1
|
Al-Warhi T, Al-Karmalawy AA, Elmaaty AA, Alshubramy MA, Abdel-Motaal M, Majrashi TA, Asem M, Nabil A, Eldehna WM, Sharaky M. Biological evaluation, docking studies, and in silico ADME prediction of some pyrimidine and pyridine derivatives as potential EGFR WT and EGFR T790M inhibitors. J Enzyme Inhib Med Chem 2023; 38:176-191. [PMID: 36317648 PMCID: PMC9635468 DOI: 10.1080/14756366.2022.2135512] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
Herein, a set of pyridine and pyrimidine derivatives were assessed for their impact on the cell cycle and apoptosis. Human breast cancer (MCF7), hepatocellular carcinoma (HEPG2), larynx cancer (HEP2), lung cancer (H460), colon cancers (HCT116 and Caco2), and hypopharyngeal cancer (FADU), and normal Vero cell lines were used. Compounds 8 and 14 displayed outstanding effects on the investigated cell lines and were further tested for their antioxidant activity in MCF7, H460, FADU, HEP2, HEPG2, HCT116, Caco2, and Vero cells by measuring superoxide dismutase (SOD), malondialdehyde content (MDA), reduced glutathione (GSH), and nitric oxide (NO) content. Besides, Annexin V-FITC apoptosis detection and cell cycle DNA index using the HEPG-2 cell line were established on both compounds as well. Furthermore, compounds 8 and 14 were assessed for their EGFR kinase (Wild and T790M) inhibitory activities, revealing eligible potential. Additionally, molecular docking, ADME, and SAR studies were carried out for the investigated candidates.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Maha A. Alshubramy
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Medhat Asem
- College of Engineering and Information Technology, Onaizah Colleges, Al-Qassim, Saudi Arabia
| | - Ahmed Nabil
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Polo-Cuadrado E, Rojas-Peña C, Acosta-Quiroga K, Camargo-Ayala L, Brito I, Cisterna J, Moncada F, Trilleras J, Rodríguez-Núñez YA, Gutierrez M. Design, synthesis, theoretical study, antioxidant, and anticholinesterase activities of new pyrazolo-fused phenanthrolines. RSC Adv 2022; 12:33032-33048. [PMID: 36425206 PMCID: PMC9671100 DOI: 10.1039/d2ra05532e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/03/2022] [Indexed: 10/19/2023] Open
Abstract
Pyrazole-fused phenanthroline compounds were obtained through several synthetic routes. NMR, HRMS, and IR techniques were used to characterize and confirm the chemical structures. Crystal structures were obtained from compounds 3a, 5b, 5j, 5k, and 5n and analyzed using X-ray diffraction. Compounds were evaluated as acetyl (AChE) and butyrylcholinesterase (BChE) inhibitors, and the results showed a moderate activity. Compound 5c presented the best activity against AChE (IC50 = 53.29 μM) and compound 5l against BChE enzyme (IC50 = 119.3 μM). Furthermore, the ability of the synthetic compounds to scavenge cationic radicals DPPH and ABTS was evaluated. Compound 5e (EC50 = 26.71 μg mL-1) presented the best results in the DPPH assay, and compounds 5e, 5f and 5g (EC50 = 11.51, 3.10 and <3 μg mL-1, respectively) showed better ABTS cationic radical scavenging results. Finally, in silico analyses indicated that 71% of the compounds show good oral availability and are within the ranges established by the Lipinski criteria.
Collapse
Affiliation(s)
- Efraín Polo-Cuadrado
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Cristian Rojas-Peña
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Doctorado en Química, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile Santiago Chile
| | - Karen Acosta-Quiroga
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Doctorado en Química, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile Santiago Chile
| | - Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica (LSO-Act-Bio), Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Campus Coloso Antofagasta 02800 Chile
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Campus Coloso Antofagasta 02800 Chile
| | - Félix Moncada
- Departamento de Química, Universidad Nacional de Colombia Av. Cra 30 # 45-03 Bogotá Colombia
| | - Jorge Trilleras
- Grupo de Investigación en Compuestos Heterocíclicos, Universidad del Atlántico Puerto Colombia 081007 Colombia
| | - Yeray A Rodríguez-Núñez
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andrés Bello Republica 275 Santiago 8370146 Chile
| | - Margarita Gutierrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
3
|
Synthesis of Diversified Pyrazolo[3,4-b]pyridine Frameworks from 5-Aminopyrazoles and Alkynyl Aldehydes via Switchable C≡C Bond Activation Approaches. Molecules 2022; 27:molecules27196381. [PMID: 36234926 PMCID: PMC9571537 DOI: 10.3390/molecules27196381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
A cascade 6-endo-dig cyclization reaction was developed for the switchable synthesis of halogen and non-halogen-functionalized pyrazolo[3,4-b]pyridines from 5-aminopyrazoles and alkynyl aldehydes via C≡C bond activation with silver, iodine, or NBS. In addition to its wide substrate scope, the reaction showed good functional group tolerance as well as excellent regional selectivity. This new protocol manipulated three natural products, and the arylation, alkynylation, alkenylation, and selenization of iodine-functionalized products. These reactions demonstrated the potential applications of this new method.
Collapse
|
4
|
Aboukhatwa SM, Ibrahim AO, Aoyama H, Al-Behery AS, Shaldam MA, El-Ashmawy G, Tawfik HO. Nicotinonitrile-derived apoptotic inducers: Design, synthesis, X-ray crystal structure and Pim kinase inhibition. Bioorg Chem 2022; 129:106126. [PMID: 36108589 DOI: 10.1016/j.bioorg.2022.106126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 12/29/2022]
Abstract
Although a plethora of targeted anticancer small molecule drugs became available, the low response rate and drug resistance imply the continuous need for expanding the anticancer chemical space. In this study, a novel series of nicotinonitrile derivatives was designed, synthesized and evaluated for cytotoxic activities in HepG2 and MCF-7 cells. All derivatives showed high to moderate cytotoxic activity against both cell lines, with cell-type and chemotype-dependent cytotoxic potential. The normal HEK-293 T cells were ca. 50-fold less susceptible to the cytotoxic effect of the inhibitors. The in vitro enzyme inhibitory activity of selected active cytotoxic derivatives 8c, 8e, 9a, 9e and 12 showed that they have sub- to one digit micromolar 50 % inhibitory concentration (IC50) against the three Pim kinase isoforms, with 8e being the most potent (IC50 ≤ 0.28 μM against three Pim kinases), comparable to the pan kinase inhibitor, Staurosporine. In HepG2, 8e induced cell cycle arrest at the G2/M phase. Apoptotic mechanistic studies with 8c and 8e in HepG2 cells, indicated a significant upregulation in both P53 and caspase-3 relative gene expression, as well as increased Bax/Bcl-2 protein expression level. Further, docking studies combined with molecular dynamic simulation showed a stable complex with high binding affinity of 8e to Pim-1 kinase; exploiting a negative electrostatic potential surface interaction with the added dimethyl amino group in the new compounds. Moreover, in silico ADME profile prediction indicated that all compounds are orally bioavailable and most of them can penetrate the blood-brain barrier. This study presents novel nicotinonitrile derivatives as auspicious hits for further optimization as antiproliferative agents against liver cancer cells and promising pan Pim kinase inhibitors at submicromolar concentrations.
Collapse
Affiliation(s)
- Shaimaa M Aboukhatwa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Amera O Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ahmed S Al-Behery
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ghada El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
5
|
Bhajammanavar V, Sureshbabu P, Reddy MK, Baidya M. Organocatalyzed Modular Synthesis of Polycyclic Dihydropyridines and Pyridines through Sulfamate Linchpin. Chem Asian J 2022; 17:e202200400. [PMID: 35575143 DOI: 10.1002/asia.202200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Indexed: 11/09/2022]
Abstract
The cascade annulation between alkylidene malononitriles and cyclic sulfamidate imines has been controlled by leveraging the sulfamate functionality under organocatalysis, which allows selective access to polycyclic and densely functionalized dihydropyridines and pyridines in high yields. The protocol is scalable and shows broad substrate scope. The products were also engaged in the preparation of tetracyclic pyridopyrimidines, showcasing the synthetic versatility.
Collapse
Affiliation(s)
| | | | | | - Mahiuddin Baidya
- Indian Institute of Technology Madras, Chemistry, IIT Madras, India, Chennai, India, 600036, Chennai, INDIA
| |
Collapse
|
6
|
Donaire-Arias A, Montagut AM, Puig de la Bellacasa R, Estrada-Tejedor R, Teixidó J, Borrell JI. 1 H-Pyrazolo[3,4- b]pyridines: Synthesis and Biomedical Applications. Molecules 2022; 27:2237. [PMID: 35408636 PMCID: PMC9000541 DOI: 10.3390/molecules27072237] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Pyrazolo[3,4-b]pyridines are a group of heterocyclic compounds presenting two possible tautomeric forms: the 1H- and 2H-isomers. More than 300,000 1H-pyrazolo[3,4-b]pyridines have been described which are included in more than 5500 references (2400 patents) up to date. This review will cover the analysis of the diversity of the substituents present at positions N1, C3, C4, C5, and C6, the synthetic methods used for their synthesis, starting from both a preformed pyrazole or pyridine, and the biomedical applications of such compounds.
Collapse
Affiliation(s)
| | | | | | | | | | - José I. Borrell
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain; (A.D.-A.); (A.M.M.); (R.P.d.l.B.); (R.E.-T.); (J.T.)
| |
Collapse
|
7
|
Zubenko AA, Morkovnik AS, Divaeva LN, Sochnev VS, Demidov OP, Klimenko AI, Fetisov LN, Bodryakov AN, Bodryakova MA, Borodkin GS. New type of recyclization in 3,4-dihydroisoquinolines in the synthesis of β-(o-indazolylaryl)ethylamines and their 7-azaindazolyl analogues. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Gujjarappa R, Vodnala N, Musib D, Malakar CC. Organocatalytic Decarboxylation and Dual C(sp
3
)−H Bond Functionalization Toward Facile Access to Divergent 2,6‐Diarylpyridines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
- Department of Chemistry Indian Institute of Technology Delhi Multi-storey building, HauzKhas New Delhi 110016 India
| | - Dulal Musib
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| |
Collapse
|
9
|
Gu X, Ma S. Recent Advances in the Development of Pyrazolopyridines as Anticancer Agents. Anticancer Agents Med Chem 2021; 22:1643-1657. [PMID: 34488593 DOI: 10.2174/1871520621666210901102832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
Cancer, especially malignant tumor, is a serious threat to people's life and health. It is recognized as an enormous challenge in the 21st century. Continuous efforts are needed to overcome this problem. Pyrazolopyridine nucleus, similar in structure to purine, shows a variety of biological activities, which is mainly attributed to the antagonistic nature towards the natural purines in many biological processes. This has aroused enormous attention for many researchers. At present, a large number of new chemical entities containing pyrazolopyridine nucleus have been found as anticancer agents. In this review we summarize novel pyrazolopyridine-containing derivatives with biological activities. Furthermore, we outline the relationships between the structures of variously modified pyrazolopyridines and their anticancer activity.
Collapse
Affiliation(s)
- Xiaotong Gu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012. China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012. China
| |
Collapse
|
10
|
Mor S, Khatri M, Punia R, Sindhu S. Recent Progress on Anticancer Agents Incorporating Pyrazole Scaffold. Mini Rev Med Chem 2021; 22:115-163. [PMID: 33823764 DOI: 10.2174/1389557521666210325115218] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
The search of new anticancer agents is considered as a dynamic field of medicinal chemistry. In recent years, the synthesis of compounds with anticancer potential has increased and a large number of structurally varied compounds displaying potent anticancer activities have been published. Pyrazole is an important biologically active scaffold that possessed nearly all types of biological activities. The aim of this review is to collate literature work reported by researchers to provide an overview on in vivo and in vitro anticancer activities of pyrazole based derivatives among the diverse biological activities displayed by them and also presents recent efforts made on this heterocyclic moiety regarding anticancer activities. This review has been driven from the increasing number of publications, on this issue, which have been reported in the literature since the ending of the 20th century (from 1995-to date).
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| |
Collapse
|
11
|
Mello MVP, Domingos TFS, Ferreira DF, Ribeiro MMJ, Ribeiro TP, Rodrigues CR, Souza AMT. Antiviral Drug Discovery and Development for Mayaro Fever - What do we have so far? Mini Rev Med Chem 2020; 20:921-928. [PMID: 32178610 DOI: 10.2174/1389557520666200316160425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/01/2020] [Accepted: 03/08/2020] [Indexed: 11/22/2022]
Abstract
Tropical infectious diseases cause millions of deaths every year in developing countries, with about half of the world population living at risk. Mayaro virus (MAYV) is an emerging arbovirus that causes Mayaro fever, which is characterized by fever, headache, diarrhea, arthralgia, and rash. These symptoms can be clinically indistinguishable from other arboviruses, such as Dengue, Zika, and Chikungunya, which makes the diagnosis and treatment of the disease more difficult. Though, the Mayaro virus is a potential candidate to cause large-scale epidemics on the scale of ZIKV and CHIKV. Despite this, there is no licensed vaccine or antiviral for the treatment of Mayaro fever and most arboviruses, so the design and development of candidates for antiviral drugs are urgently needed. In this context, this mini-review aims to provide an overview of studies of anti-MAYV derivatives and highlight the importance of the discovery and development of promising drug candidates for Mayaro fever.
Collapse
Affiliation(s)
- Marcos V P Mello
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Chemistry Institute, Federal Fluminense University, Niterói, RJ, Brazil
| | - Thaisa F S Domingos
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Davis F Ferreira
- Department of Virology, Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Department of Molecular and Structural Biochemistry, North Carolina State University, North Carolina, United States of America
| | - Mariana M J Ribeiro
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thayssa P Ribeiro
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos R Rodrigues
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandra M T Souza
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Sim J, Viji M, Rhee J, Jo H, Cho SJ, Park Y, Seo S, Jung K, Lee H, Jung J. γ
‐Functionalization of
α,β
‐Unsaturated Nitriles under Mild Conditions: Versatile Synthesis of 4‐Aryl‐2‐Bromopyridines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jaeuk Sim
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| | - Jeongtae Rhee
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| | - Hyeju Jo
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| | - Suk Joon Cho
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
- Bio & Drug Discovery DivisionKorea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Yunjeong Park
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| | - Seung‐Yong Seo
- College of Pharmacy and Gachon Institute of Pharmaceutical SciencesGachon University Incheon 21936 Republic of Korea
| | - Kwan‐Young Jung
- Bio & Drug Discovery DivisionKorea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Heesoon Lee
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| | - Jae‐Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC)Chungbuk National University Cheongju 28160 Republic of Korea
| |
Collapse
|
13
|
Cao J, Sun J, Yan C. Multicomponent Reaction for Selective Synthesis of Spiro[indene‐2,7′‐isoquinoline] and 1,2,8,8
a
‐Tetrahydroisoquinoline Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201803715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jun Cao
- School of Chemistry & Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Jing Sun
- School of Chemistry & Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Chao‐Guo Yan
- School of Chemistry & Chemical EngineeringYangzhou University Yangzhou 225002 China
| |
Collapse
|
14
|
Gouda MA, Attia E, Helal MH, Salem MA. Recent Progress on Nicotinonitrile Scaffold-based Anticancer, Antitumor, and Antimicrobial Agents: A Literature Review. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Ulla; Taibah University; Medina Saudi Arabia
- Department of Chemistry, Faculty of Science; Mansoura University; El-Gomhoria Street Mansoura 35516 Egypt
| | - Ehab Attia
- Department of Chemistry, Faculty of Science; Mansoura University; El-Gomhoria Street Mansoura 35516 Egypt
| | - Mohamed H. Helal
- Department of Chemistry, Faculty of Arts and Science; Northern Border University; Rafha Saudi Arabia
- Department of Chemistry, Faculty of Science; Al-Azhar University; Nasr City 11284 Cairo Egypt
| | - Mohammed A. Salem
- Department of Chemistry, Faculty of Science; Al-Azhar University; Nasr City 11284 Cairo Egypt
- Department of Chemistry, Faculty of Arts and Science; King Khalid University; Abha Muhayil Asir Saudi Arabia
| |
Collapse
|
15
|
Ershov OV, Ievlev MY, Belikov MY, Maksimova VN. Synthesis of 2-Hydrazinylpyridine-3,4-dicarbonitriles and Their Reaction with Salicylaldehyde Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018060088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Joshi H, Shah N, Sakar D, Desai NC, Jadeja KA. One Pot Synthesis and Biological Evaluation of Some New Pyridine‐3,5‐dicarbonitrile Derivatives. ChemistrySelect 2018. [DOI: 10.1002/slct.201702116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hitendra Joshi
- Department of ChemistrySaurashtra University Rajkot - 360005, Gujarat India
| | - Nirav Shah
- Department of ChemistrySaurashtra University Rajkot - 360005, Gujarat India
| | - Dhiman Sakar
- Combi Chem-Bio Resource CentreCSIR-National Chemical Laboratory Pune - 411008 India
| | - N. C. Desai
- Division of Medicinal Chemistry, Department of Chemistry (UGC NON-SAP & DST-FIST Sponsored)M K Bhavnagar University Bhavnagar - 364002, Gujarat India
| | - Krunalsinh A. Jadeja
- Division of Medicinal Chemistry, Department of Chemistry (UGC NON-SAP & DST-FIST Sponsored)M K Bhavnagar University Bhavnagar - 364002, Gujarat India
| |
Collapse
|
17
|
Maksimova VN, Naidenova AI, Ershov OV, Nasakin OE, Tafeenko VA. Synthesis of 3-aminopyrazolo[3,4-b]pyridine-4-carbonitriles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428016120204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Giannouli V, Lougiakis N, Kostakis IK, Pouli N, Marakos P, Skaltsounis AL, Nam S, Jove R, Horne D, Tenta R, Pratsinis H, Kletsas D. The discovery of new cytotoxic pyrazolopyridine derivatives. Bioorg Med Chem Lett 2016; 26:5229-5233. [DOI: 10.1016/j.bmcl.2016.09.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023]
|
19
|
Design, synthesis and anti-P. falciparum activity of pyrazolopyridine–sulfonamide derivatives. Bioorg Med Chem 2016; 24:4492-4498. [DOI: 10.1016/j.bmc.2016.07.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 11/19/2022]
|
20
|
Lu YL, Sun J, Xie YJ, Yan CG. Molecular diversity of the cyclization reaction of 3-methyleneoxindoles with 2-(3,4-dihydronaphthalen-1(2H)-ylidene)malononitriles. RSC Adv 2016. [DOI: 10.1039/c6ra00476h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cyclization reaction of 3-methyleneoxindoles with 2-(3,4-dihydronaphthalen-1(2H)-ylidene)malononitrile in ethanol in the presence of DBU at room temperature afforded functionalized 3′-iminospiro[indoline-3,2′-phenanthrenes] in good yields.
Collapse
Affiliation(s)
- Yu-Ling Lu
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Jing Sun
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Ya-Jing Xie
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| |
Collapse
|
21
|
Shu K, Shao J, Li H, Chen B, Tang P, Liu X, Chen W, Yu Y. Base-mediated synthesis of highly functionalized 2-aminonicotinonitriles from α-keto vinyl azides and α,α-dicyanoalkenes. RSC Adv 2016. [DOI: 10.1039/c6ra04669j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A novel access to highly functionalized 2-aminonicotinonitriles via efficient annulations of α-keto vinyl azides and α,α-dicyanoalkenes is described.
Collapse
Affiliation(s)
- Ke Shu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Jiaan Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Hong Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Binhui Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Pai Tang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Xingyu Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Wenteng Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Yongping Yu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Science
- Zhejiang University
- Hangzhou 310058
- P. R. China
| |
Collapse
|
22
|
Castillo JC, Quiroga J, Abonia R, Rodriguez J, Coquerel Y. The Aryne aza-Diels–Alder Reaction: Flexible Syntheses of Isoquinolines. Org Lett 2015; 17:3374-7. [DOI: 10.1021/acs.orglett.5b01704] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Juan-Carlos Castillo
- Aix Marseille
Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Jairo Quiroga
- Universidad del Valle, Departamento de Química, A.A. 25360, Cali, Colombia
| | - Rodrigo Abonia
- Universidad del Valle, Departamento de Química, A.A. 25360, Cali, Colombia
| | - Jean Rodriguez
- Aix Marseille
Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Yoann Coquerel
- Aix Marseille
Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| |
Collapse
|
23
|
El Fal M, Ramli Y, Essassi EM, Saadi M, El Ammari L. The crystal structure of 1,5-dibenzyl-1 H-pyrazolo[3,4- d]pyrimidine-4(5 H)-thione. Acta Crystallogr E Crystallogr Commun 2015; 71:o95-6. [PMID: 25878890 PMCID: PMC4384557 DOI: 10.1107/s205698901402828x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/31/2014] [Indexed: 11/20/2022]
Abstract
In the title compound, C19H16N4S, the pyrazolo[3,4-d]pyrimidine ring is close to being planar, with the greatest deviation from the mean plane being 0.023 (2) Å for the C atom bearing the thione S atom. The two phenyl rings are nearly perpendicular to the fused ring system [dihedral angles = 71.4 (2) and 78.1 (2)°], but are oriented in opposite directions; the dihedral angle between the phenyl rings is 32.22 (16)°. In the crystal, linear supramolecular chains along [101] are sustained by C—H⋯S interactions.
Collapse
|