1
|
Zaman M, Andreasen M. Modulating Kinetics of the Amyloid-Like Aggregation of S. aureus Phenol-Soluble Modulins by Changes in pH. Microorganisms 2021; 9:microorganisms9010117. [PMID: 33430169 PMCID: PMC7825627 DOI: 10.3390/microorganisms9010117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022] Open
Abstract
The pathogen Staphylococcus aureus is recognized as one of the most frequent causes of biofilm-associated infections. The recently identified phenol-soluble modulin (PSM) peptides act as the key molecular effectors of staphylococcal biofilm maturation and promote the formation of an aggregated fibril structure. The aim of this study was to evaluate the effect of various pH values on the formation of functional amyloids of individual PSM peptides. Here, we combined a range of biophysical, chemical kinetics and microscopic techniques to address the structure and aggregation mechanism of individual PSMs under different conditions. We established that there is a pH-induced switch in PSM aggregation kinetics. Different lag times and growth of fibrils were observed, which indicates that there was no clear correlation between the rates of fibril elongation among different PSMs. This finding confirms that pH can modulate the aggregation properties of these peptides and suggest a deeper understanding of the formation of aggregates, which represents an important basis for strategies to interfere and might help in reducing the risk of biofilm-related infections.
Collapse
|
2
|
Dean DN, Lee JC. pH-Dependent fibril maturation of a Pmel17 repeat domain isoform revealed by tryptophan fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:961-969. [PMID: 30716507 DOI: 10.1016/j.bbapap.2019.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/19/2022]
Abstract
The pre-melanosomal protein (Pmel17) aggregates within melanosomes to form functional amyloid fibrils that facilitate melanin polymerization. The repeat domain (RPT) of Pmel17 fibrillates under strict acidic melanosomal pH. Alternative splicing results in a shortened repeat domain (sRPT), which also forms amyloid fibrils. Here, we explored the effects of pH and protein concentration on sRPT aggregation by monitoring the intrinsic fluorescence of the sole tryptophan at position 381 (381W). 381W emission properties revealed changes of local environment polarity for sRPT fibrils formed at different pH. At pH 4, fibrils formed rapidly with no lag phase. A high 381W intensity was observed with a slight blue shift (10 nm). These fibrils underwent further structural rearrangements at intermediate pH (5-6), mirroring that of melanosome maturation, which initiates at pH 4 and increases to near neutral pH. In contrast, typical sigmoidal kinetics were observed at pH 6 with slower rates and 381W exhibited quenched emission. Interestingly, biphasic kinetics were observed at pH 5 in a protein concentration-dependent manner. A large 381W blue shift (23 nm) was measured, indicating a more hydrophobic environment for fibrils made at pH 5. Consistent with 381W fluorescence, Raman spectroscopy revealed molecular level perturbations in sRPT fibrils that were not evident from circular dichroism, transmission electron microscopy, or limited proteolysis analysis. Finally, sRPT fibrils did not form at pH ≥7 and preformed fibrils rapidly disaggregated under these solution conditions. Collectively, this work yields mechanistic insights into pH-dependent sRPT aggregation in the context of melanosome maturation.
Collapse
Affiliation(s)
- Dexter N Dean
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
3
|
Paik BA, Mane SR, Jia X, Kiick KL. Responsive Hybrid (Poly)peptide-Polymer Conjugates. J Mater Chem B 2017; 5:8274-8288. [PMID: 29430300 PMCID: PMC5802422 DOI: 10.1039/c7tb02199b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(Poly)peptide-polymer conjugates continue to garner significant interest in the production of functional materials given their composition of natural and synthetic building blocks that confer select and synergistic properties. Owing to opportunities to design predefined architectures and structures with different morphologies, these hybrid conjugates enable new approaches for producing micro- or nanomaterials. Their modular design enables the incorporation of multiple responsive properties into a single conjugate. This review presents recent advances in (poly)peptide-polymer conjugates for drug-delivery applications, with a specific focus on the utility of the (poly)peptide component in the assembly of particles and nanogels, as well as the role of the peptide in triggered drug release.
Collapse
Affiliation(s)
- Bradford A Paik
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
| | - Shivshankar R Mane
- The Institude For Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 18, 76128 Karlsruhe, Germany
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| |
Collapse
|
4
|
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46:4661-4708. [PMID: 28530745 PMCID: PMC6364806 DOI: 10.1039/c6cs00542j] [Citation(s) in RCA: 558] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled peptide and protein amyloid nanostructures have traditionally been considered only as pathological aggregates implicated in human neurodegenerative diseases. In more recent times, these nanostructures have found interesting applications as advanced materials in biomedicine, tissue engineering, renewable energy, environmental science, nanotechnology and material science, to name only a few fields. In all these applications, the final function depends on: (i) the specific mechanisms of protein aggregation, (ii) the hierarchical structure of the protein and peptide amyloids from the atomistic to mesoscopic length scales and (iii) the physical properties of the amyloids in the context of their surrounding environment (biological or artificial). In this review, we will discuss recent progress made in the field of functional and artificial amyloids and highlight connections between protein/peptide folding, unfolding and aggregation mechanisms, with the resulting amyloid structure and functionality. We also highlight current advances in the design and synthesis of amyloid-based biological and functional materials and identify new potential fields in which amyloid-based structures promise new breakthroughs.
Collapse
Affiliation(s)
- Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen,
Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing
University of Chemical Technology, China
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Swinburne University of
Technology, Melbourne, Australia
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH-Zurich,
Switzerland
| | | | - Ehud Gazit
- Faculty of Life Sciences, Tel Aviv University, Israel
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH-Zurich,
Switzerland
| |
Collapse
|
5
|
Rajbhandary A, Raymond DM, Nilsson BL. Self-Assembly, Hydrogelation, and Nanotube Formation by Cation-Modified Phenylalanine Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5803-5813. [PMID: 28514156 DOI: 10.1021/acs.langmuir.7b00686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fluorenylmethoxycarbonyl-protected phenylalanine (Fmoc-Phe) derivatives are a privileged class of molecule that spontaneously self-assemble into hydrogel fibril networks. Fmoc-Phe-derived hydrogels are typically formed by dilution of the hydrogelator from an organic cosolvent into water, by dissolution of the hydrogelator under basic aqueous conditions followed by adjustment of the pH with acid, or by other external triggering forces, including sonication and heating. These conditions complicate biological applications of these hydrogels. Herein, we report C-terminal cation-modified Fmoc-Phe derivatives that are positively charged across a broad range of pH values and that can self-assemble and form hydrogel networks spontaneously without the need to adjust pH or to use an organic cosolvent. In addition, these cationic Fmoc-Phe derivatives are found to self-assemble into novel sheet-based nanotube structures at higher concentrations. These nanotube structures are unique to C-terminal cationic Fmoc-Phe derivatives; the parent Fmoc-Phe carboxylic acids form only fibril or worm-like micelle structures. Nanotube formation by the cationic Fmoc-Phe molecules is dependent on positive charge at the C-terminus, since at basic pH where the positive charge is reduced only fibrils/worm-like micelles are formed and nanotube formation is suppressed. These studies provide an important example of Fmoc-Phe derivatives that can elicit hydrogelation without organic cosolvent or pH modification and also provide insight into how subtle modification of structure can perturb the self-assembly pathways of Fmoc-Phe derivatives.
Collapse
Affiliation(s)
- Annada Rajbhandary
- Department of Chemistry, University of Rochester , Rochester, New York 14627-0216, United States
| | - Danielle M Raymond
- Department of Chemistry, University of Rochester , Rochester, New York 14627-0216, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester , Rochester, New York 14627-0216, United States
| |
Collapse
|
6
|
Sivakama Sundari C, Bikshapathy E, Nagaraj R. Self-assembly of a peptide with a tandem repeat of the Aβ16-22 sequence linked by a β turn-promoting dipeptide sequence. Biopolymers 2015; 104:790-803. [DOI: 10.1002/bip.22753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/21/2015] [Accepted: 10/10/2015] [Indexed: 12/31/2022]
|
7
|
Smith JE, Liang C, Tseng M, Li N, Li S, Mowles AK, Mehta AK, Lynn DG. Defining the Dynamic Conformational Networks of Cross-β Peptide Assembly. Isr J Chem 2015. [DOI: 10.1002/ijch.201500012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Jones LH, Heinis C. Chemical biology & drug discovery. Eur J Med Chem 2014; 88:1-2. [PMID: 25307206 DOI: 10.1016/j.ejmech.2014.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Lyn H Jones
- Worldwide Medicinal Chemistry, Pfizer BioTherapeutics Chemistry, Cambridge, MA, USA.
| | - Christian Heinis
- Laboratory of Therapeutic Proteins and Peptides (LPPT), École Polytechnique Fédérale de Lausanne (EPFL), BCH 5305 (Bâtochime), Lausanne CH-1015, Switzerland.
| |
Collapse
|