hybrid ion trap time-of-flight mass spectrometry (LC-IT-TOF-MS) was applied, with MetID Solution and Formula Predictor Software in positive mode. Cytotoxicity of forchlorfenuron and its metabolites were tested through sulforhodamine B assays against normal Chinese hamster ovary cells (CHO). As deduced from characteristic fragment ions of forchlorfenuron, then confirmed by comparison with synthetic standards, as well as characterized by NMR and mass spectrometry techniques, results indicate the presence of 4-hydroxyphenyl-forchlorfenuron, 2, 3-hydroxyphenyl-forchlorfenuron, 3, and forchlorfenuron-4-O-β-D-glucoside, 5. Forchlorfenuron (IC50 = 12.12 ± 2.14 μM) and 4-hydroxyphenyl-forchlorfenuron (IC50 = 36.15 ± 1.59 μM), exhibits significant cytotoxicity against CHO, while 3-hydroxyphenyl-forchlorfenuron and forchlorfenuron-4-O-β-D-glucoside show no cytotoxicity.
Collapse
Affiliation(s)
- Zhiwei Zhang
- ‡College of Food Science and Engineering, Qingdao Agricultural University, Chengyang 266109, Qingdao China
| | | | | | - Jing Dong
- ⊥Beijing Office, Shimadzu International Trading (Shanghai), 14/F Life Tower, 16 Chaoyang Men Wai Street, Beijing 100020, China
| | | | | | | | | | | |
Collapse
|
42
|
Gao YQ, Guo CJ, Zhang Q, Zhou WM, Wang CCC, Gao JM. Asperaculanes A and B, two sesquiterpenoids from the fungus Aspergillus aculeatus. Molecules 2014; 20:325-34. [PMID: 25547729 PMCID: PMC6272214 DOI: 10.3390/molecules20010325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/02/2014] [Indexed: 11/16/2022] Open
Abstract
Six sesquiterpenoids 1-6, including two new ones, an ent-daucane-type sesquiterpenoid, asperaculane A (1), and a nordaucane one, asperaculane B (2), and four known nordaucane derivatives, aculenes A-D 3-6, together with the known secalonic acid D (7), were isolated from a fermentation culture of the fungus Aspergillus aculeatus. Their structures and absolute configurations were established by analyses of their spectroscopic data, including 1D and 2D-NMR spectra, HR-ESIMS, electronic circular dichroism (ECD) data, and quantum chemical calculations. These metabolites were evaluated for in vitro cytotoxic activity against two cell lines, human cancer cell lines (HeLa) and one normal hamster cell line (CHO).
Collapse
Affiliation(s)
- Yu-Qi Gao
- Shaanxi Key Laboratory of Natural Products Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chun-Jun Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA.
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Wen-Ming Zhou
- Shaanxi Key Laboratory of Natural Products Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
43
|
Synthesis and biological evaluation of novel 3-alkylpyridine marine alkaloid analogs with promising anticancer activity. Mar Drugs 2014; 12:4361-78. [PMID: 25089949 PMCID: PMC4145321 DOI: 10.3390/md12084361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/24/2014] [Accepted: 07/09/2014] [Indexed: 01/27/2023] Open
Abstract
Cancer continues to be one of the most important health problems worldwide, and the identification of novel drugs and treatments to address this disease is urgent. During recent years, marine organisms have proven to be a promising source of new compounds with action against tumoral cell lines. Here, we describe the synthesis and anticancer activity of eight new 3-alkylpyridine alkaloid (3-APA) analogs in four steps and with good yields. The key step for the synthesis of these compounds is a Williamson etherification under phase-transfer conditions. We investigated the influence of the length of the alkyl chain attached to position 3 of the pyridine ring on the cytotoxicity of these compounds. Biological assays demonstrated that compounds with an alkyl chain of ten carbon atoms (4c and 5c) were the most active against two tumoral cell lines: RKO-AS-45-1 and HeLa. Micronucleus and TUNEL assays showed that both compounds are mutagenic and induce apoptosis. In addition, Compound 5c altered the cellular actin cytoskeleton in RKO-AS-45-1 cells. The results suggest that Compounds 4c and 5c may be novel prototype anticancer agents.
Collapse
|
44
|
Tang JJ, Dong S, Han YY, Lei M, Gao JM. Synthesis of 1-O-acetylbritannilactone analogues from Inula britannica and in vitro evaluation of their anticancer potential. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00209a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel ABL analogues was synthesized by N/O-atom installing and aromatic ring esterifying, and 4a showed in vitro markedly anticancer activities against HeLa cells associated with induction of apoptosis, activation of caspase-3 and G2/M cell arrest.
Collapse
Affiliation(s)
- Jiang-Jiang Tang
- Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization
- College of Science
- Northwest A&F University
- Yangling 712100, China
| | - Shuai Dong
- Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization
- College of Science
- Northwest A&F University
- Yangling 712100, China
| | - Yang-Yang Han
- College of Life Sciences
- Northwest A&F University
- Yangling 712100, China
| | - Ming Lei
- College of Life Sciences
- Northwest A&F University
- Yangling 712100, China
| | - Jin-Ming Gao
- Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization
- College of Science
- Northwest A&F University
- Yangling 712100, China
- Department of Chemistry and Chemical Engineering
| |
Collapse
|