1
|
Liu D, Patureau FW. Visible-Light-Induced Photocatalytic Deoxygenative Benzylation of Quinoxalin-2-(1 H)-ones with Carboxylic Acid Anhydrides. Org Lett 2024; 26:6841-6846. [PMID: 39110606 DOI: 10.1021/acs.orglett.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A visible-light-induced photocatalytic deoxygenative benzylation of quinoxalin-2-(1H)-ones is herein described. This novel approach provides a mild, simple, and practical route to 3-benzylquinoxalin-2(1H)-ones from ubiquitous and safe carboxylic acid anhydrides. A wide range of substrates with different substituents were well-tolerated and efficiently transformed to various functionalized 3-benzylquinoxalin-2(1H)-ones with great potential for valuable applications in drug discovery. Mechanistic investigations suggest H2O as a proton source, while hydroxyl-containing quinoxalin-2(1H)-ones may be key intermediates of the photocatalytic deoxygenative process.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
2
|
Montero V, Montana M, Carré M, Vanelle P. Quinoxaline derivatives: Recent discoveries and development strategies towards anticancer agents. Eur J Med Chem 2024; 271:116360. [PMID: 38614060 DOI: 10.1016/j.ejmech.2024.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Cancer is a leading cause of death and a major health problem worldwide. While many effective anticancer agents are available, most drugs currently on the market are not specific, raising issues like the common side effects of chemotherapy. However, recent research hold promises for the development of more efficient and safer anticancer drugs. Quinoxaline and its derivatives are becoming recognized as a novel class of chemotherapeutic agents with activity against different tumors. The present review compiles and discusses studies concerning the therapeutic potential of the anticancer activity of quinoxaline derivatives, covering articles published between January 2018 and January 2023.
Collapse
Affiliation(s)
- Vincent Montero
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Service de Pharmacologie Clinique et Pharmacovigilance, Hôpital de la Timone, Marseille CEDEX 05, 13385, France.
| | - Marc Montana
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Oncopharma, Hôpital Nord, Marseille, France
| | - Manon Carré
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie, Marseille, France
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, Hôpital Conception, Marseille, 13005, France
| |
Collapse
|
3
|
Abad N, Mague JT, Alsubari A, Essassi EM, Alzahrani AYA, Ramli Y. Synthesis, crystal structure and Hirshfeld surface analysis of 1-[3-(2-oxo-3-phenyl-1,2-di-hydro-quinoxalin-1-yl)prop-yl]-3-phenyl-1,2-di-hydro-quinoxalin-2-one. Acta Crystallogr E Crystallogr Commun 2024; 80:610-614. [PMID: 38845705 PMCID: PMC11151325 DOI: 10.1107/s2056989024004377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
In the title compound, C31H24N4O2, the di-hydro-quinoxaline units are both essentially planar with the dihedral angle between their mean planes being 64.82 (4)°. The attached phenyl rings differ significantly in their rotational orientations with respect to the di-hydro-quinoxaline planes. In the crystal, one set of C-H⋯O hydrogen bonds form chains along the b-axis direction, which are connected in pairs by a second set of C-H⋯O hydrogen bonds. Two sets of π-stacking inter-actions and C-H⋯π(ring) inter-actions join the double chains into the final three-dimensional structure.
Collapse
Affiliation(s)
- Nadeem Abad
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
- Laboratory of Heterocyclic Organic Chemistry Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | | | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
4
|
Niu KK, Cui J, Dong RZ, Yu S, Liu H, Xing LB. Visible-light-mediated direct C3 alkylation of quinoxalin-2(1 H)-ones using alkanes. Chem Commun (Camb) 2024; 60:2409-2412. [PMID: 38323602 DOI: 10.1039/d3cc06285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Due to the high C-H bond dissociation energy of alkanes, the utilization of alkanes as alkyl radical precursors for C-H functionalization of heteroarenes is synthetically captivating but practically challenging, especially under metal- and photocatalyst-free conditions. We report herein a mild and practical visible-light-mediated method for C-H alkylation of quinoxalin-2(1H)-ones using trifluoroacetic acid as a hydrogen atom transfer reagent and air as an oxidant. This mild protocol was performed under metal- and photocatalyst-free circumstances and presented good functional-group tolerance as well as a broad substrate scope.
Collapse
Affiliation(s)
- Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Jing Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Rui-Zhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| |
Collapse
|
5
|
Zhang Z, Zhou Y, Wang J, Zhang Y, Wang L, Liu J, Zhou C, Wang M, Li P. Radical relay cyclization/C-C bond formation of allyloxy-tethered aryl iodides with quinoxalin-2(1 H)-ones via polysulfide anion photocatalysis. Org Biomol Chem 2024; 22:1708-1713. [PMID: 38315045 DOI: 10.1039/d3ob01978k] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A visible-light-induced radical relay cyclization/C-C bond formation of quinoxalin-2(1H)-ones with allyloxy-tethered aryl iodides using polysulfide anions as a photocatalyst is described. This protocol allows efficient access to a variety of complicated molecules bearing both quinoxalin-2(1H)-one and 2,3-dihydrobenzofuran motifs in high yields under mild reaction conditions with a broad range of substrates.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Yaqin Zhou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Jiehui Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Min Wang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
- College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
- College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
6
|
Prince, Monika, Kumar P, Singh BK. Visible-Light-Driven Regioselective Decarboxylative Acylation of N-Methyl-3-phenylquinoxalin-2(1 H)-one by Dual Palladium-Photoredox Catalysis Through C-H Activation. ACS OMEGA 2024; 9:651-657. [PMID: 38239288 PMCID: PMC10796110 DOI: 10.1021/acsomega.3c06367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024]
Abstract
We report herein an efficient visible-light-promoted approach for the regioselective decarboxylative C-H acylation of N-methyl-3-phenylquinoxalin-2(1H)-ones using α-oxo-2-phenylacetic acids via dual palladium-photoredox catalysis. The reactions were carried out at room temperature in the presence of 24 W blue LEDs. The established protocol tolerated a wide range of functional groups and enabled the synthesis of several acylated N-methyl-3-phenylquinoxalin-2(1H)-ones in good to excellent yields. The proposed mechanism for this transformation was supported by control experiments.
Collapse
Affiliation(s)
- Prince
- Bio-organic
Chemistry Laboratory, Department of Chemistry, University of Delhi, New Delhi 110007, India
| | - Monika
- Bio-organic
Chemistry Laboratory, Department of Chemistry, University of Delhi, New Delhi 110007, India
| | - Prashant Kumar
- Bio-organic
Chemistry Laboratory, Department of Chemistry, University of Delhi, New Delhi 110007, India
- Department
of Chemistry, SRM University Delhi-NCR Sonepat, Sonepat, Haryana 131029, India
| | - Brajendra Kumar Singh
- Bio-organic
Chemistry Laboratory, Department of Chemistry, University of Delhi, New Delhi 110007, India
| |
Collapse
|
7
|
Chahal S, Rani P, Kiran, Sindhu J, Joshi G, Ganesan A, Kalyaanamoorthy S, Mayank, Kumar P, Singh R, Negi A. Design and Development of COX-II Inhibitors: Current Scenario and Future Perspective. ACS OMEGA 2023; 8:17446-17498. [PMID: 37251190 PMCID: PMC10210234 DOI: 10.1021/acsomega.3c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 09/29/2023]
Abstract
Innate inflammation beyond a threshold is a significant problem involved in cardiovascular diseases, cancer, and many other chronic conditions. Cyclooxygenase (COX) enzymes are key inflammatory markers as they catalyze prostaglandins production and are crucial for inflammation processes. While COX-I is constitutively expressed and is generally involved in "housekeeping" roles, the expression of the COX-II isoform is induced by the stimulation of different inflammatory cytokines and also promotes the further generation of pro-inflammatory cytokines and chemokines, which affect the prognosis of various diseases. Hence, COX-II is considered an important therapeutic target for drug development against inflammation-related illnesses. Several selective COX-II inhibitors with safe gastric safety profiles features that do not cause gastrointestinal complications associated with classic anti-inflammatory drugs have been developed. Nevertheless, there is mounting evidence of cardiovascular side effects from COX-II inhibitors that resulted in the withdrawal of market-approved anti-COX-II drugs. This necessitates the development of COX-II inhibitors that not only exhibit inhibit potency but also are free of side effects. Probing the scaffold diversity of known inhibitors is vital to achieving this goal. A systematic review and discussion on the scaffold diversity of COX inhibitors are still limited. To address this gap, herein we present an overview of chemical structures and inhibitory activity of different scaffolds of known COX-II inhibitors. The insights from this article could be helpful in seeding the development of next-generation COX-II inhibitors.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Payal Rani
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Kiran
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Jayant Sindhu
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Gaurav Joshi
- Department
of Pharmaceutical Sciences, Hemvati Nandan
Bahuguna Garhwal (A Central) University, Chauras Campus, Tehri Garhwal, Uttarakhand 249161, India
- Adjunct
Faculty at Department of Biotechnology, Graphic Era (Deemed to be) University, 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002, India
| | - Aravindhan Ganesan
- ArGan’sLab,
School of Pharmacy, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | | | - Mayank
- University
College of Pharmacy, Guru Kashi University, Talwandi Sabo, Punjab 151302, India
| | - Parvin Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Rajvir Singh
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
8
|
Huang J, Wang L, Tang XY. Oxidative cross-coupling of quinoxalinones with indoles enabled by acidochromism. Org Biomol Chem 2023; 21:2709-2714. [PMID: 36928912 DOI: 10.1039/d3ob00280b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An oxidative cross-coupling of quinoxalinones with indole derivatives via B(C6F5)3·H2O induced acidochromism of quinoxalinone derivatives was developed under mild and external photocatalyst-free conditions. The reaction shows excellent substrate scope, accommodating a wide range of functional groups. The usefulness of this strategy was demonstrated by the synthesis of the natural products Azacephalandole A and Cephalandole A in high yields. Moreover, the products are fluorophores showing prevalent fluorescence properties with a wide emission range and good relative quantum yields.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China.
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China.
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China.
| |
Collapse
|
9
|
Sonam, Shinde VN, Rangan K, Kumar A. Selectfluor-Mediated Regioselective C-3 Alkoxylation, Amination, Sulfenylation, and Selenylation of Quinoxalin-2(1 H)-ones. J Org Chem 2023; 88:2344-2357. [PMID: 36735722 DOI: 10.1021/acs.joc.2c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A Selectfluor-promoted oxidative coupling of quinoxalin-2(1H)-ones with alcohols, amines, thiols, and selenols leading to the formation of C-O, C-N, C-S, and C-Se bonds has been developed. The protocol provided good to excellent (53-95%) yields of a wide range of quinoxalin-2(1H)-ones decorated with alkoxy, alkylamino, alkylthio, and arylselenyl groups at the C3-position under metal- and photocatalyst-free conditions. The reaction is believed to proceed through a radical pathway. A broad substrate scope including bioactive molecules, mild reaction conditions, readily available coupling partners, high yields, scalability, step-economy, and metal- and photocatalyst-free conditions are the highlighting features of the method. The synthetic utility of the developed protocol was demonstrated by gram-scale synthesis, C3-alkoxylation of quinoxaline-2(1H)-one with natural alcohols, and synthesis of aldose reductase (ALR2) inhibitor and histamine-4 receptor antagonist in good yields.
Collapse
Affiliation(s)
- Sonam
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
10
|
Shen L, Yuan JW, Zhang B, Song SY, Yang LR, Xiao YM, Zhang SR, Qu LB. Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1 H)-ones with unactivated vinylarenes and BrCF 2CO 2Et/HCF 2CO 2H. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2023. [DOI: 10.1515/znb-2022-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Abstract
An environmentally friendly strategy for the photo-catalyzed three-component reaction between quinoxalin-2(1H)-ones, vinylarenes, with inexpensive and easily accessible ethyl bromodifluoroacetate/sodium difluoromethanesulfinate is described. This protocol exhibits mild conditions, high efficiency, and excellent functional group tolerance, providing a highly efficient approach for the synthesis of difluorobenzylated quinoxalin-2(1H)-ones by the formation of two carbon-carbon bonds. A radical mechanism is responsible for this three-component transformation.
Collapse
Affiliation(s)
- Lu Shen
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Jin-Wei Yuan
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Bing Zhang
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Sai-Yi Song
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Liang-Ru Yang
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Yong-Mei Xiao
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications , Institute of Nanostructured Functional Materials, Huanghe Science and Technology College , Zhengzhou 450006 , P. R. China
| | - Ling-Bo Qu
- College of Chemistry , Zhengzhou University , Zhengzhou 450001 , P. R. China
| |
Collapse
|
11
|
Mari G, De Crescentini L, Favi G, Santeusanio S, Mantellini F. Straightforward Access to Pyrazine‐(2,3)‐diones through Sequential Three‐Component Reaction. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| |
Collapse
|
12
|
Hassan AY, Abou-Amra ES, El-Sebaey SA. Design and Synthesis of New Series of Chiral Pyrimidine and Purine analogs as COX-2 Inhibitors: Anticancer Screening, Molecular Modelling, and In Silico Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
More DA, Mujahid M, Muthukrishnan M. Metal‐ And Light‐Free Direct C‐3 Ketoalkylation of Quinoxalin‐2(1
H
)‐Ones with Cyclopropanols in Aqueous Medium. ChemistrySelect 2022. [DOI: 10.1002/slct.202203597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Devidas A. More
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - M. Mujahid
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - M. Muthukrishnan
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
14
|
Tang Z, Pi C, Wu Y, Cui X. Visible-light-promoted tandem decarboxylation coupling/cyclization of N-aryl glycines with quinoxalinones: Easy access to tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Hussain S, Liufang H, Shah SM, Ali F, Khan SA, Shah FA, Li JB, Li S. Cytotoxic effects of extracts and isolated compounds from Ifloga spicata (forssk.) sch. bip against HepG-2 cancer cell line: Supported by ADMET analysis and molecular docking. Front Pharmacol 2022; 13:986456. [PMID: 36160390 PMCID: PMC9501938 DOI: 10.3389/fphar.2022.986456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to determine the anticancer potential of Ifloga spicata (I. spicata) against HepG-2 cell line. To assess I. spicata cytoxicity, brine shrimp lethality and MTT assays were performed. In the brine shrimp bioassay, the ethyl acetate fraction had a significant impact with an IC50 of 10 μg/ml. The ethyl acetate and chloroform fractions inhibited HepG-2 cell line effectively (IC50 values 5.54 and 6.52 μg/ml, respectively). The isolated compound, heptadecyl benzoate inhibited growth significantly (IC50, 8.92 μg/ml) while methyl dihydroxybenzoate had modest activity (25.66 μg/ml) against the cell line. Both compounds displayed acceptable pharmacokinetic parameters in the ADME study. In the docking study, the methyl dihydroxybenzoate was involved in two hydrogen bonds with two different residues Thr830 and Asp831. The heptadecyl benzoate carbonyl oxygen exhibited a single hydrogen bond with Lys692. Both showed good interactions with the active site of the (EGFR) tyrosine kinase. Our findings suggest that I. spicata might be a viable source of anticancer natural agents. This discovery raises the prospect of the future development of a new medication for the treatment of liver cancer.
Collapse
Affiliation(s)
- Sajid Hussain
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - He Liufang
- Pediatrics Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Syed Majid Shah
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Fawad Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jing Bo Li
- Shenzhen University Clinical Research Center for Neurological Diseases, Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
- *Correspondence: Jing Bo Li,
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
16
|
Sharma S, Bhuyan M, Baishya G. K
2
S
2
O
8
Mediated Three‐component Radical Cascade C3 Alkylation of Quinoxalin‐2(1
H
)‐ones with Vinylarenes and 4‐Hydroxycoumarins/4‐Hydroxy‐6‐methyl‐2‐pyrone. ChemistrySelect 2022. [DOI: 10.1002/slct.202201541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Suraj Sharma
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Mayurakhi Bhuyan
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Gakul Baishya
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
17
|
Synthesis, characterization and biological activity of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes derived from Schiff base ligand quinoxaline-2-carboxaldehyde and 4-aminoantipyrine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Wang M, Liu J, Zhang Y, Sun P. Decarbonylative C3‐Alkylation of Quinoxalin‐2(1H)‐ones with Aliphatic Aldehydes via Photocatalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jie Liu
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000 CHINA
| | | | | |
Collapse
|
19
|
Wang M, Zhang Z, Xiong C, Sun P, Zhou C. Microwave‐Accelerated Cross‐Dehydrogenative Coupling of Quinoxalin‐2(1
H
)‐ones with Alkanes under Transition‐Metal‐Free Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Wang
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Zhongyi Zhang
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Chunxia Xiong
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Peipei Sun
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
| | - Chao Zhou
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| |
Collapse
|
20
|
Kishor G, Ramesh V, Rao VR, Pabbaraja S, Adiyala PR. Regioselective C-3-alkylation of quinoxalin-2(1 H)-ones via C-N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis. RSC Adv 2022; 12:12235-12241. [PMID: 35517836 PMCID: PMC9053435 DOI: 10.1039/d2ra00753c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022] Open
Abstract
An efficient, transition metal-free visible-light-driven continuous-flow C-3-alkylation of quinoxalin-2(1H)-ones has been demonstrated by employing Katritzky salts as alkylating agents in the presence of eosin-y as a photoredox catalyst and DIPEA as a base at room temperature. The present protocol was accomplished by utilizing abundant and inexpensive alkyl amine (both primary and secondary alkyl) and as well as this a few amino acid feedstocks were converted into their corresponding redox-active pyridinium salts and subsequently into alkyl radicals. A wide variety of C-3-alkylated quinoxalin-2(1H)-ones were synthesized in moderate to high yields. Further this environmentally benign protocol is carried out in a PFA (Perfluoroalkoxy alkane) capillary based micro reactor under blue LED irradiation, enabling excellent yields (72% to 91%) and shorter reaction times (0.81 min) as compared to a batch system (16 h).
Collapse
Affiliation(s)
- Gandhari Kishor
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Vankudoth Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Vadithya Ranga Rao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Srihari Pabbaraja
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Praveen Reddy Adiyala
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
21
|
Yuan YR, Li L, Bu X, Wang X, Sun R, Zhou MD, Wang H. Visible‐Light Photoredox‐Catalyzed Three‐Component Difluoromethylative Heteroarylation of Unactivated Alkenes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ya-Ru Yuan
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - Lei Li
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - Xiubin Bu
- Shenyang Normal University Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering CHINA
| | - Xin Wang
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - Ran Sun
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - Ming-Dong Zhou
- Liaoning petrochemical University School of Petrochemical Engineering CHINA
| | - He Wang
- Liaoning Shihua University School of Chemistry and Materials Science Dandong road 1, Wanghua District 113001 Fushun CHINA
| |
Collapse
|
22
|
Direct benzylation reactions from benzyl halides enabled by transition-metal-free photocatalysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Liu F, Chen LN, Chen AM, Ye ZP, Wang ZW, Liu ZL, He XC, Li SH, Xia PJ. Mechanochemical Synthesis of 2‐Arylquinoxalines and 3‐Arylquinoxalin‐2(1 H)‐ones via Aryldiazonium Salts. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fu Liu
- guangxi shifan daxue CHINA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jiang X, Wu K, Bai R, Zhang P, Zhang Y. Functionalized quinoxalinones as privileged structures with broad-ranging pharmacological activities. Eur J Med Chem 2022; 229:114085. [PMID: 34998058 DOI: 10.1016/j.ejmech.2021.114085] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023]
Abstract
Quinoxalinones are a class of heterocyclic compounds which attract extensive attention owing to their potential in the field of organic synthesis and medicinal chemistry. During the past few decades, many new synthetic strategies toward the functionalization of quinoxalinone based scaffolds have been witnessed. Regrettably, there are only a few reports on the pharmacological activities of quinoxalinone scaffolds from a medicinal chemistry perspective. Therefore, herein we intend to outline the applications of multifunctional quinoxalinones as privileged structures possessing various biological activities, including anticancer, neuroprotective, antibacterial, antiviral, antiparasitic, anti-inflammatory, antiallergic, anti-cardiovascular, anti-diabetes, antioxidation, etc. We hope that this review will facilitate the development of quinoxalinone derivatives in medicinal chemistry.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Kaiyu Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
25
|
Visible-light induced C3-H trifluoromethylation of quinoxalin-2(1H)-ones with CF3SO2Cl under external photocatalyst-free conditions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Zhu Y, Xiao T, Xia D, Yang W. Recent Advances in the Decarboxylative Fluoroalkylation of Fluoroalkyl Carboxylic Acids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Guo X, Wang Y, Zhao Z, Wang Q, Zuo J, Wang L. Electrochemical Oxidative C—H Trifluoromethylation of Quinoxalin-2(1 H)-ones and the Performance Evaluation via Electro-descriptors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Zhang H, Hu L, Yu K, Lou LL, Liu S. Efficient one-step synthesis of 3-(indol-2-yl)quinoxalin-2(1 H)-ones via electrochemical oxidative cross-dehydrogenative coupling. NEW J CHEM 2022. [DOI: 10.1039/d2nj00205a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient synthetic strategy for 3-(indol-2-yl)quinoxalin-2(1H)-ones was developed via electrochemical oxidative cross-dehydrogenative coupling of indoles and quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Hao Zhang
- School of Materials Science and Engineering & National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lishan Hu
- School of Materials Science and Engineering & National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Kai Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan-Lan Lou
- School of Materials Science and Engineering & National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Shuangxi Liu
- School of Materials Science and Engineering & National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
29
|
Bhuyan M, Sharma S, Baishya G. Metal-free three-component cyanoalkylation of quinoxalin-2(1H)-ones with vinylarenes and azobis(alkylcarbonitrile)s. Org Biomol Chem 2022; 20:1462-1474. [DOI: 10.1039/d1ob02143e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A K2S2O8-mediated C3 cyanoalkylation of quinoxalin-2(1H)-ones via a three-component radical cascade reaction with vinylarenes and azobis(alkylcarbonitrile)s has been achieved.
Collapse
Affiliation(s)
- Mayurakhi Bhuyan
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Suraj Sharma
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
30
|
Baishya G, Dutta NB. Recent Advances in Direct C−H Trifluoromethylation of N‐Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gakul Baishya
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Nibedita B. Dutta
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Rain Forest Research Institute Jorhat 785001 India
| |
Collapse
|
31
|
Borah B, Chowhan LR. Recent advances in the transition-metal-free synthesis of quinoxalines. RSC Adv 2021; 11:37325-37353. [PMID: 35496411 PMCID: PMC9043781 DOI: 10.1039/d1ra06942j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/30/2021] [Indexed: 01/04/2023] Open
Abstract
Quinoxalines, also known as benzo[a]pyrazines, constitute an important class of nitrogen-containing heterocyclic compounds as a result of their widespread prevalence in natural products, biologically active synthetic drug candidates, and optoelectronic materials. Owing to their importance and chemists' ever-increasing imagination of new transformations of these products, tremendous efforts have been dedicated to finding more efficient approaches toward the synthesis of quinoxaline rings. The last decades have witnessed a marvellous outburst in modifying organic synthetic methods to create them sustainable for the betterment of our environment. The exploitation of transition-metal-free catalysis in organic synthesis leads to a new frontier to access biologically active heterocycles and provides an alternative method from the perspective of green and sustainable chemistry. Despite notable developments achieved in transition-metal catalyzed synthesis, the high cost involved in the preparation of the catalyst, toxicity, and difficulty in removing it from the final products constitute disadvantageous effects on the atom economy and eco-friendly nature of the transformation. In this review article, we have summarized the recent progress achieved in the synthesis of quinoxalines under transition-metal-free conditions and cover the reports from 2015 to date. This aspect is presented alongside the mechanistic rationalization and limitations of the reaction methodologies. The scopes of future developments are also highlighted.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
32
|
Huang J, Chen W, Liang J, Yang Q, Fan Y, Chen MW, Peng Y. α-Keto Acids as Triggers and Partners for the Synthesis of Quinazolinones, Quinoxalinones, Benzooxazinones, and Benzothiazoles in Water. J Org Chem 2021; 86:14866-14882. [PMID: 34624963 DOI: 10.1021/acs.joc.1c01497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general and efficient method for the synthesis of quinazolinones, quinoxalinones, benzooxazinones, and benzothiazoles from the reactions of α-keto acids with 2-aminobenzamides, benzene-1,2-diamines, 2-aminophenols, and 2-aminobenzenethiols, respectively, is described. The reactions were conducted under catalyst-free conditions, using water as the sole solvent with no additive required, and successfully applied to the synthesis of sildenafil. More importantly, these reactions can be conducted on a mass scale, and the products can be easily purified through filtration and washing with ethanol (or crystallized).
Collapse
Affiliation(s)
- Jian Huang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Wei Chen
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jiazhi Liang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qin Yang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yan Fan
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Mu-Wang Chen
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
33
|
Sun K, Xiao F, Yu B, He WM. Photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63850-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Abad N, Chkirate K, Al-Ostoot FH, Van Meervelt L, Lahmidi S, Ferfra S, Ramli Y, Essassi EM. Crystal structure, Hirshfeld surface analysis and density functional theory study of 1-nonyl-3-phenyl-quinoxalin-2-one. Acta Crystallogr E Crystallogr Commun 2021; 77:1037-1042. [PMID: 34667634 PMCID: PMC8491532 DOI: 10.1107/s2056989021009737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022]
Abstract
In the title mol-ecule, C23H28N2O, the phenyl ring is inclined to the quinoxaline ring system at a dihedral angle of 20.40 (9)°. In the crystal, C-H⋯O inter-actions between neighbouring mol-ecules form chains along the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (70.6%), H⋯C/C⋯H (15.5%) and H⋯O/O⋯H (4.6%) inter-actions. The optimized structure calculated using density functional theory at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated highest occupied mol-ecular orbital (HOMO) and lowest unoccupied mol-ecular orbital (LUMO) energy gap is 3.8904 eV. Part of the n-nonyl chain attached to one of the nitro-gen atoms of the quinoxaline ring system shows disorder and was refined with a double conformation with occupancies of 0.604 (11) and 0.396 (11).
Collapse
Affiliation(s)
- Nadeem Abad
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Department of Biochemistry, Faculty of Education & Science, AlBaydha University, Yemen
| | - Karim Chkirate
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Fares Hezam Al-Ostoot
- Department of Biochemistry, Faculty of Education & Science, AlBaydha University, Yemen
| | - Luc Van Meervelt
- KU Leuven, Chemistry Department, Celestijnenlaan 200F box 2404, Leuven (Heverlee), B-3001, Belgium
| | - Sanae Lahmidi
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Souad Ferfra
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of, Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
35
|
Sharma T, Singh J, Singh B, Kataria R, Kumar V. Methyl linked pyrazoles: Synthetic and Medicinal Perspective. Mini Rev Med Chem 2021; 22:770-804. [PMID: 34521325 DOI: 10.2174/1389557521666210914124914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/07/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Pyrazoles, an important and well known class of the azole family, have been found to show a large number of applications in various fields specially of medicinal chemistry. Among pyrazole derivatives, particularly, methyl substituted pyrazoles have been reported as the potent medicinal scaffolds that exhibit a wide spectrum of biological activities. The present review is an attempt to highlight the detailed synthetic approaches for methyl substituted pyrazoles along with in depth analysis of their respective medical significances till March2021. It is hoped that literature sum-up in the form of present review article would certainly be a great tool to assist the medicinal chemists for generating new leads possessing pyrazole nucleus with high efficacy and less microbial resistance.
Collapse
Affiliation(s)
- Tulika Sharma
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana. India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana. India
| | - Bijender Singh
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, Haryana. India
| | - Ramesh Kataria
- Department of Chemistry and Centre of Advances Studies in Chemistry, Panjab University, Chandigarh 160014. India
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, Haryana. India
| |
Collapse
|
36
|
Galal SA, Omar MA, Khairat SHM, Ragab FAF, Roy S, Naqvi AAT, Hassan MI, El Diwani HI. Design and synthesis of new pyrazolylbenzimidazoles as sphingosine kinase-1 inhibitors. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02760-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Khairat SHM, Omar MA, Ragab FAF, Roy S, Turab Naqvi AA, Abdelsamie AS, Hirsch AKH, Galal SA, Hassan MI, El Diwani HI. Design, synthesis, and biological evaluation of novel benzimidazole derivatives as sphingosine kinase 1 inhibitor. Arch Pharm (Weinheim) 2021; 354:e2100080. [PMID: 34128259 DOI: 10.1002/ardp.202100080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
Sphingosine kinase 1 (SphK1) has emerged as an attractive drug target for different diseases. Recently, discovered SphK1 inhibitors have been recommended in cancer therapeutics; however, selectivity and potency are great challenges. In this study, a novel series of benzimidazoles was synthesized and evaluated as SphK1 inhibitors. Our design strategy is twofold: It aimed first to study the effect of replacing the 5-position of the benzimidazole ring with a polar carboxylic acid group on the SphK1-inhibitory activity and cytotoxicity. Our second aim was to optimize the structures of the benzimidazoles through the elongation of the chain. The enzyme inhibition potentials against all the synthesized compounds toward SphK1 were evaluated, and the results revealed that most of the studied compounds inhibited SphK1 effectively. The binding affinity of the benzimidazole derivatives toward SphK1 was measured by fluorescence binding and molecular docking. Compounds 33, 37, 39, 41, 42, 43, and 45 showed an appreciable binding affinity. Therefore, the SphK1-inhibitory potentials of compounds 33, 37, 39, 41, 42, 43, and 45 were studied and IC50 values were determined, to reveal high potency. The study showed that these compounds inhibited SphK1 with effective IC50 values. Among the studied compounds, compound 41 was the most effective one with the lowest IC50 value and a high cytotoxicity on a wide spectrum of cell lines. Molecular docking revealed that most of these compounds fit well into the ATP-binding site of SphK1 and form hydrogen bond interactions with catalytically important residues. Overall, the findings suggest the therapeutic potential of benzimidazoles in the clinical management of SphK1-associated diseases.
Collapse
Affiliation(s)
- Sarah H M Khairat
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| | - Mohamed A Omar
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| | - Fatma A F Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sonam Roy
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ahmad A Turab Naqvi
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Ahmed S Abdelsamie
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Anna K H Hirsch
- Department of Pharmacy, Saarland University, Saarbrücken, Germany.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shadia A Galal
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hoda I El Diwani
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| |
Collapse
|
38
|
Zhou N, Wu S, Kuang K, Wu M, Zhang M. Ni-Catalyzed radical cyclization of vinyl azides with cyclobutanone oxime esters to access cyanoalkyl containing quinoxalin-2(1 H)-ones. Org Biomol Chem 2021; 19:4697-4700. [PMID: 33982738 DOI: 10.1039/d1ob00610j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed cascade addition/cyclization of 2-azido-N-arylacrylamides and cyclobutanone oxime esters for the construction of 3-cyanoalkylated quinoxalin-2(1H)-ones is developed. This reaction proceeds under mild conditions with good functional group tolerance and broad substrate scope. A preliminary mechanistic experiment indicated that the cyanoalkyl radical might be involved in this transformation.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
39
|
Guo J, Zhang L, Du X, Zhang L, Cai Y, Xia Q. Metal‐Free Direct Oxidative C−N Bond Coupling of Quinoxalin‐2(1
H
)‐ones with Azoles under Mild Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jingwen Guo
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Lina Zhang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Xinyue Du
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Liting Zhang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Qinqin Xia
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| |
Collapse
|
40
|
Zhan Y, Li Y, Tong J, Liu P, Sun P. Electrochemical Oxidative C−H Cyanation of Quinoxalin‐2(1
H
)‐ones with TMSCN. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yanling Zhan
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Yifan Li
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Jinwen Tong
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Ping Liu
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Peipei Sun
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| |
Collapse
|
41
|
Zhang H, Yang Z, Zhang H, Han Y, Zhao J, Zhang Y. The Cross‐Dehydrogenative Coupling Reaction of β‐Ketoesters with Quinoxalin‐2(1
H
)‐ones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hong‐Yu Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Zibing Yang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Huizhen Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Ya‐Ping Han
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| |
Collapse
|
42
|
Dutta NB, Bori J, Gogoi P, Baishya G. Metal‐, Photocatalyst‐, Light‐ and Electrochemical‐Free C‐3 Trifluoromethylation of Quinoxalin‐2(1
H
)‐ones, Imidazo[1,2‐a]pyridines and 2
H
‐Indazoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202004631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nibedita Baruah Dutta
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
- Rain Forest Research Institute Jorhat 785001 India
| | - Jugal Bori
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Pinku Gogoi
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Gakul Baishya
- Natural Products Chemistry Group Chemical Science & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
43
|
Aganda KCC, Hong B, Lee A. Visible‐Light‐Promoted Switchable Synthesis of C‐3‐Functionalized Quinoxalin‐2(1
H
)‐ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kim Christopher C. Aganda
- Department of Energy Science and Technology Myongji University Yongin 17058 Republic of Korea
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Boseok Hong
- Department of Chemistry Myongji University Yongin 17058 Republic of Korea
| | - Anna Lee
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| |
Collapse
|
44
|
Yuan JW, Zhang Y, Huang GC, Ma MY, Yang TY, Yang LR, Zhang SR, Mao P, Qu LB. Site-specific C–H chalcogenation of quinoxalin-2(1 H)-ones enabled by Selectfluor reagent. Org Chem Front 2021. [DOI: 10.1039/d1qo01332g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A site-specific C6–H chalcogenation of quinoxalin-2(1H)-ones with various diselenides and dithiols is presented by employing Selectfluor reagent as an oxidant.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Zhang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guang-Chao Huang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Meng-Yao Ma
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Teng-Yu Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
45
|
Meng N, Liu Q, Liu R, Lü Y, Zhao X, Wei W. Recent Advances in Arylations and Sulfonylations of Arylazo Sulfones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Li D, Wang X, Li S, Fu C, Li Q, Xu D, Ma Y. Recent Advances in Electrochemical C(3)—H Functionalization of Quinoxalin-2(1H)-ones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Meng N, Lv Y, Liu Q, Liu R, Zhao X, Wei W. Visible-light-induced three-component reaction of quinoxalin-2(1H)-ones, alkenes and CF3SO2Na leading to 3-trifluoroalkylated quinoxalin-2(1H)-ones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Al Ati G, Chkirate K, Mashrai A, Mague JT, Ramli Y, Achour R, Essassi EM. Crystal structure, Hirshfeld surface analysis and DFT study of 1-ethyl-3-phenyl-1,2-di-hydro-quinoxalin-2-one. Acta Crystallogr E Crystallogr Commun 2021; 77:18-22. [PMID: 33520276 PMCID: PMC7784057 DOI: 10.1107/s2056989020015819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 11/10/2022]
Abstract
In the title mol-ecule, C16H14N2O, the di-hydro-quinoxaline moiety is not planar as there is a dihedral angle of 4.51 (5)° between the constituent rings. In the crystal, C-H⋯O hydrogen bonds form helical chains about the crystallographic 21 screw axis in the b-axis direction. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (51.7%), H⋯C/C⋯H (26%) and H⋯O/O⋯H (8.5%) inter-actions. The optimized structure calculated using density functional theory (DFT) at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO-LUMO energy gap is 3.8918 eV.
Collapse
Affiliation(s)
- Gamal Al Ati
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Karim Chkirate
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Ashraf Mashrai
- Department of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Redouane Achour
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
49
|
Kiran, Rani P, Chahal S, Sindhu J, Kumar S, Varma RS, Singh R. Transition metal-free C-3 functionalization of quinoxalin-2(1 H)-ones: recent advances and sanguine future. NEW J CHEM 2021. [DOI: 10.1039/d1nj03445f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A gradual shift from metal-catalyzed to metal-free methods is occurring, as the latter are more environmentally benign. This review discusses sustainable protocols for the construction of C–C, C–N, C–P, C–S, and C–O bonds via C–H functionalization of quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Payal Rani
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Sandhya Chahal
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| |
Collapse
|
50
|
|