1
|
Takchi R, Prudner BC, Gong Q, Hagi T, Newcomer KF, Jin LX, Vangveravong S, Van Tine BA, Hawkins WG, Spitzer D. Cytotoxic sigma-2 ligands trigger cancer cell death via cholesterol-induced-ER-stress. Cell Death Dis 2024; 15:309. [PMID: 38697978 PMCID: PMC11066049 DOI: 10.1038/s41419-024-06693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Sigma-2-ligands (S2L) are characterized by high binding affinities to their cognate sigma-2 receptor, overexpressed in rapidly proliferating tumor cells. As such, S2L were developed as imaging probes (ISO1) or as cancer therapeutics, alone (SV119 [C6], SW43 [C10]) and as delivery vehicles for cytotoxic drug cargoes (C6-Erastin, C10-SMAC). However, the exact mechanism of S2L-induced cytotoxicity remains to be fully elucidated. A series of high-affinity S2L were evaluated regarding their cytotoxicity profiles across cancer cell lines. While C6 and C10 displayed distinct cytotoxicities, C0 and ISO1 were essentially non-toxic. Confocal microscopy and lipidomics analysis in cellular and mouse models revealed that C10 induced increases in intralysosomal free cholesterol and in cholesterol esters, suggestive of unaltered intracellular cholesterol trafficking. Cytotoxicity was caused by cholesterol excess, a phenomenon that contrasts the effects of NPC1 inhibition. RNA-sequencing revealed gene clusters involved in cholesterol homeostasis and ER stress response exclusively by cytotoxic S2L. ER stress markers were confirmed by qPCR and their targeted modulation inhibited or enhanced cytotoxicity of C10 in a predicted manner. Moreover, C10 increased sterol regulatory element-binding protein 2 (SREBP2) and low-density lipoprotein receptor (LDLR), both found to be pro-survival factors activated by ER stress. Furthermore, inhibition of downstream processes of the adaptive response to S2L with simvastatin resulted in synergistic treatment outcomes in combination with C10. Of note, the S2L conjugates retained the ER stress response of the parental ligands, indicative of cholesterol homeostasis being involved in the overall cytotoxicity of the drug conjugates. Based on these findings, we conclude that S2L-mediated cell death is due to free cholesterol accumulation that leads to ER stress. Consequently, the cytotoxic profiles of S2L drug conjugates are proposed to be enhanced via concurrent ER stress inducers or simvastatin, strategies that could be instrumental on the path toward tumor eradication.
Collapse
Affiliation(s)
- Rony Takchi
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bethany C Prudner
- Department of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qingqing Gong
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Takaomi Hagi
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kenneth F Newcomer
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Linda X Jin
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Suwanna Vangveravong
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian A Van Tine
- Department of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatric Hematology/Oncology, St. Louis Children's Hospital, St. Louis, MO, USA
- Alvin J Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Alvin J Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA.
| | - Dirk Spitzer
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Alvin J Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Teodori E, Braconi L, Manetti D, Romanelli MN, Dei S. The Tetrahydroisoquinoline Scaffold in ABC Transporter Inhibitors that Act as Multidrug Resistance (MDR) Reversers. Curr Top Med Chem 2022; 22:2535-2569. [PMID: 36284399 DOI: 10.2174/1568026623666221025111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 09/27/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The failure of anticancer chemotherapy is often due to the development of resistance to a variety of anticancer drugs. This phenomenon is called multidrug resistance (MDR) and is related to the overexpression of ABC transporters, such as P-glycoprotein, multidrug resistance- associated protein 1 and breast cancer resistance protein. Over the past few decades, several ABC protein modulators have been discovered and studied as a possible approach to evade MDR and increase the success of anticancer chemotherapy. Nevertheless, the co-administration of pump inhibitors with cytotoxic drugs, which are substrates of the transporters, does not appear to be associated with an improvement in the therapeutic efficacy of antitumor agents. However, more recently discovered MDR reversing agents, such as the two tetrahydroisoquinoline derivatives tariquidar and elacridar, are characterized by high affinity towards the ABC proteins and by reduced negative properties. Consequently, many analogs of these two derivatives have been synthesized, with the aim of optimizing their MDR reversal properties. OBJECTIVE This review aims to describe the MDR modulators carrying the tetraidroisoquinoline scaffold reported in the literature in the period 2009-2021, highlighting the structural characteristics that confer potency and/or selectivity towards the three ABC transport proteins. RESULTS AND CONCLUSION Many compounds have been synthesized in the last twelve years showing interesting properties, both in terms of potency and selectivity. Although clear structure-activity relationships can be drawn only by considering strictly related compounds, some of the compounds reviewed could be promising starting points for the design of new ABC protein inhibitors.
Collapse
Affiliation(s)
- Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
3
|
Oeser P, Koudelka J, Petrenko A, Tobrman T. Recent Progress Concerning the N-Arylation of Indoles. Molecules 2021; 26:molecules26165079. [PMID: 34443667 PMCID: PMC8402097 DOI: 10.3390/molecules26165079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
This review summarizes the current state-of-the-art procedures in terms of the preparation of N-arylindoles. After a short introduction, the transition-metal-free procedures available for the N-arylation of indoles are briefly discussed. Then, the nickel-catalyzed and palladium-catalyzed N-arylation of indoles are both discussed. In the next section, copper-catalyzed procedures for the N-arylation of indoles are described. The final section focuses on recent findings in the field of biologically active N-arylindoles.
Collapse
|
4
|
Abatematteo FS, Niso M, Lacivita E, Abate C. σ 2 Receptor and Its Role in Cancer with Focus on a MultiTarget Directed Ligand (MTDL) Approach. Molecules 2021; 26:3743. [PMID: 34205334 PMCID: PMC8235595 DOI: 10.3390/molecules26123743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Sigma-2 (σ2) is an endoplasmic receptor identified as the Endoplasmic Reticulum (ER) transmembrane protein TMEM97. Despite its controversial identity, which was only recently solved, this protein has gained scientific interest because of its role in the proliferative status of cells; many tumor cells from different organs overexpress the σ2 receptor, and many σ2 ligands display cytotoxic actions in (resistant) cancer cells. These properties have shed light on the σ2 receptor as a potential druggable target to be bound/activated for the diagnosis or therapy of tumors. Additionally, diverse groups have shown how the σ2 receptor can be exploited for the targeted delivery of the anticancer drugs to tumors. As the cancer disease is a multifactorial pathology with multiple cell populations, a polypharmacological approach is very often needed. Instead of the simultaneous administration of different classes of drugs, the use of one molecule that interacts with diverse pharmacological targets, namely MultiTarget Directed Ligand (MTDL), is a promising and currently pursued strategy, that may overcome the pharmacokinetic problems associated with the administration of multiple molecules. This review aims to point out the progress regarding the σ2 ligands in the oncology field, with a focus on MTDLs directed towards σ2 receptors as promising weapons against (resistant) cancer diseases.
Collapse
Affiliation(s)
| | | | | | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy; (F.S.A.); (M.N.); (E.L.)
| |
Collapse
|
5
|
Abate C, Niso M, Abatematteo FS, Contino M, Colabufo NA, Berardi F. PB28, the Sigma-1 and Sigma-2 Receptors Modulator With Potent Anti-SARS-CoV-2 Activity: A Review About Its Pharmacological Properties and Structure Affinity Relationships. Front Pharmacol 2020; 11:589810. [PMID: 33364961 PMCID: PMC7750835 DOI: 10.3389/fphar.2020.589810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
These unprecedented times have forced the scientific community to gather to face the COVID-19 pandemic. Efforts in diverse directions have been made. A multi-university team has focused on the identification of the host (human) proteins interacting with SARS-CoV-2 viral proteins, with the aim of hampering these interactions that may cause severe COVID-19 symptoms. Sigma-1 and sigma-2 receptors surprisingly belong to the “druggable” host proteins found, with the pan-sigma receptor modulator PB28 displaying the most potent anti–SARS-CoV-2 activity in in vitro assays. Being 20-fold more active than hydroxychloroquine, without cardiac side effects, PB28 is a promising antiviral candidate worthy of further investigation. Our research group developed PB28 in 1996 and have thoroughly characterized its biological properties since then. Structure–affinity relationship (SAfiR) studies at the sigma receptor subtypes were also undertaken with PB28 as the lead compound. We herein report our knowledge of PB28 to share information that may help to gain insight into the antiviral action of this compound and sigma receptors, while providing structural hints that may speed up the translation into therapeutics of this class of ligands.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | | | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| |
Collapse
|
6
|
Zhang H, Xu H, Ashby CR, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev 2020; 41:525-555. [PMID: 33047304 DOI: 10.1002/med.21739] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) remains one of the major impediments for efficacious cancer chemotherapy. Increased efflux of multiple chemotherapeutic drugs by transmembrane ATP-binding cassette (ABC) transporter superfamily is considered one of the primary causes for cancer MDR, in which the role of P-glycoprotein (P-gp/ABCB1) has been most well-established. The clinical co-administration of P-gp drug efflux inhibitors, in combination with anticancer drugs which are P-gp transport substrates, was considered to be a treatment modality to surmount MDR in anticancer therapy by blocking P-gp-mediated multidrug efflux. Extensive attempts have been carried out to screen for sets of nontoxic, selective, and efficacious P-gp efflux inhibitors. In this review, we highlight the recent achievements in drug design, characterization, structure-activity relationship (SAR) studies, and mechanisms of action of the newly synthetic, potent small molecules P-gp inhibitors in the past 5 years. The development of P-gp inhibitors will increase our knowledge of the mechanisms and functions of P-gp-mediated drug efflux which will benefit drug discovery and clinical cancer therapeutics where P-gp transporter overexpression has been implicated in MDR.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Yehuda G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York, USA
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Riganti C, Giampietro R, Kopecka J, Costamagna C, Abatematteo FS, Contino M, Abate C. MRP1-Collateral Sensitizers as a Novel Therapeutic Approach in Resistant Cancer Therapy: An In Vitro and In Vivo Study in Lung Resistant Tumor. Int J Mol Sci 2020; 21:ijms21093333. [PMID: 32397184 PMCID: PMC7247425 DOI: 10.3390/ijms21093333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Multidrug resistance (MDR) is the main obstacle to current chemotherapy and it is mainly due to the overexpression of some efflux transporters such as MRP1. One of the most studied strategies to overcome MDR has been the inhibition of MDR pumps through small molecules, but its translation into the clinic unfortunately failed. Recently, a phenomenon called collateral sensitivity (CS) emerged as a new strategy to hamper MDR acting as a synthetic lethality, where the genetic changes developed upon the acquisition of resistance towards a specific agent are followed by the development of hypersensitivity towards a second agent. Among our library of sigma ligands acting as MDR modulators, we identified three compounds, F397, F400, and F421, acting as CS-promoting agents. We deepened their CS mechanisms in the "pure" model of MRP1-expressing cells (MDCK-MRP1) and in MRP1-expressing/drug resistant non-small cell lung cancer cells (A549/DX). The in vitro results demonstrated that (i) the three ligands are highly cytotoxic for MRP1-expressing cells; (ii) their effect is MRP1-mediated; (iii) they increase the cytotoxicity induced by cis-Pt, the therapeutic agent commonly used in the treatment of lung tumors; and (iv) their effect is ROS-mediated. Moreover, a preclinical in vivo study performed in lung tumor xenografts confirms the in vitro findings, making the three CS-promoting agents candidates for a novel therapeutic approach in lung resistant tumors.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin, Italy; (C.R.); (J.K.); (C.C.)
| | - Roberta Giampietro
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy; (R.G.); (F.S.A.); (C.A.)
| | - Joanna Kopecka
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin, Italy; (C.R.); (J.K.); (C.C.)
| | - Costanzo Costamagna
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin, Italy; (C.R.); (J.K.); (C.C.)
| | - Francesca Serena Abatematteo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy; (R.G.); (F.S.A.); (C.A.)
| | - Marialessandra Contino
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy; (R.G.); (F.S.A.); (C.A.)
- Correspondence:
| | - Carmen Abate
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy; (R.G.); (F.S.A.); (C.A.)
| |
Collapse
|
8
|
Niso M, Mosier PD, Marottoli R, Ferorelli S, Cassano G, Gasparre G, Leopoldo M, Berardi F, Abate C. High-affinity sigma-1 (σ 1) receptor ligands based on the σ 1 antagonist PB212. Future Med Chem 2019; 11:2547-2562. [PMID: 31633399 DOI: 10.4155/fmc-2019-0042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The σ1 receptor is a druggable target involved in many physiological processes and diseases. To clarify its physiology and derive therapeutic benefit, nine analogs based on the σ1 antagonist PB212 were synthesized replacing the 4-methylpiperidine with basic moieties of varying size and degree of conformational freedom. Results & methodology: 3-Phenylpyrrolidine, 4-phenylpiperidine or granatane derivatives displayed the highest affinity (Ki.#x00A0;= 0.12, 0.31 or 1.03 nM). Calcium flux assays in MCF7σ1 cells indicated that the highest σ1 receptor affinity are σ1 antagonists. Molecular models provided a structural basis for understanding the σ1 affinity and functional activity of the analogs and incorporated Glennon's σ1 pharmacophore model. Conclusion: Herein, we identify new compounds exploitable as therapeutic drug leads or as tools to study σ1 receptor physiology.
Collapse
Affiliation(s)
- Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Philip D Mosier
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Roberta Marottoli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Savina Ferorelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Giuseppe Cassano
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Giuseppe Gasparre
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
9
|
Salaroglio IC, Abate C, Rolando B, Battaglia L, Gazzano E, Colombino E, Costamagna C, Annovazzi L, Mellai M, Berardi F, Capucchio MT, Schiffer D, Riganti C. Validation of Thiosemicarbazone Compounds as P-Glycoprotein Inhibitors in Human Primary Brain-Blood Barrier and Glioblastoma Stem Cells. Mol Pharm 2019; 16:3361-3373. [PMID: 31265310 DOI: 10.1021/acs.molpharmaceut.9b00018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
P-glycoprotein (Pgp) is highly expressed on blood-brain barrier (BBB) and glioblastoma (GB) cells, particularly on cancer stem cells (SC). Pgp recognizes a broad spectrum of substrates, limiting the therapeutic efficacy of several chemotherapeutic drugs in eradicating GB SC. Finding effective and safe inhibitors of Pgp that improve drug delivery across the BBB and target GB SC is open to investigation. We previously identified a series of thiosemicarbazone compounds that inhibit Pgp with an EC50 in the nanomolar range, and herein, we investigate the efficacy of three of them in bypassing Pgp-mediated drug efflux in primary human BBB and GB cells. At 10 nM, the compounds were not cytotoxic for the brain microvascular endothelial hCMEC/D3 cell line, but they markedly enhanced the permeability of the Pgp-substrate doxorubicin through the BBB. Thiosemicarbazone derivatives increased doxorubicin uptake in GB, with greater effects in the Pgp-rich SC clones than in the differentiated clones derived from the same tumor. All compounds increased intratumor doxorubicin accumulation and consequent toxicity in GB growing under competent BBB, producing significant killing of GB SC. The compounds crossed the BBB monolayer. The most stable derivative, 10a, had a half-life in serum of 4.2 h. The coadministration of doxorubicin plus 10a significantly reduced the growth of orthotopic GB-SC xenografts, without eliciting toxic side effects. Our work suggests that the thiosemicarbazone compounds are able to transform doxorubicin, a prototype BBB-impermeable drug, into a BBB-permeable drug. Bypassing Pgp-mediated drug efflux in both BBB and GB SC, thiosemicarbazones might increase the success of chemotherapy in targeting GB SC, which represent the most aggressive and difficult components to eradicate.
Collapse
Affiliation(s)
- Iris Chiara Salaroglio
- Dipartimento di Oncologia , Università di Torino , via Santena 5/bis , 10126 Torino , Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco , Università di Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy
| | - Barbara Rolando
- Dipartimento di Scienza e Tecnologia del Farmaco , Università di Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco , Università di Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Elena Gazzano
- Dipartimento di Oncologia , Università di Torino , via Santena 5/bis , 10126 Torino , Italy
| | - Elena Colombino
- Dipartimento di Scienze Veterinarie , Università di Torino , Largo Braccini 2 , 10095 Grugliasco , Italy
| | - Costanzo Costamagna
- Dipartimento di Oncologia , Università di Torino , via Santena 5/bis , 10126 Torino , Italy
| | - Laura Annovazzi
- Centro Ricerche , Fondazione Policlinico di Monza , via Pietro Micca 29 , 13100 Vercelli , Italy
| | - Marta Mellai
- Dipartimento di Scienze della Salute , Università del Piemonte Orientale , corso Mazzini 18 , 28100 Novara , Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco , Università di Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy
| | - Maria Teresa Capucchio
- Dipartimento di Scienze Veterinarie , Università di Torino , Largo Braccini 2 , 10095 Grugliasco , Italy
| | - Davide Schiffer
- Dipartimento di Neuroscienze , Università di Torino , via Cherasco 15 , 10126 Torino , Italy
| | - Chiara Riganti
- Dipartimento di Oncologia , Università di Torino , via Santena 5/bis , 10126 Torino , Italy
| |
Collapse
|
10
|
Pati ML, Niso M, Spitzer D, Berardi F, Contino M, Riganti C, Hawkins WG, Abate C. Multifunctional thiosemicarbazones and deconstructed analogues as a strategy to study the involvement of metal chelation, Sigma-2 (σ 2) receptor and P-gp protein in the cytotoxic action: In vitro and in vivo activity in pancreatic tumors. Eur J Med Chem 2018; 144:359-371. [PMID: 29287249 PMCID: PMC5801006 DOI: 10.1016/j.ejmech.2017.12.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/17/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
The aggressiveness of pancreatic cancer urgently requires more efficient treatment options. Because the sigma-2 (σ2) receptor was recently proposed as a promising target for pancreatic cancer therapy, we explored our previously developed multifunctional thiosemicarbazones, designed to synergistically impair cell energy levels, by targeting σ2 and P-gp proteins and chelating Iron. A deconstruction approach was herein applied by removing one function at a time from the potent multifunctional thiosemicarbazones 1 and 2, to investigate the contribution to cytotoxicity of each target involved. The results from in vitro (panel of pancreatic tumor cells) and in vivo experiments (C57BL/6 bearing KP02 tumor), suggest that while the multifunctional activity was not required for the antitumor activity of these thiosemicarbazones, σ2-targeting appeared to allow alternative tumor cell death mechanisms, leading to potent and less toxic off-targets toxicities compared to other thiosemicarbazones devoid of σ2-targeting.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Death/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Chelating Agents/chemical synthesis
- Chelating Agents/chemistry
- Chelating Agents/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Female
- Humans
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/metabolism
- Structure-Activity Relationship
- Thiosemicarbazones/chemical synthesis
- Thiosemicarbazones/chemistry
- Thiosemicarbazones/pharmacology
Collapse
Affiliation(s)
- Maria Laura Pati
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy; Department of Surgery, Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Dirk Spitzer
- Department of Surgery, Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, via Santena 5/bis, I-10153 Torino, Italy
| | - William G Hawkins
- Department of Surgery, Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
11
|
Niso M, Pati ML, Berardi F, Abate C. Rigid versus flexible anilines or anilides confirm the bicyclic ring as the hydrophobic portion for optimal σ2 receptor binding and provide novel tools for the development of future σ2 receptor PET radiotracers. RSC Adv 2016. [DOI: 10.1039/c6ra15783a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite their uncertain identification, σ2 receptors are promising targets for the development of diagnostics and therapeutics for tumor diseases.
Collapse
Affiliation(s)
- Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco
- Università degli Studi di Bari ALDO MORO
- I-70125 Bari
- Italy
| | - Maria Laura Pati
- Dipartimento di Farmacia-Scienze del Farmaco
- Università degli Studi di Bari ALDO MORO
- I-70125 Bari
- Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco
- Università degli Studi di Bari ALDO MORO
- I-70125 Bari
- Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco
- Università degli Studi di Bari ALDO MORO
- I-70125 Bari
- Italy
| |
Collapse
|
12
|
Savolainen H, Cantore M, Colabufo NA, Elsinga PH, Windhorst AD, Luurtsema G. Synthesis and Preclinical Evaluation of Three Novel Fluorine-18 Labeled Radiopharmaceuticals for P-Glycoprotein PET Imaging at the Blood-Brain Barrier. Mol Pharm 2015; 12:2265-75. [PMID: 26043236 DOI: 10.1021/mp5008103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P-Glycoprotein (P-gp), along with other transporter proteins at the blood-brain barrier (BBB), limits the entry of many pharmaceuticals into the brain. Altered P-gp function has been found in several neurological diseases. To study the P-gp function, many positron emission tomography (PET) radiopharmaceuticals have been developed. Most P-gp radiopharmaceuticals are labeled with carbon-11, while labeling with fluorine-18 would increase their applicability due to longer half-life. Here we present the synthesis and in vivo evaluation of three novel fluorine-18 labeled radiopharmaceuticals: 4-((6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)methyl)-2-(4-fluorophenyl)oxazole (1a), 2-biphenyl-4-yl-2-fluoroethoxy-6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline (2), and 5-(1-(2-fluoroethoxy))-[3-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-propyl]-5,6,7,8-tetrahydronaphthalen (3). Compounds were characterized as P-gp substrates in vitro, and Mdr1a/b((-/-))Bcrp1((-/-)) and wild-type mice were used to assess the substrate potential in vivo. Comparison was made to (R)-[(11)C]verapamil, which is currently the most frequently used P-gp substrate. Compound [(18)F]3 was performing the best out of the new radiopharmaceuticals; it had 2-fold higher brain uptake in the Mdr1a/b((-/-))Bcrp1((-/-)) mice compared to wild-type and was metabolically quite stable. In the plasma, 69% of the parent compound was intact after 45 min and 96% in the brain. Selectivity of [(18)F]3 to P-gp was tested by comparing the uptake in Mdr1a/b((-/-)) mice to uptake in Mdr1a/b((-/-))Bcrp1((-/-)) mice, which was statistically not significantly different. Hence, [(18)F]3 was found to be selective for P-gp and is a promising new radiopharmaceutical for P-gp PET imaging at the BBB.
Collapse
Affiliation(s)
- Heli Savolainen
- †Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Mariangela Cantore
- ‡Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, via Orabona 4, 70125 Bari, Italy.,§Biofordrug slr, via Orabona 4, 70125 Bari, Italy
| | - Nicola A Colabufo
- ‡Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, via Orabona 4, 70125 Bari, Italy.,§Biofordrug slr, via Orabona 4, 70125 Bari, Italy
| | - Philip H Elsinga
- †Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Albert D Windhorst
- ∥Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, De Boelelaan 1085 C, 1081 HV Amsterdam, Netherlands
| | - Gert Luurtsema
- †Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| |
Collapse
|
13
|
Pati ML, Niso M, Ferorelli S, Abate C, Berardi F. Novel metal chelators thiosemicarbazones with activity at the σ2receptors and P-glycoprotein: an innovative strategy for resistant tumor treatment. RSC Adv 2015. [DOI: 10.1039/c5ra19857g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Novel multitarget thiosemicarbazones that bind simultaneously σ2receptors and P-glycoprotein efflux pump and chelate metals were designed for resistant tumors treatment.
Collapse
Affiliation(s)
- Maria Laura Pati
- Dipartimento di Farmacia-Scienze del Farmaco
- Università degli Studi di Bari ALDO MORO
- I-70125 Bari
- Italy
- Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco
- Università degli Studi di Bari ALDO MORO
- I-70125 Bari
- Italy
| | - Savina Ferorelli
- Dipartimento di Farmacia-Scienze del Farmaco
- Università degli Studi di Bari ALDO MORO
- I-70125 Bari
- Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco
- Università degli Studi di Bari ALDO MORO
- I-70125 Bari
- Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco
- Università degli Studi di Bari ALDO MORO
- I-70125 Bari
- Italy
| |
Collapse
|