1
|
Luque FJ, Muñoz-Torrero D. Acetylcholinesterase: A Versatile Template to Coin Potent Modulators of Multiple Therapeutic Targets. Acc Chem Res 2024. [PMID: 38333993 PMCID: PMC10882973 DOI: 10.1021/acs.accounts.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
ConspectusThe enzyme acetylcholinesterase (AChE) hydrolyzes the neurotransmitter acetylcholine (ACh) at cholinergic synapses of the peripheral and central nervous system. Thus, it is a prime therapeutic target for diseases that occur with a cholinergic deficit, prominently Alzheimer's disease (AD). Working at a rate near the diffusion limit, it is considered one of nature's most efficient enzymes. This is particularly meritorious considering that its catalytic site is buried at the bottom of a 20-Å-deep cavity, which is preceded by a bottleneck with a diameter shorter than that of the trimethylammonium group of ACh, which has to transit through it. Not only the particular architecture and amino acid composition of its active site gorge enable AChE to largely overcome this potential drawback, but it also offers plenty of possibilities for the design of novel inhibitor drug candidates.In this Account, we summarize our different approaches to colonize the vast territory of the AChE gorge in the pursuit of increased occupancy and hence of inhibitors with increased affinity. We pioneered the use of molecular hybridization to design inhibitors with extended binding at the CAS, reaching affinities among the highest reported so far. Further application of molecular hybridization to grow CAS extended binders by attaching a PAS-binding moiety through suitable linkers led to multisite inhibitors that span the whole length of the gorge, reaching the PAS and even interacting with midgorge residues. We show that multisite AChE inhibitors can also be successfully designed the other way around, by starting with an optimized PAS binder and then colonizing the gorge and CAS. Molecular hybridization from a multicomponent reaction-derived PAS binder afforded a single-digit picomolar multisite AChE inhibitor with more than 1.5 million-fold increased potency relative to the initial hit. This illustrates the powerful alliance between molecular hybridization and gorge occupancy for designing potent AChE inhibitors.Beyond AChE, we show that the stereoelectronic requirements imposed by the AChE gorge for multisite binding have a templating effect that leads to compounds that are active in other key biological targets in AD and other neurological and non-neurological diseases, such as BACE-1 and the aggregation of amyloidogenic proteins (β-amyloid, tau, α-synuclein, prion protein, transthyretin, and human islet amyloid polypeptide). The use of known pharmacophores for other targets as the PAS-binding motif enables the rational design of multitarget agents with multisite binding within AChE and activity against a variety of targets or pathological events, such as oxidative stress and the neuroinflammation-modulating enzyme soluble epoxide hydrolase, among others.We hope that our results can contribute to the development of drug candidates that can modify the course of neurodegeneration and may inspire future works that exploit the power of molecular hybridization in other proteins featuring large cavities.
Collapse
Affiliation(s)
- F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, E-08921 Santa Coloma de Gramenet, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
- Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, E-08028 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
2
|
Zaręba P, Łątka K, Mazur G, Gryzło B, Pasieka A, Godyń J, Panek D, Skrzypczak-Wiercioch A, Höfner GC, Latacz G, Maj M, Espargaró A, Sabaté R, Jóźwiak K, Wanner KT, Sałat K, Malawska B, Kulig K, Bajda M. Discovery of novel multifunctional ligands targeting GABA transporters, butyrylcholinesterase, β-secretase, and amyloid β aggregation as potential treatment of Alzheimer's disease. Eur J Med Chem 2023; 261:115832. [PMID: 37837674 DOI: 10.1016/j.ejmech.2023.115832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/16/2023]
Abstract
Alzheimer's disease (AD) is a global health problem in the medical sector that will increase over time. The limited treatment of AD leads to the search for a new clinical candidate. Considering the multifactorial nature of AD, a strategy targeting number of regulatory proteins involved in the development of the disease is an effective approach. Here, we present a discovery of new multi-target-directed ligands (MTDLs), purposely designed as GABA transporter (GAT) inhibitors, that successfully provide the inhibitory activity against butyrylcholinesterase (BuChE), β-secretase (BACE1), amyloid β aggregation and calcium channel blockade activity. The selected GAT inhibitors, 19c and 22a - N-benzylamide derivatives of 4-aminobutyric acid, displayed the most prominent multifunctional profile. Compound 19c (mGAT1 IC50 = 10 μM, mGAT4 IC50 = 12 μM and BuChE IC50 = 559 nM) possessed the highest hBACE1 and Aβ40 aggregation inhibitory activity (IC50 = 1.57 μM and 99 % at 10 μM, respectively). Additionally, it showed a decrease in both the elongation and nucleation constants of the amyloid aggregation process. In contrast compound 22a represented the highest activity and a mixed-type of eqBuChE inhibition (IC50 = 173 nM) with hBACE1 (IC50 = 9.42 μM), Aβ aggregation (79 % at 10 μM) and mGATs (mGAT1 IC50 = 30 μM, mGAT4 IC50 = 25 μM) inhibitory activity. Performed molecular docking studies described the mode of interactions with GATs and enzymatic targets. In ADMET in vitro studies both compounds showed acceptable metabolic stability and low neurotoxicity. Successfully, compounds 19c and 22a at the dose of 30 mg/kg possessed statistically significant antiamnesic properties in a mouse model of amnesia caused by scopolamine and assessed in the novel object recognition (NOR) task or the passive avoidance (PA) task.
Collapse
Affiliation(s)
- Paula Zaręba
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Kamil Łątka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Gabriela Mazur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Beata Gryzło
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Anna Skrzypczak-Wiercioch
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Kraków, Mickiewicz 24/28 St., 30-059, Kraków, Poland
| | - Georg C Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr., 5-13, 81377, Munich, Germany
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, W. Chodzki 4a St., 20-093, Lublin, Poland
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, W. Chodzki 4a St., 20-093, Lublin, Poland
| | - Klaus T Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr., 5-13, 81377, Munich, Germany
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Katarzyna Kulig
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Marek Bajda
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland.
| |
Collapse
|
3
|
Pasieka A, Panek D, Zaręba P, Sługocka E, Gucwa N, Espargaró A, Latacz G, Khan N, Bucki A, Sabaté R, Więckowska A, Malawska B. Novel drug-like fluorenyl derivatives as selective butyrylcholinesterase and β-amyloid inhibitors for the treatment of Alzheimer's disease. Bioorg Med Chem 2023; 88-89:117333. [PMID: 37236021 DOI: 10.1016/j.bmc.2023.117333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Butyrylcholinesterase (BuChE) and amyloid β (Aβ) aggregation remain important biological target and mechanism in the search for effective treatment of Alzheimer's disease. Simultaneous inhibition thereof by the application of multifunctional agents may lead to improvement in terms of symptoms and causes of the disease. Here, we present the rational design, synthesis, biological evaluation and molecular modelling studies of novel series of fluorene-based BuChE and Aβ inhibitors with drug-like characteristics and advantageous Central Nervous System Multiparameter Optimization scores. Among 17 synthesized and tested compounds, we identified 22 as the most potent eqBuChE inhibitor with IC50 of 38 nM and 37.4% of Aβ aggregation inhibition at 10 μM. Based on molecular modelling studies, including molecular dynamics, we determined the binding mode of the compounds within BuChE and explained the differences in the activity of the two enantiomers of compound 22. A novel series of fluorenyl compounds meeting the drug-likeness criteria seems to be a promising starting point for further development as anti-Alzheimer agents.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland.
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Emilia Sługocka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza St., 31-530 Kraków, Poland
| | - Natalia Gucwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028 Barcelona, Spain
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Nadia Khan
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland; Departement of Pathophysiology, Jagiellonian University Medical College, 18 Czysta St., 31-121 Kraków, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Kraków, Poland
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028 Barcelona, Spain
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna St. 9, 30-688 Kraków, Poland
| |
Collapse
|
4
|
Bao LQ, Baecker D, Mai Dung DT, Phuong Nhung N, Thi Thuan N, Nguyen PL, Phuong Dung PT, Huong TTL, Rasulev B, Casanola-Martin GM, Nam NH, Pham-The H. Development of Activity Rules and Chemical Fragment Design for In Silico Discovery of AChE and BACE1 Dual Inhibitors against Alzheimer's Disease. Molecules 2023; 28:molecules28083588. [PMID: 37110831 PMCID: PMC10142303 DOI: 10.3390/molecules28083588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Multi-target drug development has become an attractive strategy in the discovery of drugs to treat of Alzheimer's disease (AzD). In this study, for the first time, a rule-based machine learning (ML) approach with classification trees (CT) was applied for the rational design of novel dual-target acetylcholinesterase (AChE) and β-site amyloid-protein precursor cleaving enzyme 1 (BACE1) inhibitors. Updated data from 3524 compounds with AChE and BACE1 measurements were curated from the ChEMBL database. The best global accuracies of training/external validation for AChE and BACE1 were 0.85/0.80 and 0.83/0.81, respectively. The rules were then applied to screen dual inhibitors from the original databases. Based on the best rules obtained from each classification tree, a set of potential AChE and BACE1 inhibitors were identified, and active fragments were extracted using Murcko-type decomposition analysis. More than 250 novel inhibitors were designed in silico based on active fragments and predicted AChE and BACE1 inhibitory activity using consensus QSAR models and docking validations. The rule-based and ML approach applied in this study may be useful for the in silico design and screening of new AChE and BACE1 dual inhibitors against AzD.
Collapse
Affiliation(s)
- Le-Quang Bao
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| | - Do Thi Mai Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Nguyen Phuong Nhung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Nguyen Thi Thuan
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Phuong Linh Nguyen
- College of Computing & Informatics, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | - Phan Thi Phuong Dung
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Tran Thi Lan Huong
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | | | - Nguyen-Hai Nam
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Hai Pham-The
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| |
Collapse
|
5
|
Bubley A, Erofeev A, Gorelkin P, Beloglazkina E, Majouga A, Krasnovskaya O. Tacrine-Based Hybrids: Past, Present, and Future. Int J Mol Sci 2023; 24:ijms24021717. [PMID: 36675233 PMCID: PMC9863713 DOI: 10.3390/ijms24021717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by β-amyloid (Aβ) aggregation, τ-hyperphosphorylation, and loss of cholinergic neurons. The other important hallmarks of AD are oxidative stress, metal dyshomeostasis, inflammation, and cell cycle dysregulation. Multiple therapeutic targets may be proposed for the development of anti-AD drugs, and the "one drug-multiple targets" strategy is of current interest. Tacrine (THA) was the first clinically approved cholinesterase (ChE) inhibitor, which was withdrawn due to high hepatotoxicity. However, its high potency in ChE inhibition, low molecular weight, and simple structure make THA a promising scaffold for developing multi-target agents. In this review, we summarized THA-based hybrids published from 2006 to 2022, thus providing an overview of strategies that have been used in drug design and approaches that have resulted in significant cognitive improvements and reduced hepatotoxicity.
Collapse
Affiliation(s)
- Anna Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexaner Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
- Correspondence:
| |
Collapse
|
6
|
Gandini A, Gonçalves AE, Strocchi S, Albertini C, Janočková J, Tramarin A, Grifoni D, Poeta E, Soukup O, Muñoz-Torrero D, Monti B, Sabaté R, Bartolini M, Legname G, Bolognesi ML. Discovery of Dual Aβ/Tau Inhibitors and Evaluation of Their Therapeutic Effect on a Drosophila Model of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3314-3329. [PMID: 36445009 PMCID: PMC9732823 DOI: 10.1021/acschemneuro.2c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia, currently represents an extremely challenging and unmet medical need worldwide. Amyloid-β (Aβ) and Tau proteins are prototypical AD hallmarks, as well as validated drug targets. Accumulating evidence now suggests that they synergistically contribute to disease pathogenesis. This could not only help explain negative results from anti-Aβ clinical trials but also indicate that therapies solely directed at one of them may have to be reconsidered. Based on this, herein, we describe the development of a focused library of 2,4-thiazolidinedione (TZD)-based bivalent derivatives as dual Aβ and Tau aggregation inhibitors. The aggregating activity of the 24 synthesized derivatives was tested in intact Escherichia coli cells overexpressing Aβ42 and Tau proteins. We then evaluated their neuronal toxicity and ability to cross the blood-brain barrier (BBB), together with the in vitro interaction with the two isolated proteins. Finally, the most promising (most active, nontoxic, and BBB-permeable) compounds 22 and 23 were tested in vivo, in a Drosophila melanogaster model of AD. The carbazole derivative 22 (20 μM) showed extremely encouraging results, being able to improve both the lifespan and the climbing abilities of Aβ42 expressing flies and generating a better outcome than doxycycline (50 μM). Moreover, 22 proved to be able to decrease Aβ42 aggregates in the brains of the flies. We conclude that bivalent small molecules based on 22 deserve further attention as hits for dual Aβ/Tau aggregation inhibition in AD.
Collapse
Affiliation(s)
- Annachiara Gandini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,Department
of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136Trieste, Italy
| | - Ana Elisa Gonçalves
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,Pharmaceutical
Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, Rua Uruguai 458, 88302-202Itajaí, Santa Catarina, Brazil
| | - Silvia Strocchi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Claudia Albertini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Jana Janočková
- Biomedical
Research Center, University Hospital Hradec
Kralove, 500 00Hradec Kralove, Czech Republic
| | - Anna Tramarin
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Daniela Grifoni
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,Department
of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito II, 67100L’Aquila, Italy
| | - Eleonora Poeta
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Ondrej Soukup
- Biomedical
Research Center, University Hospital Hradec
Kralove, 500 00Hradec Kralove, Czech Republic
| | - Diego Muñoz-Torrero
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028Barcelona, Spain
| | - Barbara Monti
- Pharmaceutical
Sciences Postgraduate Program, Center of Health Sciences, Universidade do Vale do Itajaí, Rua Uruguai 458, 88302-202Itajaí, Santa Catarina, Brazil
| | - Raimon Sabaté
- Department
of Pharmacy and Pharmaceutical Technology and Physical Chemistry,
Faculty of Pharmacy and Food Science, University
of Barcelona, Av Joan
XXIII 27-31, E-08028Barcelona, Spain
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy
| | - Giuseppe Legname
- Department
of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136Trieste, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, I-40126Bologna, Italy,. Tel: +39 0512099718
| |
Collapse
|
7
|
Nadal Rodríguez P, Ghashghaei O, Bagán A, Escolano C, Lavilla R. Heterocycle-Based Multicomponent Reactions in Drug Discovery: From Hit Finding to Rational Design. Biomedicines 2022; 10:biomedicines10071488. [PMID: 35884794 PMCID: PMC9313418 DOI: 10.3390/biomedicines10071488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
In the context of the structural complexity necessary for a molecule to selectively display a therapeutical action and the requirements for suitable pharmacokinetics, a robust synthetic approach is essential. Typically, thousands of relatively similar compounds should be prepared along the drug discovery process. In this respect, heterocycle-based multicomponent reactions offer advantages over traditional stepwise sequences in terms of synthetic economy, as well as the fast access to chemsets to study the structure activity relationships, the fine tuning of properties, and the preparation of larger amounts for preclinical phases. In this account, we briefly summarize the scientific methodology backing the research line followed by the group. We comment on the main results, clustered according to the targets and, finally, in the conclusion section, we offer a general appraisal of the situation and some perspectives regarding future directions in academic and private research.
Collapse
|
8
|
Wu P, Zhang Y, Cheng Y. Sequential Ag(I) Salt and Chiral N-Heterocyclic Carbene Catalysis Enables Enantioselective and Diastereoselective Construction of Complex Heterocyclic Molecules and the Switch of Stereoselectivity. J Org Chem 2022; 87:2779-2796. [PMID: 35041426 DOI: 10.1021/acs.joc.1c02703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic reactions under cascade catalysis provide a powerful strategy to construct molecules of complexed structures. Reported herein is the sequential silver(I) salt and chiral N-heterocyclic carbene (NHC) catalyzed enantioselective and diastereoselective synthesis of a diversity of unprecedented fused heterocyclic compounds from the reactions of readily available N'-((2-alkynyl-3-pyridinyl)methylene)hydrazides with 2-aroylvinylcinnamaldehydes. Both reaction pathways and stereoselectivity were steered conveniently and efficiently by the employment of different NHCs and bases, enabling the selective preparation of pentacyclic ring-fused 1,6-naphthyridine derivatives and 1,6-naphthyridine-substituted tricyclic products in moderated to good yields with high enantioselectivity and diastereoselectivity. Mechanisms accounting for the selective transformations, especially the effect of base and chiral NHC catalyst on the reaction course and stereochemistry of products, were also discussed.
Collapse
Affiliation(s)
- Pei Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yue Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ying Cheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Giovannini J, Smeralda W, Jouanne M, Sopkova-de Oliveira Santos J, Catto M, Sophie Voisin-Chiret A. Tau protein aggregation: key features to improve drug discovery screening. Drug Discov Today 2022; 27:1284-1297. [DOI: 10.1016/j.drudis.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
|
10
|
Wichur T, Pasieka A, Godyń J, Panek D, Góral I, Latacz G, Honkisz-Orzechowska E, Bucki A, Siwek A, Głuch-Lutwin M, Knez D, Brazzolotto X, Gobec S, Kołaczkowski M, Sabate R, Malawska B, Więckowska A. Discovery of 1-(phenylsulfonyl)-1H-indole-based multifunctional ligands targeting cholinesterases and 5-HT 6 receptor with anti-aggregation properties against amyloid-beta and tau. Eur J Med Chem 2021; 225:113783. [PMID: 34461507 DOI: 10.1016/j.ejmech.2021.113783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022]
Abstract
Multifunctional ligands as an essential variant of polypharmacology are promising candidates for the treatment of multi-factorial diseases like Alzheimer's disease. Based on clinical evidence and following the paradigm of multifunctional ligands we have rationally designed and synthesized a series of compounds targeting processes involved in the development of the disease. The biological evaluation led to the discovery of two compounds with favorable pharmacological characteristics and ADMET profile. Compounds 17 and 35 are 5-HT6R antagonists (Ki = 13 nM and Ki = 15 nM respectively) and cholinesterase inhibitors with distinct mechanisms of enzyme inhibition. Compound 17, a tacrine derivative is a reversible inhibitor of acetyl- and butyrylcholinesterase (IC50 = 8 nM and IC50 = 24 nM respectively), while compound 35 with rivastigmine-derived phenyl N-ethyl-N-methylcarbamate fragment is a selective, pseudo-irreversible inhibitor of butyrylcholinesterase (IC50 = 455 nM). Both compounds inhibit aggregation of amyloid β in vitro (75% for compound 17 and 68% for 35 at 10 μM) moreover, compound 35 is a potent tau aggregation inhibitor in cellulo (79%). In ADMET in vitro studies both compounds showed acceptable metabolic stability on mouse liver microsomes (28% and 60% for compound 17 and 35 respectively), no or little effect on CYP3A4 and 2D6 up to a concentration of 10 μM and lack of toxicity on HepG2 cell line (IC50 values of 80 and 21 μM, for 17 and 35 respectively). Based on the pharmacological characteristics and favorable pharmacokinetic properties, we propose compounds 17 and 35 as an excellent starting point for further optimization and in-depth biological studies.
Collapse
Affiliation(s)
- Tomasz Wichur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Izabella Góral
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | | | - Adam Bucki
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223 Brétigny sur Orge, France
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
11
|
From virtual screening hits targeting a cryptic pocket in BACE-1 to a nontoxic brain permeable multitarget anti-Alzheimer lead with disease-modifying and cognition-enhancing effects. Eur J Med Chem 2021; 225:113779. [PMID: 34418785 DOI: 10.1016/j.ejmech.2021.113779] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022]
Abstract
Starting from six potential hits identified in a virtual screening campaign directed to a cryptic pocket of BACE-1, at the edge of the catalytic cleft, we have synthesized and evaluated six hybrid compounds, designed to simultaneously reach BACE-1 secondary and catalytic sites and to exert additional activities of interest for Alzheimer's disease (AD). We have identified a lead compound with potent in vitro activity towards human BACE-1 and cholinesterases, moderate Aβ42 and tau antiaggregating activity, and brain permeability, which is nontoxic in neuronal cells and zebrafish embryos at concentrations above those required for the in vitro activities. This compound completely restored short- and long-term memory in a mouse model of AD (SAMP8) relative to healthy control strain SAMR1, shifted APP processing towards the non-amyloidogenic pathway, reduced tau phosphorylation, and increased the levels of synaptic proteins PSD95 and synaptophysin, thereby emerging as a promising disease-modifying, cognition-enhancing anti-AD lead.
Collapse
|
12
|
Pasieka A, Panek D, Szałaj N, Espargaró A, Więckowska A, Malawska B, Sabaté R, Bajda M. Dual Inhibitors of Amyloid-β and Tau Aggregation with Amyloid-β Disaggregating Properties: Extended In Cellulo, In Silico, and Kinetic Studies of Multifunctional Anti-Alzheimer's Agents. ACS Chem Neurosci 2021; 12:2057-2068. [PMID: 34019757 PMCID: PMC8291496 DOI: 10.1021/acschemneuro.1c00235] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
![]()
In Alzheimer’s
disease, neurons slowly degenerate due to
the accumulation of misfolded amyloid β and tau proteins. In
our research, we performed extended studies directed at amyloid β
and tau aggregation inhibition using in cellulo (Escherichia coli model of protein aggregation), in silico, and in vitro kinetic studies.
We tested our library of 1-benzylamino-2-hydroxyalkyl multifunctional
anti-Alzheimer’s agents and identified very potent dual aggregation
inhibitors. Among the tested derivatives, we selected compound 18, which exhibited a unique profile of biological activity.
This compound was the most potent and balanced dual aggregation inhibitor
(Aβ42 inhibition (inh.) 80.0%, tau inh. 68.3% in
10 μM), with previously reported in vitro inhibitory
activity against hBuChE, hBACE1,
and Aβ (hBuChE IC50 = 5.74 μM; hBACE1 IC50 = 41.6 μM; Aβ aggregation
(aggr.) inh. IC50 = 3.09 μM). In docking studies
for both proteins, we tried to explain the different structural requirements
for the inhibition of Aβ vs tau. Moreover, docking and kinetic
studies showed that compound 18 could inhibit the amyloid
aggregation process at several steps and also displayed disaggregating
properties. These results may help to design the next generations
of dual or selective aggregation inhibitors.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028 Barcelona, Spain
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028 Barcelona, Spain
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
13
|
Szałaj N, Godyń J, Jończyk J, Pasieka A, Panek D, Wichur T, Więckowski K, Zaręba P, Bajda M, Pislar A, Malawska B, Sabate R, Więckowska A. Multidirectional in vitro and in cellulo studies as a tool for identification of multi-target-directed ligands aiming at symptoms and causes of Alzheimer's disease. J Enzyme Inhib Med Chem 2021; 35:1944-1952. [PMID: 33092411 PMCID: PMC7594877 DOI: 10.1080/14756366.2020.1835882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Effective therapy of Alzheimer's disease (AD) requires treatment with a combination of drugs that modulate various pathomechanisms contributing to the disease. In our research, we have focused on the development of multi-target-directed ligands - 5-HT6 receptor antagonists and cholinesterase inhibitors - with disease-modifying properties. We have performed extended in vitro (FRET assay) and in cellulo (Escherichia coli model of protein aggregation) studies on their β-secretase, tau, and amyloid β aggregation inhibitory activity. Within these multifunctional ligands, we have identified compound 17 with inhibitory potency against tau and amyloid β aggregation in in cellulo assay of 59% and 56% at 10 µM, respectively, hBACE IC50=4 µM, h5TH6 K i=94 nM, hAChE IC50=26 nM, and eqBuChE IC50=5 nM. This study led to the development of multifunctional ligands with a broad range of biological activities crucial not only for the symptomatic but also for the disease-modifying treatment of AD.
Collapse
Affiliation(s)
- Natalia Szałaj
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Jakub Jończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Wichur
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Więckowski
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Anja Pislar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
14
|
Lavanya M, Lin C, Mao J, Thirumalai D, Aabaka SR, Yang X, Mao J, Huang Z, Zhao J. Synthesis and Anticancer Properties of Functionalized 1,6-Naphthyridines. Top Curr Chem (Cham) 2021; 379:13. [PMID: 33624162 DOI: 10.1007/s41061-020-00314-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022]
Abstract
The burgeoning interest in synthesis and biological applications of 1,6-naphthyridines reflects the importance of 1,6-naphthyridines in the synthetic as well as medicinal chemistry fields. Specially, 1,6-naphthyridines are pharmacologically active, with variety of applications such as anticancer, anti-human immunodeficiency virus (HIV), anti-microbial, analgesic, anti-inflammatory and anti-oxidant activities. Although collective recent synthetic developments have paved a path to a wide range of functionalized 1,6-naphthyridines, a complete correlation of synthesis with biological activity remains elusive. The current review focuses on recent synthetic developments from the last decade and a thorough study of the anticancer activity of 1,6-naphthyridines on different cancer cell lines. Anticancer activity has been correlated to 1,6-naphthyridines using the literature on the structure-activity relationship (SAR) along with molecular modeling studies. Exceptionally, at the end of this review, the utility of 1,6-naphthyridines displaying activities other than anticancer has also been included as a glimmering extension.
Collapse
Affiliation(s)
- Mallu Lavanya
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China.,School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Chong Lin
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China.
| | - Jincheng Mao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China.
| | | | - Sreenath Reddy Aabaka
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China
| | - Xiaojiang Yang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China
| | - Jinhua Mao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China
| | - Zhiyu Huang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Jinzhou Zhao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, Xindu, People's Republic of China
| |
Collapse
|
15
|
Malafaia D, Albuquerque HMT, Silva AMS. Amyloid-β and tau aggregation dual-inhibitors: A synthetic and structure-activity relationship focused review. Eur J Med Chem 2021; 214:113209. [PMID: 33548635 DOI: 10.1016/j.ejmech.2021.113209] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is one of the most common types of dementia, especially in elderly, with an increasing number of people suffering from this disease worldwide. There are no available disease-modifying therapies and only four drugs are approved for the relief of symptoms. Currently, the therapeutic approach used for AD treatment is based on single target drugs, which are not capable to stop its progression. To address this issue, multi-target compounds, combining two or more pharmacophores in a single molecular entity, have gained increasing interest to deal with the multiple factors related to AD. The exact cause of AD is not yet completely disclosed, and several hallmarks have been associated to this neurodegenerative disease. Even though, the accumulation of both amyloid-β plaques (Aβ) and neurofibrillary tangles (NFTs) are fully accepted as the main AD hallmarks, being object of lots of research for early-stage diagnosis and pharmacological therapy. In this context, this review summarizes the state-of-the-art in the field of dual-target inhibitors of both Aβ and tau aggregation simultaneously, including the design and synthetic strategy of the dual-target compounds, as well as a brief structure-activity relationships (SAR) analysis.
Collapse
Affiliation(s)
- Daniela Malafaia
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Hélio M T Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
16
|
Ali M, Saleem U, Anwar F, Imran M, Nadeem H, Ahmad B, Ali T, Ismail T. Screening of Synthetic Isoxazolone Derivative Role in Alzheimer's Disease: Computational and Pharmacological Approach. Neurochem Res 2021; 46:905-920. [PMID: 33486698 DOI: 10.1007/s11064-021-03229-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is age-dependent neurological disorder with progressive loss of cognition and memory. This multifactorial disease is characterized by intracellular neurofibrillary tangles, beta amyloid plaques, neuroinflammation, and increased oxidative stress. The increased cellular manifestations of these markers play a critical role in neurodegeneration and pathogenesis of AD. Therefore, reducing neurodegeneration by decreasing one or more of these markers may provide a potential therapeutic roadmap for the treatment of AD. AD causes a devastating loss of cognition with no conclusive and effective treatment. Many synthetic compound containing isoxazolone nucleus have been reported as neuroprotective agents. The aim of this study was to explore the anti-Alzheimer's potential of a newly synthesized 3,4,5-trimethoxy isoxazolone derivative (TMI) that attenuated the beta amyloid (Aβ1-42) and tau protein levels in streptozotocin (STZ) induced Alzheimer's disease mouse model. Molecular analysis revealed increased beta amyloid (Aβ1-42) protein levels, increased tau protein levels, increased cellular oxidative stress and reduced antioxidant enzymes in STZ exposed mice brains. Furthermore, ELISA and PCR were used to validate the expression of Aβ1-42. Pre-treatment with TMI significantly improved the memory and cognitive behavior along with ameliorated levels of Aβ1-42 proteins. TMI treated mice further showed marked increase in GSH, CAT, SOD levels while decreased levels of acetylcholinesterase inhibitors (AChEI's) and MDA intermediate. The multidimensional nature of isoxazolone derivatives and its versatile affinity towards various targets highpoint its multistep targeting nature. These results indicated the neuroprotective potential of TMI which may be considered for the treatment of neurodegenerative disease specifically in AD.
Collapse
Affiliation(s)
- Meissam Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan
| | - Uzma Saleem
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan.
| | - Muhammad Imran
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan
| | - Tahir Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSATS University, Abbottabad, 22060, Pakistan
| |
Collapse
|
17
|
Nepovimova E, Svobodova L, Dolezal R, Hepnarova V, Junova L, Jun D, Korabecny J, Kucera T, Gazova Z, Motykova K, Kubackova J, Bednarikova Z, Janockova J, Jesus C, Cortes L, Pina J, Rostohar D, Serpa C, Soukup O, Aitken L, Hughes RE, Musilek K, Muckova L, Jost P, Chvojkova M, Vales K, Valis M, Chrienova Z, Chalupova K, Kuca K. Tacrine - Benzothiazoles: Novel class of potential multitarget anti-Alzheimeŕs drugs dealing with cholinergic, amyloid and mitochondrial systems. Bioorg Chem 2020; 107:104596. [PMID: 33421953 DOI: 10.1016/j.bioorg.2020.104596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022]
Abstract
A series of tacrine - benzothiazole hybrids incorporate inhibitors of acetylcholinesterase (AChE), amyloid β (Aβ) aggregation and mitochondrial enzyme ABAD, whose interaction with Aβ leads to mitochondrial dysfunction, into a single molecule. In vitro, several of 25 final compounds exerted excellent anti-AChE properties and interesting capabilities to block Aβ aggregation. The best derivative of the series could be considered 10w that was found to be highly potent and selective towards AChE with the IC50 value in nanomolar range. Moreover, the same drug candidate exerted absolutely the best results of the series against ABAD, decreasing its activity by 23% at 100 µM concentration. Regarding the cytotoxicity profile of highlighted compound, it roughly matched that of its parent compound - 6-chlorotacrine. Finally, 10w was forwarded for in vivo scopolamine-induced amnesia experiment consisting of Morris Water Maze test, where it demonstrated mild procognitive effect. Taking into account all in vitro and in vivo data, highlighted derivative 10w could be considered as the lead structure worthy of further investigation.
Collapse
Affiliation(s)
- Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lucie Svobodova
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lucie Junova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovak Republic
| | - Katarina Motykova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovak Republic
| | - Jana Kubackova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovak Republic
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovak Republic
| | - Jana Janockova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Catarina Jesus
- Centro de Quimica de Coimbra, Department of Chemistry, University of Coimbra, 3044-535 Coimbra, Portugal
| | - Luisa Cortes
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Joao Pina
- Centro de Quimica de Coimbra, Department of Chemistry, University of Coimbra, 3044-535 Coimbra, Portugal
| | - Danijela Rostohar
- HiLASE Centre, Institute of Physics, Czech Academy of Sciences, Za Radnici 828, 252 41 Dolni Brezany, Czech Republic
| | - Carlos Serpa
- Centro de Quimica de Coimbra, Department of Chemistry, University of Coimbra, 3044-535 Coimbra, Portugal
| | - Ondrej Soukup
- Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Laura Aitken
- School of Biology, Medical and Biological Sciences Building, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Rebecca E Hughes
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Petr Jost
- Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Marketa Chvojkova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Martin Valis
- Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870/13, 500 03 Hradec Kralove, Czech Republic
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Katarina Chalupova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; Biomedical Research Centre and Department of Neurology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.
| |
Collapse
|
18
|
Gontijo VS, Viegas FPD, Ortiz CJC, de Freitas Silva M, Damasio CM, Rosa MC, Campos TG, Couto DS, Tranches Dias KS, Viegas C. Molecular Hybridization as a Tool in the Design of Multi-target Directed Drug Candidates for Neurodegenerative Diseases. Curr Neuropharmacol 2020; 18:348-407. [PMID: 31631821 PMCID: PMC7457438 DOI: 10.2174/1385272823666191021124443] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/27/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative Diseases (NDs) are progressive multifactorial neurological pathologies related to neuronal impairment and functional loss from different brain regions. Currently, no effective treatments are available for any NDs, and this lack of efficacy has been attributed to the multitude of interconnected factors involved in their pathophysiology. In the last two decades, a new approach for the rational design of new drug candidates, also called multitarget-directed ligands (MTDLs) strategy, has emerged and has been used in the design and for the development of a variety of hybrid compounds capable to act simultaneously in diverse biological targets. Based on the polypharmacology concept, this new paradigm has been thought as a more secure and effective way for modulating concomitantly two or more biochemical pathways responsible for the onset and progress of NDs, trying to overcome low therapeutical effectiveness. As a complement to our previous review article (Curr. Med. Chem. 2007, 14 (17), 1829-1852. https://doi.org/10.2174/092986707781058805), herein we aimed to cover the period from 2008 to 2019 and highlight the most recent advances of the exploitation of Molecular Hybridization (MH) as a tool in the rational design of innovative multifunctional drug candidate prototypes for the treatment of NDs, specially focused on AD, PD, HD and ALS.
Collapse
Affiliation(s)
- Vanessa Silva Gontijo
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, 37133-840, Brazil
| | - Flávia P Dias Viegas
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| | - Cindy Juliet Cristancho Ortiz
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| | - Matheus de Freitas Silva
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| | - Caio Miranda Damasio
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | - Mayara Chagas Rosa
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | - Thâmara Gaspar Campos
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | - Dyecika Souza Couto
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil
| | | | - Claudio Viegas
- PeQuiM-Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, 37133-840, Brazil.,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Brazil
| |
Collapse
|
19
|
Pérez-Areales FJ, Garrido M, Aso E, Bartolini M, De Simone A, Espargaró A, Ginex T, Sabate R, Pérez B, Andrisano V, Puigoriol-Illamola D, Pallàs M, Luque FJ, Loza MI, Brea J, Ferrer I, Ciruela F, Messeguer A, Muñoz-Torrero D. Centrally Active Multitarget Anti-Alzheimer Agents Derived from the Antioxidant Lead CR-6. J Med Chem 2020; 63:9360-9390. [PMID: 32706255 DOI: 10.1021/acs.jmedchem.0c00528] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress is a major pathogenic factor in Alzheimer's disease, but it should not be tackled alone rather together with other key targets to derive effective treatments. The combination of the scaffold of the polar antioxidant lead 7-methoxy-2,2-dimethylchroman-6-ol (CR-6) with that of the lipophilic cholinesterase inhibitor 6-chlorotacrine results in compounds with favorable brain permeability and multiple activities in vitro (acetylcholinesterase, butyrylcholinesterase, β-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE-1), and Aβ42 and tau aggregation inhibition). In in vivo studies on wild-type and APP/presenilin 1 (PS1) mice, two selected compounds were well tolerated and led to positive trends, albeit statistically nonsignificant in some cases, on memory performance, amyloid pathology (reduced amyloid burden and potentiated non-amyloidogenic APP processing), and oxidative stress (reduced cortical oxidized proteins and increased antioxidant enzymes superoxide dismutase 2 (SOD2), catalase, glutathione peroxidase 1 (GPX1), and heme oxygenase 1 (Hmox1) and transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2)). These compounds emerge as interesting brain-permeable multitarget compounds, with a potential as anti-Alzheimer agents beyond that of the original lead CR-6.
Collapse
Affiliation(s)
- F Javier Pérez-Areales
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - María Garrido
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ester Aso
- Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona (UB) and Bellvitge University Hospital-IDIBELL, E-08908 L'Hospitalet de Llobregat, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126 Bologna, Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin, I-10125 Torino, Italy
| | - Alba Espargaró
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, IBUB, and Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona (UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Raimon Sabate
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics, and Toxicology, Autonomous University of Barcelona, E-08193 Bellaterra, Spain
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, I-47921 Rimini, Italy
| | - Dolors Puigoriol-Illamola
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience (NeuroUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience (NeuroUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, IBUB, and Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona (UB), E-08921 Santa Coloma de Gramenet, Spain
| | - María Isabel Loza
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - José Brea
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona (UB) and Bellvitge University Hospital-IDIBELL, E-08908 L'Hospitalet de Llobregat, Spain.,CIBERNED, E-28031 Madrid, Spain
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona (UB) and Bellvitge University Hospital-IDIBELL, E-08908 L'Hospitalet de Llobregat, Spain
| | - Angel Messeguer
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| |
Collapse
|
20
|
Monteiro KL, Alcântara MGDS, de Aquino TM, da Silva-Júnior EF. Tau Protein Aggregation in Alzheimer's Disease: Recent Advances in the Development of Novel Therapeutic Agents. Curr Pharm Des 2020; 26:1682-1692. [DOI: 10.2174/1381612826666200414164038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
:
Major research in Alzheimer’s disease (AD) related to disease-modifying agents is concentrated on
pharmacological approaches related to diagnostic markers, neurofibrillary tangles and amyloid plaques. Although
most studies focus on anti-amyloid strategies, investigations on tau protein have produced significant advances in
the modulation of the pathophysiology of several neurodegenerative diseases. Since the discovery of phenothiazines
as tau protein aggregation inhibitors (TAGIs), many additional small molecule inhibitors have been discovered
and characterized in biological model systems, which exert their interaction effects by covalent and noncovalent
means. In this paper, we summarize the latest advances in the discovery and development of tau aggregation
inhibitors using a specialized approach in their chemical classes. The design of new TAGIs and their encouraging
use in in vivo and clinical trials support their potential therapeutic use in AD.
Collapse
Affiliation(s)
- Kadja L.C. Monteiro
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Marcone G. dos S. Alcântara
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Thiago M. de Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, Brazil
| | | |
Collapse
|
21
|
Zhou Y, Sun W, Peng J, Yan H, Zhang L, Liu X, Zuo Z. Design, synthesis and biological evaluation of novel copper-chelating acetylcholinesterase inhibitors with pyridine and N-benzylpiperidine fragments. Bioorg Chem 2019; 93:103322. [DOI: 10.1016/j.bioorg.2019.103322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
22
|
The chemistry toolbox of multitarget-directed ligands for Alzheimer's disease. Eur J Med Chem 2019; 181:111572. [DOI: 10.1016/j.ejmech.2019.111572] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023]
|
23
|
Caballero AB, Espargaró A, Pont C, Busquets MA, Estelrich J, Muñoz-Torrero D, Gamez P, Sabate R. Bacterial Inclusion Bodies for Anti-Amyloid Drug Discovery: Current and Future Screening Methods. Curr Protein Pept Sci 2019; 20:563-576. [PMID: 30924417 DOI: 10.2174/1389203720666190329120007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 11/22/2022]
Abstract
Amyloid aggregation is linked to an increasing number of human disorders from nonneurological pathologies such as type-2 diabetes to neurodegenerative ones such as Alzheimer or Parkinson's diseases. Thirty-six human proteins have shown the capacity to aggregate into pathological amyloid structures. To date, it is widely accepted that amyloid folding/aggregation is a universal process present in eukaryotic and prokaryotic cells. In the last decade, several studies have unequivocally demonstrated that bacterial inclusion bodies - insoluble protein aggregates usually formed during heterologous protein overexpression in bacteria - are mainly composed of overexpressed proteins in amyloid conformation. This fact shows that amyloid-prone proteins display a similar aggregation propensity in humans and bacteria, opening the possibility to use bacteria as simple models to study amyloid aggregation process and the potential effect of both anti-amyloid drugs and pro-aggregative compounds. Under these considerations, several in vitro and in cellulo methods, which exploit the amyloid properties of bacterial inclusion bodies, have been proposed in the last few years. Since these new methods are fast, simple, inexpensive, highly reproducible, and tunable, they have aroused great interest as preliminary screening tools in the search for anti-amyloid (beta-blocker) drugs for conformational diseases. The aim of this mini-review is to compile recently developed methods aimed at tracking amyloid aggregation in bacteria, discussing their advantages and limitations, and the future potential applications of inclusion bodies in anti-amyloid drug discovery.
Collapse
Affiliation(s)
- Ana B Caballero
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain
| | - Alba Espargaró
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Caterina Pont
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
| | - Maria Antònia Busquets
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Joan Estelrich
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
| | - Patrick Gamez
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, E-08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Raimon Sabate
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain.,Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
24
|
Pérez-Areales FJ, Turcu AL, Barniol-Xicota M, Pont C, Pivetta D, Espargaró A, Bartolini M, De Simone A, Andrisano V, Pérez B, Sabate R, Sureda FX, Vázquez S, Muñoz-Torrero D. A novel class of multitarget anti-Alzheimer benzohomoadamantane‒chlorotacrine hybrids modulating cholinesterases and glutamate NMDA receptors. Eur J Med Chem 2019; 180:613-626. [PMID: 31351393 DOI: 10.1016/j.ejmech.2019.07.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
The development of multitarget compounds against multifactorial diseases, such as Alzheimer's disease, is an area of very intensive research, due to the expected superior therapeutic efficacy that should arise from the simultaneous modulation of several key targets of the complex pathological network. Here we describe the synthesis and multitarget biological profiling of a new class of compounds designed by molecular hybridization of an NMDA receptor antagonist fluorobenzohomoadamantanamine with the potent acetylcholinesterase (AChE) inhibitor 6-chlorotacrine, using two different linker lengths and linkage positions, to preserve or not the memantine-like polycyclic unsubstituted primary amine. The best hybrids exhibit greater potencies than parent compounds against AChE (IC50 0.33 nM in the best case, 44-fold increased potency over 6-chlorotacrine), butyrylcholinesterase (IC50 21 nM in the best case, 24-fold increased potency over 6-chlorotacrine), and NMDA receptors (IC50 0.89 μM in the best case, 2-fold increased potency over the parent benzohomoadamantanamine and memantine), which suggests an additive effect of both pharmacophoric moieties in the interaction with the primary targets. Moreover, most of these compounds have been predicted to be brain permeable. This set of biological properties makes them promising leads for further anti-Alzheimer drug development.
Collapse
Affiliation(s)
- F Javier Pérez-Areales
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - Andreea L Turcu
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - Marta Barniol-Xicota
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - Caterina Pont
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - Deborah Pivetta
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy
| | - Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso D'Augusto 237, I-47921, Rimini, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, Corso D'Augusto 237, I-47921, Rimini, Italy
| | - Belén Pérez
- Department of Pharmacology, Therapeutics, and Toxicology, Autonomous University of Barcelona, E-08193, Bellaterra, Spain
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - Francesc X Sureda
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C/St. Llorenç 21, E-43201, Reus, Spain
| | - Santiago Vázquez
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain.
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain.
| |
Collapse
|
25
|
Espargaró A, Pont C, Gamez P, Muñoz-Torrero D, Sabate R. Amyloid Pan-inhibitors: One Family of Compounds To Cope with All Conformational Diseases. ACS Chem Neurosci 2019; 10:1311-1317. [PMID: 30380841 DOI: 10.1021/acschemneuro.8b00398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyloids are ubiquitous protein aggregates sharing common internal structural features; they are present in all organisms, from prokaryotes to eukaryotes, where they play physiological or pathological roles. Importantly, amyloids, which are generated by aggregation of a range of distinct proteins, could be a key factor in a number of major human disorders, the so-called conformational diseases. Because all amyloids exhibit similar cross-β motifs, one may envisage that molecules capable of blocking the formation of β-sheet structures could abolish aggregation of all amyloid proteins, albeit with different efficacies. Herein, two different β-sheet blockers were tested against a selection of amyloidogenic proteins, encompassing all the major types of amyloid-based disorders. Analysis of their blocking efficiency, using a simple but contrasted cell-based screening procedure, unequivocally confirms that they indeed behave as aggregation pan-inhibitors. The significant inhibitory effects observed for these compounds against all tested amyloidogenic proteins could spur a broader biological evaluation of other known and new amyloid aggregation inhibitors to further determine the potential use of this class of compounds for the universal treatment of conformational diseases.
Collapse
Affiliation(s)
- Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain
| | - Caterina Pont
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| | - Patrick Gamez
- Department of Organic and Inorganic Chemistry, Faculty of Chemistry, University of Barcelona, E-08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
26
|
Mishra P, Kumar A, Panda G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorg Med Chem 2019; 27:895-930. [DOI: 10.1016/j.bmc.2019.01.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
|
27
|
Prasher P, Sharma M. Medicinal chemistry of acridine and its analogues. MEDCHEMCOMM 2018; 9:1589-1618. [PMID: 30429967 PMCID: PMC6195008 DOI: 10.1039/c8md00384j] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 02/01/2023]
Abstract
'Acridine' along with its functional analogue 'Acridone' is the most privileged pharmacophore in medicinal chemistry with diverse applications ranging from DNA intercalators, endonuclease mimics, ratiometric selective ion sensors, and P-glycoprotein inhibitors in countering the multi-drug resistance, enzyme inhibitors, and reversals of neurodegenerative disorders. Their interaction with DNA and ability of selectively identifying numerous biologically useful ions has cemented exploitability of the acridone nucleus in modern day therapeutics. Additionally, most derivatives and salts of acridine are planar, crystalline, and stable displaying a strong fluorescence which, when coupled with their marked bio selectivity and low cytotoxicity, enables the studying and monitoring of several biochemical, metabolic, and pharmacological processes. In this review, a detailed picture covering the important therapeutic aspects of the acridone nucleus and its functional analogues is discussed.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India . ;
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| |
Collapse
|
28
|
Ghashghaei O, Masdeu C, Alonso C, Palacios F, Lavilla R. Recent advances of the Povarov reaction in medicinal chemistry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 29:71-79. [PMID: 30471676 DOI: 10.1016/j.ddtec.2018.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/23/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
The Povarov multicomponent reaction consists on the condensation of an aniline, an aldehyde, and an activated olefin to generate a tetrahydroquinoline adduct with 3 diversity points. Hereby, we report the main features of this transformation and its uses in medicinal chemistry. Relevant examples of the impact of Povarov adducts in different therapeutic areas are provided.
Collapse
Affiliation(s)
- Ouldouz Ghashghaei
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Carme Masdeu
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
29
|
Tricyclic pyrazolo[1,5- d ][1,4]benzoxazepin-5(6H)-one scaffold derivatives: Synthesis and biological evaluation as selective BuChE inhibitors. Eur J Med Chem 2018; 147:194-204. [DOI: 10.1016/j.ejmech.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 11/24/2022]
|
30
|
Rearrangement of 3-cyano-5H-chromeno[2,3-b]pyridines to 1,6-naphthyridine derivatives. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-2168-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Design, synthesis and multitarget biological profiling of second-generation anti-Alzheimer rhein-huprine hybrids. Future Med Chem 2017. [PMID: 28632395 DOI: 10.4155/fmc-2017-0049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM Simultaneous modulation of several key targets of the pathological network of Alzheimer's disease (AD) is being increasingly pursued as a promising option to fill the critical gap of efficacious drugs against this condition. MATERIALS & METHODS A short series of compounds purported to hit multiple targets of relevance in AD has been designed, on the basis of their distinct basicities estimated from high-level quantum mechanical computations, synthesized, and subjected to assays of inhibition of cholinesterases, BACE-1, and Aβ42 and tau aggregation, of antioxidant activity, and of brain permeation. RESULTS Using, as a template, a lead rhein-huprine hybrid with an interesting multitarget profile, we have developed second-generation compounds, designed by the modification of the huprine aromatic ring. Replacement by [1,8]-naphthyridine or thieno[3,2-e]pyridine systems resulted in decreased, although still potent, acetylcholinesterase or BACE-1 inhibitory activities, which are more balanced relative to their Aβ42 and tau antiaggregating and antioxidant activities. CONCLUSION Second-generation naphthyridine- and thienopyridine-based rhein-huprine hybrids emerge as interesting brain permeable compounds that hit several crucial pathogenic factors of AD.
Collapse
|
32
|
Nascimento ÉCM, Oliva M, Świderek K, Martins JBL, Andrés J. Binding Analysis of Some Classical Acetylcholinesterase Inhibitors: Insights for a Rational Design Using Free Energy Perturbation Method Calculations with QM/MM MD Simulations. J Chem Inf Model 2017; 57:958-976. [DOI: 10.1021/acs.jcim.7b00037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Érica C. M. Nascimento
- Department
of Analytical and Physical Chemistry, Jaume I University, 12071 Castellón, Spain
- Institute
of Chemistry, University of Brasília, 70910-000, Brasília-DF, Brazil
| | - Mónica Oliva
- Department
of Analytical and Physical Chemistry, Jaume I University, 12071 Castellón, Spain
| | - Katarzyna Świderek
- Department
of Analytical and Physical Chemistry, Jaume I University, 12071 Castellón, Spain
- Institute
of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - João B. L. Martins
- Institute
of Chemistry, University of Brasília, 70910-000, Brasília-DF, Brazil
| | - Juan Andrés
- Department
of Analytical and Physical Chemistry, Jaume I University, 12071 Castellón, Spain
| |
Collapse
|
33
|
Sulfamic acid-catalyzed multicomponent synthesis of 7-phenyl-7,12 dihydrobenzo(h)pyrido[2,3-b]naphthydrin-6(5H)-one derivatives: a green avenue. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-016-2778-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Espargaró A, Ginex T, Vadell MDM, Busquets MA, Estelrich J, Muñoz-Torrero D, Luque FJ, Sabate R. Combined in Vitro Cell-Based/in Silico Screening of Naturally Occurring Flavonoids and Phenolic Compounds as Potential Anti-Alzheimer Drugs. JOURNAL OF NATURAL PRODUCTS 2017; 80:278-289. [PMID: 28128562 DOI: 10.1021/acs.jnatprod.6b00643] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia in people over 65 years. One of the major culprits in AD is the self-aggregation of amyloid-β peptide (Aβ), which has stimulated the search for small molecules able to inhibit Aβ aggregation. In this context, we recently reported a simple, but effective in vitro cell-based assay to evaluate the potential antiaggregation activity of putative Aβ aggregation inhibitors. In this work this assay was used together with docking and molecular dynamics simulations to analyze the anti-Aβ aggregation activity of several naturally occurring flavonoids and phenolic compounds. The results showed that rosmarinic acid, melatonin, and o-vanillin displayed zero or low inhibitory capacity, curcumin was found to have an intermediate inhibitory potency, and apigenin and quercetin showed potent antiaggregation activity. Finally, the suitability of the combined in vitro cell-based/in silico approach to distinguish between active and inactive compounds was further assessed for an additional set of flavonols and dihydroflavonols.
Collapse
Affiliation(s)
- Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| | - Tiziana Ginex
- Department of Nutrition, Food Sciences, and Gastronomy, School of Pharmacy and Institute of Biomedicine, Campus Torribera, University of Barcelona , Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Maria Del Mar Vadell
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| | - Maria A Busquets
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| | - Joan Estelrich
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), School of Pharmacy, and Institute of Biomedicine (IBUB), University of Barcelona , E-08028, Barcelona, Spain
| | - F Javier Luque
- Department of Nutrition, Food Sciences, and Gastronomy, School of Pharmacy and Institute of Biomedicine, Campus Torribera, University of Barcelona , Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona , E-08028, Barcelona, Spain
| |
Collapse
|
35
|
Wu WY, Dai YC, Li NG, Dong ZX, Gu T, Shi ZH, Xue X, Tang YP, Duan JA. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 32:572-587. [PMID: 28133981 PMCID: PMC6009885 DOI: 10.1080/14756366.2016.1210139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, which is complex and progressive; it has not only threatened the health of elderly people, but also burdened the whole social medical and health system. The available therapy for AD is limited and the efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the design and development of efficacious and safe anti-AD agents has become a hotspot in the field of pharmaceutical research. Due to the multifactorial etiology of AD, the multitarget-directed ligands (MTDLs) approach is promising in search for new drugs for AD. Tacrine, which is the first acetylcholinesterase (AChE) inhibitor, has been selected as the ideal active fragment because of its simple structure, clear activity, and its superiority in the structural modification, thus it could be introduced into the overall molecular skeletons of the multi-target-directed anti-AD agents. In this review, we have summarized the recent advances (2012 to the present) in the chemical modification of tacrine, which could provide the reference for the further study of novel multi-target-directed tacrine derivatives to treat AD.
Collapse
Affiliation(s)
- Wen-Yu Wu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Chen Dai
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ze-Xi Dong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ting Gu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Zhi-Hao Shi
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,c Department of Organic Chemistry , China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Xin Xue
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| |
Collapse
|
36
|
Magesh Selva Kumar A, Vijaya Pandiyan B, Mohana Roopan S, Rajendran S. Efficient synthesis, fluorescence and DFT studies of different substituted 2-chloroquinoline-4-amines and benzo[g][1,8]naphthyridine derivatives. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Recent progress in repositioning Alzheimer's disease drugs based on a multitarget strategy. Future Med Chem 2016; 8:2113-2142. [PMID: 27774814 DOI: 10.4155/fmc-2016-0103] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a serious progressive neurological disorder, characterized by impaired cognition and profound irreversible memory loss. The multifactorial nature of AD and the absence of a cure so far have stimulated medicinal chemists worldwide to follow multitarget drug-design strategies based on repositioning approved drugs. This review describes a summary of recently published works focused on tailoring new derivatives of US FDA-approved acetylcholinesterase inhibitors, in addition to huperzine (a drug approved in China), either by hybridization with other pharmacophore elements (to hit more AD targets), or by combination of two FDA-approved drugs. Besides the capacity for improving the cholinergic activity, these polyfunctional derivatives are also able to tackle other important neuroprotective properties, such as anti-β-amyloid aggregation, scavenging of radical oxygen species, modulation of redox-active metals or inhibition of monoamine oxidase, thereby resulting in potentially novel and more effective therapeutics for the treatment of AD.
Collapse
|
38
|
Novel series of tacrine-tianeptine hybrids: Synthesis, cholinesterase inhibitory activity, S100B secretion and a molecular modeling approach. Eur J Med Chem 2016; 121:758-772. [DOI: 10.1016/j.ejmech.2016.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022]
|
39
|
Pisani L, Farina R, Catto M, Iacobazzi RM, Nicolotti O, Cellamare S, Mangiatordi GF, Denora N, Soto-Otero R, Siragusa L, Altomare CD, Carotti A. Exploring Basic Tail Modifications of Coumarin-Based Dual Acetylcholinesterase-Monoamine Oxidase B Inhibitors: Identification of Water-Soluble, Brain-Permeant Neuroprotective Multitarget Agents. J Med Chem 2016; 59:6791-806. [DOI: 10.1021/acs.jmedchem.6b00562] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Leonardo Pisani
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Roberta Farina
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Marco Catto
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Rosa Maria Iacobazzi
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Saverio Cellamare
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Giuseppe Felice Mangiatordi
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Nunzio Denora
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Ramon Soto-Otero
- Departamento
de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco I, E-15782 Santiago de Compostela, Spain
| | - Lydia Siragusa
- Molecular Discovery Limited 215
Marsh Road, Pinner, Middlesex, London HA5 5NE, U.K
| | - Cosimo Damiano Altomare
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| | - Angelo Carotti
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
40
|
Multitarget strategies in Alzheimer's disease: benefits and challenges on the road to therapeutics. Future Med Chem 2016; 8:697-711. [DOI: 10.4155/fmc-2016-0003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease is a multifactorial syndrome, for which effective cures are urgently needed. Seeking for enhanced therapeutic efficacy, multitarget drugs have been increasingly sought after over the last decades. They offer the attractive prospect of tackling intricate network effects, but with the benefits of a single-molecule therapy. Herein, we highlight relevant progress in the field, focusing on acetylcholinesterase inhibition and amyloid pathways as two pivotal features in multitarget design strategies. We also discuss the intertwined relationship between selected molecular targets and give a brief glimpse into the power of multitarget agents as pharmacological probes of Alzheimer's disease molecular mechanisms.
Collapse
|
41
|
Ultra rapid in vivo screening for anti-Alzheimer anti-amyloid drugs. Sci Rep 2016; 6:23349. [PMID: 27000658 PMCID: PMC4802339 DOI: 10.1038/srep23349] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/02/2016] [Indexed: 12/20/2022] Open
Abstract
More than 46 million people worldwide suffer from Alzheimer’s disease. A
large number of potential treatments have been proposed; among these, the inhibition
of the aggregation of amyloid β-peptide (Aβ), considered one
of the main culprits in Alzheimer’s disease. Limitations in monitoring
the aggregation of Aβ in cells and tissues restrict the screening of
anti-amyloid drugs to in vitro studies in most cases. We have developed a
simple but powerful method to track Aβ aggregation in vivo in
real-time, using bacteria as in vivo amyloid reservoir. We use the specific
amyloid dye Thioflavin-S (Th-S) to stain bacterial inclusion bodies (IBs), in this
case mainly formed of Aβ in amyloid conformation. Th-S binding to
amyloids leads to an increment of fluorescence that can be monitored. The
quantification of the Th-S fluorescence along the time allows tracking
Aβ aggregation and the effect of potential anti-aggregating agents.
Collapse
|
42
|
Inhibition of tau aggregation using a naturally-occurring cyclic peptide scaffold. Eur J Med Chem 2016; 109:342-9. [DOI: 10.1016/j.ejmech.2016.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/24/2022]
|
43
|
Weinreb O, Amit T, Bar-Am O, Youdim MBH. Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and β-amyloid in ageing and Alzheimer's disease. Br J Pharmacol 2015; 173:2080-94. [PMID: 26332830 DOI: 10.1111/bph.13318] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/20/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Alzheimer's disease (AD) is accepted nowadays as a complex neurodegenerative disorder with multifaceted cerebral pathologies, including extracellular deposition of amyloid β peptide-containing plaques, intracellular neurofibrillary tangles, progressive loss of cholinergic neurons, metal dyshomeostasis, mitochondrial dysfunction, neuroinflammation, glutamate excitoxicity, oxidative stress and increased MAO enzyme activity. This may explain why it is currently widely accepted that a more effective therapy for AD would result from the use of multifunctional drugs, which may affect more than one brain target involved in the disease pathology. The current review will discuss the potential benefits of novel multimodal neuroprotective, brain permeable drugs, recently developed by Youdim and collaborators, as a valuable therapeutic approach for AD treatment. The pharmacological and neuroprotective properties of these multitarget-directed ligands, which target MAO enzymes, the cholinergic system, iron accumulation and amyloid β peptide generation/aggregation are described, with a special emphasis on their potential therapeutic value for ageing and AD-associated cognitive functions. This review is conceived as a tribute to the broad neuropharmacology work of Professor Moussa Youdim, Professor Emeritus in the Faculty of Medicine and Director of Eve Topf Center of Excellence in Technion-Israel Institute of Technology, and Chief Scientific Officer of ABITAL Pharma Pipeline Ltd., at the occasion of his 75th birthday. LINKED ARTICLES This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,ABITAL Pharma Pipeline Ltd., Yokneam, Israel
| | - Tamar Amit
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,ABITAL Pharma Pipeline Ltd., Yokneam, Israel
| | - Orit Bar-Am
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,ABITAL Pharma Pipeline Ltd., Yokneam, Israel
| | - Moussa B H Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,ABITAL Pharma Pipeline Ltd., Yokneam, Israel
| |
Collapse
|
44
|
Navarro S, Carija A, Muñoz-Torrero D, Ventura S. A fast and specific method to screen for intracellular amyloid inhibitors using bacterial model systems. Eur J Med Chem 2015; 121:785-792. [PMID: 26608003 DOI: 10.1016/j.ejmech.2015.10.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 11/25/2022]
Abstract
The aggregation of a large variety of amyloidogenic proteins is linked to the onset of devastating human disorders. Therefore, there is an urgent need for effective molecules able to modulate the aggregative properties of these polypeptides in their natural environment, in order to prevent, delay or halt the progression of such diseases. On the one hand, the complexity and cost of animal models make them inefficient at early stages of drug discovery, where large chemical libraries are usually screened. On the other hand, in vitro aggregation assays in aqueous solutions hardly reproduce (patho)physiological conditions. In this context, because the formation of insoluble aggregates in bacteria shares mechanistic and functional properties with amyloid self-assembly in higher organisms, they have emerged as a promising system to model aggregation in the cell. Here we show that bacteria provide a powerful and cost-effective system to screen for amyloid inhibitors using fluorescence spectroscopy and flow cytometry, thanks to the ability of the novel red fluorescent ProteoStat dye to detect specifically intracellular amyloid-like aggregates. We validated the approach using the Alzheimer's linked Aβ40 and Aβ42 peptides and tacrine- and huprine-based aggregation inhibitors. Overall, the present method bears the potential to replace classical in vitro anti-aggregation assays.
Collapse
Affiliation(s)
- Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Anita Carija
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
45
|
Feng BB, Zhang MM, Wang XS. Green Synthesis of Fused Polycyclic Pyrazolo[3,4-b][1,6]naphthyridine Derivatives in Ionic Liquids via Three-Component Reaction. Polycycl Aromat Compd 2015. [DOI: 10.1080/10406638.2015.1014969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bin-Bin Feng
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu, P. R. China
| | - Mei-Mei Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu, P. R. China
| | - Xiang-Shan Wang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu, P. R. China
| |
Collapse
|
46
|
Sola I, Aso E, Frattini D, López-González I, Espargaró A, Sabaté R, Di Pietro O, Luque FJ, Clos MV, Ferrer I, Muñoz-Torrero D. Novel Levetiracetam Derivatives That Are Effective against the Alzheimer-like Phenotype in Mice: Synthesis, in Vitro, ex Vivo, and in Vivo Efficacy Studies. J Med Chem 2015; 58:6018-32. [PMID: 26181606 DOI: 10.1021/acs.jmedchem.5b00624] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have synthesized a series of heptamethylene-linked levetiracetam-huprine and levetiracetam-(6-chloro)tacrine hybrids to hit amyloid, tau, and cholinergic pathologies as well as β-amyloid (Aβ)-induced epileptiform activity, some of the mechanisms that eventually lead to cognitive deficits in Alzheimer's disease patients. These hybrids are potent inhibitors of human acetylcholinesterase and butyrylcholinesterase in vitro and moderately potent Aβ42 and tau antiaggregating agents in a simple E. coli model of amyloid aggregation. Ex vivo determination of the brain acetylcholinesterase inhibitory activity of these compounds after intraperitoneal injection to C57BL6J mice has demonstrated their ability to enter the brain. The levetiracetam-huprine hybrid 10 significantly reduced the incidence of epileptic seizures, cortical amyloid burden, and neuroinflammation in APP/PS1 mice after a 4-week treatment with a 5 mg/kg dose. Moreover, the hybrid 10 rescued transgenic mice from cognitive deficits, thereby emerging as an interesting disease-modifying anti-Alzheimer drug candidate.
Collapse
Affiliation(s)
- Irene Sola
- †Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - Ester Aso
- ‡Institut de Neuropatologia, Servei d'Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,§CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Daniela Frattini
- †Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - Irene López-González
- ‡Institut de Neuropatologia, Servei d'Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,§CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Alba Espargaró
- ∥Departament de Fisicoquímica, Facultat de Farmàcia, and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Raimon Sabaté
- ∥Departament de Fisicoquímica, Facultat de Farmàcia, and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ornella Di Pietro
- †Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - F Javier Luque
- ⊥Departament de Fisicoquímica, Facultat de Farmàcia (Campus Torribera), and IBUB, Universitat de Barcelona, Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - M Victòria Clos
- #Departament de Farmacologia, de Terapèutica, i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Isidro Ferrer
- ‡Institut de Neuropatologia, Servei d'Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,§CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Diego Muñoz-Torrero
- †Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| |
Collapse
|
47
|
Szałaj N, Bajda M, Dudek K, Brus B, Gobec S, Malawska B. Multiple Ligands Targeting Cholinesterases and β-Amyloid: Synthesis, Biological Evaluation of Heterodimeric Compounds with Benzylamine Pharmacophore. Arch Pharm (Weinheim) 2015; 348:556-63. [DOI: 10.1002/ardp.201500117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 03/31/2015] [Accepted: 04/24/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Natalia Szałaj
- Department of Physicochemical Drug Analysis; Faculty of Pharmacy; Jagiellonian University Medical College; Kraków Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis; Faculty of Pharmacy; Jagiellonian University Medical College; Kraków Poland
| | - Katarzyna Dudek
- Department of Physicochemical Drug Analysis; Faculty of Pharmacy; Jagiellonian University Medical College; Kraków Poland
| | - Boris Brus
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Stanislav Gobec
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis; Faculty of Pharmacy; Jagiellonian University Medical College; Kraków Poland
| |
Collapse
|
48
|
Design, synthesis and evaluation of novel 5,6,7-trimethoxyflavone-6-chlorotacrine hybrids as potential multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2015; 25:1541-5. [PMID: 25724825 DOI: 10.1016/j.bmcl.2015.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/17/2015] [Accepted: 02/07/2015] [Indexed: 01/22/2023]
Abstract
A series of 5,6,7-trimethoxyflavone-6-chlorotacrine hybrids were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer's disease (AD). The results showed that the target compounds exhibited good acetylcholinesterase (AChE) inhibitory potencies, high selectivity toward AChE over butyrylcholinesterase (BuChE), potential antioxidant activities and significant inhibitory potencies of self-induced beta-amyloid peptide (Aβ) aggregation. In particular, compound 14c had the strongest AChE inhibitory activity with IC50 value of 12.8 nM, potent inhibition of self-induced Aβ1-42 aggregation with inhibition ratio of 33.8% at 25 μM. Moreover, compound 14c acted as an antioxidant, as well as a neuroprotectant. Furthermore, 14c could cross the blood-brain barrier (BBB) in vitro. The results showed that compound 14c might be a potential multifunctional candidate for the treatment of AD.
Collapse
|
49
|
Benchekroun M, Bartolini M, Egea J, Romero A, Soriano E, Pudlo M, Luzet V, Andrisano V, Jimeno ML, López MG, Wehle S, Gharbi T, Refouvelet B, de Andrés L, Herrera-Arozamena C, Monti B, Bolognesi ML, Rodríguez-Franco MI, Decker M, Marco-Contelles J, Ismaili L. Novel Tacrine-Grafted Ugi Adducts as Multipotent Anti-Alzheimer Drugs: A Synthetic Renewal in Tacrine-Ferulic Acid Hybrids. ChemMedChem 2014; 10:523-39. [DOI: 10.1002/cmdc.201402409] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Indexed: 01/09/2023]
|