1
|
Bruno F, Krauth V, Nabavi SM, Temml V, Fratianni F, Spaziano G, Nazzaro F, Roviezzo F, Xiao J, Khan H, Romano MP, D'Agostino B, Werz O, Filosa R. Design and synthesis of functionalized 4-aryl-Catechol derivatives as new antiinflammtory agents with in vivo efficacy. Eur J Med Chem 2022; 243:114788. [PMID: 36201859 DOI: 10.1016/j.ejmech.2022.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/04/2022]
Abstract
Oxidative stress and inflammation are two conditions that coexist in many multifactorial diseases and the discovery of antioxidants is an attractive approach that can simultaneously tackle two or more therapeutic targets of the arachidonic acid cascade. We report that the simple structural variations on the 4-aryl-benzene-1,2-diol side-arm of the scaffold significantly influence the selectivity against 5-LOX vs 12- and 15-LOX. Derivatives 4 a-l were evaluated for their antioxidant activity, using the DPPH, and ferric ion reducing antioxidant power (FRAP) methods. Docking simulations proposed concrete binding of the catechol series to 5-LO. Selected active compound 4-(3,4-dihydroxyphenyl)dibenzofuran (4l) was also tested in different in vivo mouse models of inflammation. 4l (0.1 mg/kg; i.p.) impaired (I) bronchoconstriction in ovalbumin-sensitized mice challenged with acetylcholine, (II) exudate formation in carrageenan-induced paw edema, and (III) zymosan-induced leukocyte infiltration in air pouches. These results pave the way for investigating the therapeutic potential of 4-aryl-benzene-1,2-diol, as novel multitarget therapeutic drugs, able to regulate the complex inflammatory cascade mechanisms.
Collapse
Affiliation(s)
- Ferdinando Bruno
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy; Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Verena Krauth
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Seyed Mohamed Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Veronika Temml
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | | | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy
| | | | - Fiorita Roviezzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131, Naples, Italy
| | - Jianbo Xiao
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy; Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Haroon Khan
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy; Department of Pharmacy, Abdul Wali Khan University Mardan, 23200-Mardan, Pakistan
| | - Maria Preziosa Romano
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy; Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Bruno D'Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy; Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy.
| |
Collapse
|
2
|
Fatima A, Khanum G, Sharma A, Verma I, Arora H, Siddiqui N, Javed S. Experimental Spectroscopic, Computational, Hirshfeld Surface, Molecular Docking Investigations on 1H-Indole-3-Carbaldehyde. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2026989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aysha Fatima
- S.O.S in chemistry, Jiwaji University, Gwalior, M. P., India
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra, U.P., India
| | - Ghazala Khanum
- S.O.S in chemistry, Jiwaji University, Gwalior, M. P., India
| | - Arun Sharma
- S.O.S in chemistry, Jiwaji University, Gwalior, M. P., India
| | - Indresh Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur, U.P., India
| | - Himanshu Arora
- Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University, Gurugram, Haryana, India
| | | | - Saleem Javed
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra, U.P., India
| |
Collapse
|
3
|
Mahboubi-Rabbani M, Zarghi A. Lipoxygenase Inhibitors as Cancer Chemopreventives: Discovery, Recent Developments and Future Perspectives. Curr Med Chem 2021; 28:1143-1175. [PMID: 31820690 DOI: 10.2174/0929867326666191210104820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Leukotrienes (LTs) constitute a bioactive group of Polyunsaturated Fatty Acid (PUFA) metabolites molded by the enzymatic activity of lipoxygenase (LO) and have a pivotal role in inflammation and allergy. Evidence is accumulating both by in vitro cell culture experiments and animal tumor model studies in support of the direct involvement of aberrant metabolism of arachidonic acid (ACD) in the development of several types of human cancers such as lung, prostate, pancreatic and colorectal malignancies. Several independent experimental data suggest a correlation between tumoral cells viability and LO gene expression, especially, 5-lipoxygenase (5-LO). Overexpressed 5-LO cells live longer, proliferate faster, invade more effectively through extracellular matrix destruction and activate the anti-apoptotic signaling mechanisms more intensively compared to the normal counterparts. Thus, some groups of lipoxygenase inhibitors may be effective as promising chemopreventive agents. METHODS A structured search of bibliographic databases for peer-reviewed research literature regarding the role of LO in the pathogenesis of cancer was performed. The characteristics of screened papers were summarized and the latest advances focused on the discovery of new LO inhibitors as anticancer agents were discussed. RESULTS More than 180 papers were included and summarized in this review; the majority was about the newly designed and synthesized 5-LO inhibitors as anti-inflammatory and anticancer agents. The enzyme's structure, 5-LO pathway, 5-LO inhibitors structure-activity relationships as well as the correlation between these drugs and a number of most prevalent human cancers were described. In most cases, it has been emphasized that dual cyclooxygenase-2/5-lipoxygenase (COX-2/5-LO) or dual 5-lipoxygenase/microsomal prostaglandin E synthase-1 (5-LO/mPGES-1) inhibitors possess considerable inhibitory activities against their target enzymes as well as potent antiproliferative effects. Several papers disclosing 5-lipoxygenase activating protein (FLAP) antagonists as a new group of 5-LO activity regulators are also subject to this review. Also, the potential of 12-lipoxygenase (12- LO) and 15-lipoxygenase (15-LO) inhibitors as chemopreventive agents was outlined to expand the scope of new anticancer agents discovery. Some peptides and peptidomimetics with anti-LT activities were described as well. In addition, the cytotoxic effects of lipoxygenase inhibitors and their adverse effects were discussed and some novel series of natural-product-derived inhibitors of LO was also discussed in this review. CONCLUSION This review gives insights into the novel lipoxygenase inhibitors with anticancer activity as well as the different molecular pharmacological strategies to inhibit the enzyme effectively. The findings confirm that certain groups of LO inhibitors could act as promising chemopreventive agents.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
S CJ, A MFB, K K. Vibrational, spectroscopic, chemical reactivity, molecular docking and in vitro anticancer activity studies against A549 lung cancer cell lines of 5-Bromo-indole-3-carboxaldehyde. J Mol Recognit 2020; 34:e2873. [PMID: 33006415 DOI: 10.1002/jmr.2873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Spectroscopic investigations are performed for 5-Bromo-1H-indole-carboxaldehyde by using experimental (FT-IR, FT-Raman) and theoretical (DFT) calculations. Vibrational assignments of the fundamental modes were assigned on the basis of Potential energy distribution (PED) calculations. Electron Localization Function (ELF) and Local Orbital Localizer (LOL) studies were performed to visualize the electron delocalization in the molecule. Frontier molecular orbitals (FMOs) and related molecular properties were computed. The electron-hole distribution of the molecule was also computed using Multiwfn 3.3.9 software to predict the charge transfer within the molecule. The total and partial density of states (TDOS and PDOS) and also the overlap population density of states (OPDOS) spectra were simulated. UV-Vis spectrum of the compound was also recorded. The reactive sites of the compound were studied from the MEP and Fukui function analysis. The charge delocalization and stability of the title molecule were investigated using natural bond orbital (NBO) analysis. The lung cancer activity of the title compound against p53 tumor suppressor proteins was studied using molecular docking analysis. The in-vitro cytotoxic activity of the molecule against human pulmonary lung cancer cell lines (A549) was determined by MTT assay.
Collapse
Affiliation(s)
| | | | - Kaviyarasu K
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.,Nanosciences African network (NANOAFNET), Materials Research Department (MRD), iThemba LABS-National Research Foundation (NRF), Somerset West, South Africa
| |
Collapse
|
5
|
Christopher Jeyaseelan S, Milton Franklin Benial A. Spectroscopic characterization, DFT studies, molecular docking and cytotoxic evaluation of 4-nitro-indole-3-carboxaldehyde: A potent lung cancer agent. J Mol Recognit 2020; 34:e2872. [PMID: 32815220 DOI: 10.1002/jmr.2872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
The 4-nitro-1H-indole-carboxaldehyde (NICA) molecule was characterized experimentally using FT-IR, FT-Raman and UV-Vis spectra, and it was studied theoretically using DFT calculations. The optimized structure of the NICA molecule was determined by DFT calculations using B3LYP functional with cc-pVTZ basis set. The electron localization function (ELF) and local orbital localizer (LOL) studies were performed to visualize the electron delocalization in the molecule. The experimental and theoretical wavenumbers of the title molecule were assigned using VEDA 4.0 program. The charge delocalization and stability of the title molecule were investigated using natural bond orbital (NBO) analysis. Frontier molecular orbitals (FMOs) and related molecular properties were calculated. UV-Vis spectrum was calculated theoretically and validated experimentally. The reactive sites of the molecule were studied from the MEP surface and Fukui function analysis. The molecular docking analysis reveals that the NICA ligand shows better inhibitory activity against RAS, which causes lung cancer. The in vitro cytotoxic activity of the molecule against human lung cancer cell lines (A549) was determined by MTT assay. Thus, the NICA molecule can be used as a potential candidate for the development of the drug against lung cancer.
Collapse
|
6
|
Protective effect of piceatannol and bioactive stilbene derivatives against hypoxia-induced toxicity in H9c2 cardiomyocytes and structural elucidation as 5-LOX inhibitors. Eur J Med Chem 2019; 180:637-647. [DOI: 10.1016/j.ejmech.2019.07.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023]
|
7
|
Zappavigna S, Cossu AM, Abate M, Misso G, Lombardi A, Caraglia M, Filosa R. A Hydroquinone-Based Derivative Elicits Apoptosis and Autophagy via Activating a ROS-Dependent Unfolded Protein Response in Human Glioblastoma. Int J Mol Sci 2019; 20:ijms20153836. [PMID: 31390836 PMCID: PMC6696486 DOI: 10.3390/ijms20153836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
5-Lipoxygenase (5-LO) has been reported to be highly expressed in brain tumors and to promote glioma cell proliferation. Therefore, we investigated the anticancer activity of the novel 5-LO inhibitor derivative 3-tridecyl-4,5-dimethoxybenzene-1,2-diol hydroquinone (EA-100C red) on glioblastoma (GBM) cell growth. Cell viability was evaluated by MTT assay. The effects of the compound on apoptosis, oxidative stress and autophagy were assessed by flow cytometry (FACS). The mode of action was confirmed by Taqman apoptosis array, Real Time qPCR, confocal microscopy analysis and the western blotting technique. Our results showed that EA-100C Red had a higher anti-proliferative effect on LN229 as compared to U87MG cells. The compound induced a significant increase of apoptosis and autophagy and up-regulated pro-apoptotic genes (Bcl3, BNIP3L, and NFKBIA) in both GBM cell lines. In this light, we studied the effects of EA-100C red on the expression of CHOP and XBP1, that are implicated in ER-stress-mediated cell death. In summary, our findings revealed that EA-100C red induced ER stress-mediated apoptosis associated to autophagy in GBM cells through CHOP and Beclin1 up-regulation and activation of caspases 3, 9, JNK and NF-kappaB pathway. On these bases, EA-100C red could represent a promising compound for anti-cancer treatment.
Collapse
Affiliation(s)
- Silvia Zappavigna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Contrada Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Marianna Abate
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy.
- Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Contrada Camporeale, 83031 Ariano Irpino (AV), Italy.
| | - Rosanna Filosa
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via L. De Crecchio 7, 80138 Naples, Italy
- Consorzio Sannio Tech-AMP Biotec, Appia Str. 7, BN 82030 Apollosa, Italy
- Institute of Food Sciences, National Research Council, Roma Str. 64, 83100 Avellino, Italy
| |
Collapse
|
8
|
Balakin KV, Filosa R, Lavrenov SN, Mkrtchyan AS, Nawrozkij MB, Novakov IA. Arbidol: a quarter-century after. Past, present and future of the original Russian antiviral. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present review is concerned with the synthesis and structure–activity relationship studies of Arbidol and its structural analogues. The latter are roughly divided into several unequal parts: indole- and benzofuran-based compounds, benzimidazole and imidazopyridine bioisosteres and ring-expanded quinoline derivatives. Much attention is focused on various types of antiviral activity of the above-mentioned Arbidol congeners, as well as of the parent compound itself. Features of Arbidol synthesis and metabolic changes are also discussed.
The bibliography includes 166 references.
Collapse
|
9
|
Bruno F, Errico S, Pace S, Nawrozkij MB, Mkrtchyan AS, Guida F, Maisto R, Olgaç A, D'Amico M, Maione S, De Rosa M, Banoglu E, Werz O, Fiorentino A, Filosa R. Structural insight into the optimization of ethyl 5-hydroxybenzo[g]indol-3-carboxylates and their bioisosteric analogues as 5-LO/m-PGES-1 dual inhibitors able to suppress inflammation. Eur J Med Chem 2018; 155:946-960. [PMID: 30015253 DOI: 10.1016/j.ejmech.2018.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 12/13/2022]
Abstract
The release of pro-inflammatory mediators, such as prostaglandines (PGs) and leukotrienes (LTs), arising from the arachidonic acid (AA) cascade, play a crucial role in initiating, maintaining, and regulating inflammatory processes. New dual inhibitors of 5-lipoxygenase (5-LO) and microsomal prostaglandin E2 synthase-1 (mPGES-1), that block, at the same time, the formation of PGE2 and LTs, are currently emerged as a highly interesting drug candidates for better pharmacotherapie of inflammation-related disorders. Following our previous studies, we here performed a detailed structure-based design of benzo[g]indol-3-carboxylate derivatives, disclosing several new key factors that affect both enzyme activity. Ethyl 2-(3,4-dichlorobenzyl)-5-hydroxy-1H-benzo[g]indole-3-carboxylate (4b, RAF-01) and ethyl 2-(3,4-dichlorophenyl)-5-hydroxy-1H-benzo[g]indole-3-carboxylate (7h, RAF-02) emerged as the most active compounds of the series. Additionally, together with selected structure based analogues, both derivatives displayed significant in vivo anti-inflammatory properties. In conclusion, modeling and experimental studies lead to the discovery of new candidate compounds prone to further developments as multi-target inhibitors of the inflammatory pathway.
Collapse
Affiliation(s)
- Ferdinando Bruno
- Università degli Studi della Campania Luigi Vanvitelli, Department of Experimental Medicine, Naples, Italy
| | - Suann Errico
- Università degli Studi della Campania Luigi Vanvitelli, Department of Experimental Medicine, Naples, Italy; Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University of Jena, Philosophenweg 14, Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University of Jena, Philosophenweg 14, Jena, Germany
| | - Maxim B Nawrozkij
- Volgograd State Technical University, Organic Chemistry Department, Lenin Avenue 28, Russian Federation
| | - Arthur S Mkrtchyan
- Volgograd State Technical University, Organic Chemistry Department, Lenin Avenue 28, Russian Federation
| | - Francesca Guida
- Università degli Studi della Campania Luigi Vanvitelli, Department of Experimental Medicine, Naples, Italy
| | - Rosa Maisto
- Università degli Studi della Campania Luigi Vanvitelli, Department of Experimental Medicine, Naples, Italy
| | - Abdurrahman Olgaç
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Yenimahalle, Ankara, 06330, Turkey
| | - Michele D'Amico
- Università degli Studi della Campania Luigi Vanvitelli, Department of Experimental Medicine, Naples, Italy
| | - Sabatino Maione
- Università degli Studi della Campania Luigi Vanvitelli, Department of Experimental Medicine, Naples, Italy
| | - Mario De Rosa
- Università degli Studi della Campania Luigi Vanvitelli, Department of Experimental Medicine, Naples, Italy
| | - Erden Banoglu
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Yenimahalle, Ankara, 06330, Turkey
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University of Jena, Philosophenweg 14, Jena, Germany
| | - Antonio Fiorentino
- Università della Campania Luigi Vanvitelli, Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Naples, Italy
| | - Rosanna Filosa
- Università degli Studi della Campania Luigi Vanvitelli, Department of Experimental Medicine, Naples, Italy; Consorzio Sannio Tech, Appia Str, Apollosa, BN, 82030, Italy; Institute of Food Sciences, National Research Council, Roma Str. 64, Avellino, 83100, Italy.
| |
Collapse
|
10
|
Bruno F, Spaziano G, Liparulo A, Roviezzo F, Nabavi SM, Sureda A, Filosa R, D'Agostino B. Recent advances in the search for novel 5-lipoxygenase inhibitors for the treatment of asthma. Eur J Med Chem 2017; 153:65-72. [PMID: 29133059 DOI: 10.1016/j.ejmech.2017.10.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
The products of 5-lipoxygenase are synthesized and released in the airway when an asthmatic reaction occurs. 5-lipoxygenase via arachidonic acid metabolism produces leukotrienes that mediate bronchoconstriction and inflammatory modifications essential in the pathophysiology of asthma. Until to now, only one approved 5-LO inhibitor, zileuton, can be found as a potential therapy for asthma. With the increasing number of indications for anti-leukotriene (anti-LT) drugs, the development of 5-LO inhibitor agents becomes increasingly important. The present MiniReview reports an update on 5-LO inhibitors currently under clinical investigation. In addition, the latest advances focused on the development of new 5-lipoxygenase inhibitors as asthma anti-inflammatory agents are also discussed.
Collapse
Affiliation(s)
- Ferdinando Bruno
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Naples, Italy
| | - Angela Liparulo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Naples, Italy
| | | | - Seyed Mohammed Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain
| | - Rosanna Filosa
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Naples, Italy.
| | - Bruno D'Agostino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Naples, Italy
| |
Collapse
|
11
|
Peduto A, Scuotto M, Krauth V, Roviezzo F, Rossi A, Temml V, Esposito V, Stuppner H, Schuster D, D'Agostino B, Schiraldi C, de Rosa M, Werz O, Filosa R. Optimization of benzoquinone and hydroquinone derivatives as potent inhibitors of human 5-lipoxygenase. Eur J Med Chem 2017; 127:715-726. [DOI: 10.1016/j.ejmech.2016.10.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/01/2022]
|
12
|
Werz O, Gerstmeier J, Garscha U. Novel leukotriene biosynthesis inhibitors (2012-2016) as anti-inflammatory agents. Expert Opin Ther Pat 2017; 27:607-620. [DOI: 10.1080/13543776.2017.1276568] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
13
|
Scuotto M, Abdelnabi R, Collarile S, Schiraldi C, Delang L, Massa A, Ferla S, Brancale A, Leyssen P, Neyts J, Filosa R. Discovery of novel multi-target indole-based derivatives as potent and selective inhibitors of chikungunya virus replication. Bioorg Med Chem 2017; 25:327-337. [DOI: 10.1016/j.bmc.2016.10.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 01/16/2023]
|
14
|
Zappavigna S, Scuotto M, Cossu AM, Ingrosso D, De Rosa M, Schiraldi C, Filosa R, Caraglia M. The 1,4 benzoquinone-featured 5-lipoxygenase inhibitor RF-Id induces apoptotic death through downregulation of IAPs in human glioblastoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:167. [PMID: 27770821 PMCID: PMC5075202 DOI: 10.1186/s13046-016-0440-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/06/2016] [Indexed: 12/23/2022]
Abstract
Background Embelin is a potent dual inhibitor of 5-lipoxigenase (5-LOX) and microsomal prostaglandin E2 synthase (mPGES)-1 that suppresses proliferation of human glioma cells and induces apoptosis by inhibiting XIAP and NF-κB signaling pathway. Synthetic structural modification yielded the derivative 3-((decahydronaphthalen-6-yl)methyl)-2,5-dihydroxycyclohexa-2,5-diene-1,4-dione (RF-Id), an embelin constrained analogue, with improved efficiency against 5-LOX in human neutrophils and anti-inflammatory activity in vivo. Taking into account that lipoxygenase (LOX) metabolites, from arachidonic acid and linoleic acid, have been implicated in tumor progression, here, we determined whether RF-Id was able to hinder glioblastoma (GBM) cancer cell growth and the related mechanisms. Methods U87MG and LN229 cells were plated in 96-wells and treated with increasing concentrations of RF-Id. Cell viability was evaluated by MTT assay. The effects of the compounds on cell cycle, apoptosis, oxidative stress and autophagy were assessed by flow cytometry (FACS). The mode of action was confirmed by Taqman apoptosis array and evaluating caspase cascade and NFκB pathway by western blotting technique. Results Here, we found that RF-Id induced a stronger inhibition of GBM cell growth than treatment with embelin. Flow cytometry analysis showed that RF-Id induced about 30 % apoptosis and a slight increase of autophagy after 72 h on U87-MG cells. Moreover, the compound induced an increase in the percentage of cells in G2 and S phase that was paralleled by an increase of p21 and p27 expression but no significant changes of the mitochondrial membrane potential; array analysis showed a significant upregulation of CASP8 and a downregulation of IAP family and NFκB genes in cells treated with RF-Id. RF-Id induced a significant cleavage of caspases 8, 9, 3 and 7, blocked c-IAP2/XIAP interaction by inducing XIAP degradation and inhibited NFκB pathway. Conclusions RF-Id induced a caspase-dependent apoptosis in GBM cells by inhibiting IAP family proteins and NFκB pathway and represents a promising lead compound for designing a new class of anti-cancer drugs with multiple targets. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0440-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. De Crecchio 7, Naples, 80138, Italy
| | - M Scuotto
- Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio, 7, Naples, 80138, Italy
| | - A M Cossu
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. De Crecchio 7, Naples, 80138, Italy
| | - D Ingrosso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. De Crecchio 7, Naples, 80138, Italy
| | - M De Rosa
- Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio, 7, Naples, 80138, Italy
| | - C Schiraldi
- Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio, 7, Naples, 80138, Italy
| | - R Filosa
- Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio, 7, Naples, 80138, Italy.
| | - M Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. De Crecchio 7, Naples, 80138, Italy.
| |
Collapse
|
15
|
Averina EB, Vasilenko DA, Gracheva YA, Grishin YK, Radchenko EV, Burmistrov VV, Butov GM, Neganova ME, Serkova TP, Redkozubova OM, Shevtsova EF, Milaeva ER, Kuznetsova TS, Zefirov NS. Synthesis and biological evaluation of novel 5-hydroxylaminoisoxazole derivatives as lipoxygenase inhibitors and metabolism enhancing agents. Bioorg Med Chem 2016; 24:712-20. [PMID: 26753816 DOI: 10.1016/j.bmc.2015.12.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/18/2015] [Accepted: 12/23/2015] [Indexed: 12/16/2022]
Abstract
A versatile synthesis of novel 5-hydroxylaminoisoxazoles bearing adamantane moieties has been accomplished using the heterocyclization reactions of readily available unsaturated esters by the treatment with tetranitromethane in the presence of triethylamine and subsequent reduction of resulting 5-nitroisoxazoles by SnCl2 with the participation of THF. A number of obtained isoxazole derivatives were evaluated for their antioxidative activity, inhibition of lipoxygenases and impact on the rat liver mitochondria. The majority of tested compounds demonstrated moderate antiradical activity in DPPH test (up to EC50 16μM). The same compounds strongly inhibited soybean lipoxygenase (up to IC50 0.4μM) and Fe(2+)- and Fe(3+)-induced lipid peroxidation (LP) of rat brain cortex homogenate (up to IC50 0.3μM). All tested isoxazole derivatives promoted the phosphorylating respiratory activity simultaneously with maximal stimulated respiratory activity of mitochondria and do not reveal any toxicity towards the primary culture of rat cortex neurons.
Collapse
Affiliation(s)
- Elena B Averina
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia; IPAC RAS, Severnyi Proezd, 1, Chernogolovka, Moscow Region, 142432, Russia.
| | - Dmitry A Vasilenko
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - Yulia A Gracheva
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - Yuri K Grishin
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - Eugene V Radchenko
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia; IPAC RAS, Severnyi Proezd, 1, Chernogolovka, Moscow Region, 142432, Russia
| | - Vladimir V Burmistrov
- Volgograd State Technical University, VSTU, Lenina Avenue, 28, Volgograd 400005, Russia
| | - Gennady M Butov
- Volgograd State Technical University, VSTU, Lenina Avenue, 28, Volgograd 400005, Russia
| | | | - Tatyana P Serkova
- IPAC RAS, Severnyi Proezd, 1, Chernogolovka, Moscow Region, 142432, Russia
| | - Olga M Redkozubova
- IPAC RAS, Severnyi Proezd, 1, Chernogolovka, Moscow Region, 142432, Russia
| | - Elena F Shevtsova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia; IPAC RAS, Severnyi Proezd, 1, Chernogolovka, Moscow Region, 142432, Russia
| | - Elena R Milaeva
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia; IPAC RAS, Severnyi Proezd, 1, Chernogolovka, Moscow Region, 142432, Russia.
| | - Tamara S Kuznetsova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - Nikolay S Zefirov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia; IPAC RAS, Severnyi Proezd, 1, Chernogolovka, Moscow Region, 142432, Russia
| |
Collapse
|
16
|
Peduto A, Krauth V, Collarile S, Dehm F, Ambruosi M, Belardo C, Guida F, Massa A, Esposito V, Maione S, de Rosa M, Werz O, Filosa R. Exploring the role of chloro and methyl substitutions in 2-phenylthiomethyl-benzoindole derivatives for 5-LOX enzyme inhibition. Eur J Med Chem 2016; 108:466-475. [DOI: 10.1016/j.ejmech.2015.11.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/08/2023]
|
17
|
Alizadeh A, Bayat F, Moafi L, Zhu LG. 5-Hydroxybenzo[g]indoles formation from oxa-aza[3.3.3]propellanes. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Di Mola A, Peduto A, La Gatta A, Delang L, Pastorino B, Neyts J, Leyssen P, de Rosa M, Filosa R. Structure–activity relationship study of arbidol derivatives as inhibitors of chikungunya virus replication. Bioorg Med Chem 2014; 22:6014-25. [DOI: 10.1016/j.bmc.2014.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/11/2014] [Accepted: 09/05/2014] [Indexed: 01/05/2023]
|