1
|
Abdel-Rahman AAH, El-Bayaa MN, Sobhy A, El-Ganzoury EM, Nossier ES, Awad HM, El-Sayed WA. Novel quinazolin-4-one based derivatives bearing 1,2,3-triazole and glycoside moieties as potential cytotoxic agents through dual EGFR and VEGFR-2 inhibitory activity. Sci Rep 2024; 14:24980. [PMID: 39443462 PMCID: PMC11500008 DOI: 10.1038/s41598-024-73171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
The toxicity that was caused by the developed medications for anticancer treatment is, unfortunately, an earnest problem stemming from the various involved targets, and accordingly, intense research for overcoming such a phenomenon remains indispensable. In the current inquiry, an innovative category of substituted quinazoline-based glycosides incorporating a core of 1,2,3-triazole and attached to distinct acetylated likewise deprotected sugar segments are created and produced synthetically. The resulted 1,2,3-triazolyl-glycosides products were investigated for their ability to cause cytotoxicity to several human cancer cell lines. The quinazoline based glycosyl-1,2,3-triazoles 10-13 with free hydroxy sugar moiety revealed excellent potency against (IC50 range = 5.70-8.10 µM, IC50 Doxorubicin = 5.6 ± 0.30 µM, IC50 Erlotinib = 4.3 ± 0.1 µM). against MCF-7 cancer cell line. In addition, the derived glycosides incorporating quinazolinone and triazole core 6-13 with acetylated and deprotected sugar parts showed excellent and superior potency against HCT-116 (IC50 range = 2.90-6.40 µM). The potent products were revealed as safe cytotoxic agents as indicated by their studied safety profiles. Additional research of promising candidates inhibitory analysis performed against EGFR and VEGFR-2. The hydroxylated glycosides incorporating triazole and quinazoline system 11 and 13 with N-methyl substitution of quinazolinone, gave excellent potency against EGFR (IC50 = 0.35 ± 0.11 and 0.31 ± 0.06 µM, correspondingly) since glycoside 13 revealed comparable IC50 (3.20 ± 0.15 µM) to sorafenib against VEGFR-2. For more understanding of its action mode, it was analyzed how the 1,2,3-triazolyl glycoside 13 made an effect on the apoptosis induction and the arrest of the cell cycle. It was revealed that it had the ability to stop HCT-116 cells in their cell cycle's G1 stage. Moreover, the influence of quinazolinone-1,2,3-triazole-glycoside 13 upon p53, Bax, and Bcl-2 levels in HCT-116 units was also studied for future approaches toward its behavior. Additionally, the latter derivative may trigger apoptosis, as indicated by a significant increase in apoptotic cells. Furthermore, molecular docking was simulated to make an obvious validation and comprehension acquirement of the binding's characteristics also attractions among the most forceful compounds side by side with their aimed enzymes.
Collapse
Affiliation(s)
- Adel A-H Abdel-Rahman
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| | - Mohamed N El-Bayaa
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Asmaa Sobhy
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Eman M El-Ganzoury
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo, 11516, Egypt
| | - Hanem M Awad
- Tanning Materials and Leather Technology Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Wael A El-Sayed
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| |
Collapse
|
2
|
Zhao R, Zhu J, Jiang X, Bai R. Click chemistry-aided drug discovery: A retrospective and prospective outlook. Eur J Med Chem 2024; 264:116037. [PMID: 38101038 DOI: 10.1016/j.ejmech.2023.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Click chemistry has emerged as a valuable tool for rapid compound synthesis, presenting notable advantages and convenience in the exploration of potential drug candidates. In particular, in situ click chemistry capitalizes on enzymes as reaction templates, leveraging their favorable conformation to selectively link individual building blocks and generate novel hits. This review comprehensively outlines and introduces the extensive use of click chemistry in compound library construction, and hit and lead discovery, supported by specific research examples. Additionally, it discusses the limitations and precautions associated with the application of click chemistry in drug discovery. Our intention for this review is to contribute to the development of a modular synthetic approach for the rapid identification of drug candidates.
Collapse
Affiliation(s)
- Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
3
|
Garana BB, Joly JH, Delfarah A, Hong H, Graham NA. Drug mechanism enrichment analysis improves prioritization of therapeutics for repurposing. BMC Bioinformatics 2023; 24:215. [PMID: 37226094 DOI: 10.1186/s12859-023-05343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND There is a pressing need for improved methods to identify effective therapeutics for diseases. Many computational approaches have been developed to repurpose existing drugs to meet this need. However, these tools often output long lists of candidate drugs that are difficult to interpret, and individual drug candidates may suffer from unknown off-target effects. We reasoned that an approach which aggregates information from multiple drugs that share a common mechanism of action (MOA) would increase on-target signal compared to evaluating drugs on an individual basis. In this study, we present drug mechanism enrichment analysis (DMEA), an adaptation of gene set enrichment analysis (GSEA), which groups drugs with shared MOAs to improve the prioritization of drug repurposing candidates. RESULTS First, we tested DMEA on simulated data and showed that it can sensitively and robustly identify an enriched drug MOA. Next, we used DMEA on three types of rank-ordered drug lists: (1) perturbagen signatures based on gene expression data, (2) drug sensitivity scores based on high-throughput cancer cell line screening, and (3) molecular classification scores of intrinsic and acquired drug resistance. In each case, DMEA detected the expected MOA as well as other relevant MOAs. Furthermore, the rankings of MOAs generated by DMEA were better than the original single-drug rankings in all tested data sets. Finally, in a drug discovery experiment, we identified potential senescence-inducing and senolytic drug MOAs for primary human mammary epithelial cells and then experimentally validated the senolytic effects of EGFR inhibitors. CONCLUSIONS DMEA is a versatile bioinformatic tool that can improve the prioritization of candidates for drug repurposing. By grouping drugs with a shared MOA, DMEA increases on-target signal and reduces off-target effects compared to analysis of individual drugs. DMEA is publicly available as both a web application and an R package at https://belindabgarana.github.io/DMEA .
Collapse
Affiliation(s)
- Belinda B Garana
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 3710 McClintock Ave., RTH 509, Los Angeles, CA, 90089, USA
| | - James H Joly
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 3710 McClintock Ave., RTH 509, Los Angeles, CA, 90089, USA
- Nautilus Biotechnology, San Carlos, CA, USA
| | - Alireza Delfarah
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 3710 McClintock Ave., RTH 509, Los Angeles, CA, 90089, USA
- Calico Life Sciences, South San Francisco, CA, USA
| | - Hyunjun Hong
- Department of Computer Science, Information Systems, and Applications, Los Angeles City College, Los Angeles, CA, USA
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 3710 McClintock Ave., RTH 509, Los Angeles, CA, 90089, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Men Y, Li Z, Wang H, Liu Y, Liu X, Chen B. Synthesis and antiproliferative evaluation of novel 1,3,4-thiadiazole-S-alkyl derivatives based on quinazolinone. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2176500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Yanle Men
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Zijian Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Hongying Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Yuming Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Baoquan Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
5
|
Discovery of potent HDAC2 inhibitors based on virtual screening in combination with drug repurposing. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Targeting cellular senescence in cancer by plant secondary metabolites: A systematic review. Pharmacol Res 2021; 177:105961. [PMID: 34718135 DOI: 10.1016/j.phrs.2021.105961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Senescence suppresses tumor growth, while also developing a tumorigenic state in the nearby cells that is mediated by senescence-associated secretory phenotypes (SASPs). The dual function of cellular senescence stresses the need for identifying multi-targeted agents directed towards the promotion of cell senescence in cancer cells and suppression of the secretion of pro-tumorigenic signaling mediators in neighboring cells. Natural secondary metabolites have shown favorable anticancer responses in recent decades, as some have been found to target the senescence-associated mediators and pathways. Furthermore, phenolic compounds and polyphenols, terpenes and terpenoids, alkaloids, and sulfur-containing compounds have shown to be promising anticancer agents through the regulation of paracrine and autocrine pathways. Plant secondary metabolites are potential regulators of SASPs factors that suppress tumor growth through paracrine mediators, including growth factors, cytokines, extracellular matrix components/enzymes, and proteases. On the other hand, ataxia-telangiectasia mutated, ataxia-telangiectasia and Rad3-related, extracellular signal-regulated kinase/mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin, nuclear factor-κB, Janus kinase/signal transducer and activator of transcription, and receptor tyrosine kinase-associated mediators are main targets of candidate phytochemicals in the autocrine senescence pathway. Such a regulatory role of phytochemicals on senescence-associated pathways are associated with cell cycle arrest and the attenuation of apoptotic/inflammatory/oxidative stress pathways. The current systematic review highlights the critical roles of natural secondary metabolites in the attenuation of autocrine and paracrine cellular senescence pathways, while also elucidating the chemopreventive and chemotherapeutic capabilities of these compounds. Additionally, we discuss current challenges, limitations, and future research indications.
Collapse
|
7
|
Bui HTB, Do KM, Nguyen HTD, Mai HV, Danh TLD, Tran DQ, Morita H. Efficient one-pot tandem synthesis and cytotoxicity evaluation of 2,3-disubstituted quinazolin-4(3H)-one derivatives. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Yang J, Gong C, Ke Q, Fang Z, Chen X, Ye M, Xu X. Insights Into the Function and Clinical Application of HDAC5 in Cancer Management. Front Oncol 2021; 11:661620. [PMID: 34178647 PMCID: PMC8222663 DOI: 10.3389/fonc.2021.661620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Histone deacetylase 5 (HDAC5) is a class II HDAC. Aberrant expression of HDAC5 has been observed in multiple cancer types, and its functions in cell proliferation and invasion, the immune response, and maintenance of stemness have been widely studied. HDAC5 is considered as a reliable therapeutic target for anticancer drugs. In light of recent findings regarding the role of epigenetic reprogramming in tumorigenesis, in this review, we provide an overview of the expression, biological functions, regulatory mechanisms, and clinical significance of HDAC5 in cancer.
Collapse
Affiliation(s)
- Jun Yang
- Department of Orthopedic Surgery, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Chaoju Gong
- Central Laboratory, The Municipal Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qinjian Ke
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Zejun Fang
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Xiaowen Chen
- Department of Pathophysiology, Zunyi Medical University, Zunyi, China
| | - Ming Ye
- Department of General Surgery, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Xi Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Grover P, Bhardwaj M, Kapoor G, Mehta L, Ghai R, Nagarajan K. Advances on Quinazoline Based Congeners for Anticancer Potential. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210212121056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The heterocyclic compounds have a great significance in medicinal chemistry because
they have extensive biological activities. Cancer is globally the leading cause of death
and it is a challenge to develop appropriate treatment for the management of cancer. Continuous
efforts are being made to find a suitable medicinal agent for cancer therapy. Nitrogencontaining
heterocycles have received noteworthy attention due to their wide and distinctive
pharmacological activities. One of the most important nitrogen-containing heterocycles in
medicinal chemistry is ‘quinazoline’ that possesses a wide spectrum of biological properties.
This scaffold is an important pharmacophore and is considered a privileged structure. Various
substituted quinazolines displayed anticancer activity against different types of cancer. This
review highlights the recent advances in quinazoline based molecules as anticancer agents.
Several in-vitro and in-vivo models used along with the results are also included. A subpart briefing natural quinazoline
containing anticancer compounds is also incorporated in the review.
Collapse
Affiliation(s)
- Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Monika Bhardwaj
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Garima Kapoor
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Roma Ghai
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - K. Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| |
Collapse
|
10
|
Lourenço de Freitas N, Deberaldini MG, Gomes D, Pavan AR, Sousa Â, Dos Santos JL, Soares CP. Histone Deacetylase Inhibitors as Therapeutic Interventions on Cervical Cancer Induced by Human Papillomavirus. Front Cell Dev Biol 2021; 8:592868. [PMID: 33634093 PMCID: PMC7901962 DOI: 10.3389/fcell.2020.592868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
The role of epigenetic modifications on the carcinogenesis process has received a lot of attention in the last years. Among those, histone acetylation is a process regulated by histone deacetylases (HDAC) and histone acetyltransferases (HAT), and it plays an important role in epigenetic regulation, allowing the control of the gene expression. HDAC inhibitors (HDACi) induce cancer cell cycle arrest, differentiation, and cell death and reduce angiogenesis and other cellular events. Human papillomaviruses (HPVs) are small, non-enveloped double-stranded DNA viruses. They are major human carcinogens, being intricately linked to the development of cancer in 4.5% of the patients diagnosed with cancer worldwide. Long-term infection of high-risk (HR) HPV types, mainly HPV16 and HPV18, is one of the major risk factors responsible for promoting cervical cancer development. In vitro and in vivo assays have demonstrated that HDACi could be a promising therapy to HPV-related cervical cancer. Regardless of some controversial studies, the therapy with HDACi could target several cellular targets which HR-HPV oncoproteins could be able to deregulate. This review article describes the role of HDACi as a possible intervention in cervical cancer treatment induced by HPV, highlighting the main advances reached in the last years and providing insights for further investigations regarding those agents against cervical cancer.
Collapse
Affiliation(s)
- Natália Lourenço de Freitas
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Gabriela Deberaldini
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Diana Gomes
- CICS-UBI – Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Aline Renata Pavan
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ângela Sousa
- CICS-UBI – Health Science Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Jean Leandro Dos Santos
- Drugs and Medicines Department, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| | - Christiane P. Soares
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
11
|
Vu TK, Thanh NT, Minh NV, Linh NH, Thao NTP, Nguyen TTB, Hien DT, Chinh LV, Duc TH, Anh LD, Hai PT. Novel Conjugated Quinazolinone-Based Hydroxamic Acids: Design, Synthesis and Biological Evaluation. Med Chem 2021; 17:732-749. [PMID: 32310052 DOI: 10.2174/1573406416666200420081540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The target-based approach to drug discovery currently attracts a great deal of interest from medicinal chemists in anticancer drug discovery and development. Histone deacetylase (HDAC) inhibitors represent an extensive class of targeted anti-cancer agents. Among the most explored structure moieties, hydroxybenzamides and hydroxypropenamides have been demonstrated to have potential HDAC inhibitory effects. Several compounds of these structural classes have been approved for clinical uses to treat different types of cancer, such as vorinostat and belinostat. AIMS This study aims at developing novel HDAC inhibitors bearing conjugated quinazolinone scaffolds with potential cytotoxicity against different cancer cell lines. METHODS A series of novel N-hydroxyheptanamides incorporating conjugated 6-hydroxy-2 methylquinazolin- 4(3H)-ones (15a-l) was designed, synthesized and evaluated for HDAC inhibitory potency as well as cytotoxicity against three human cancer cell lines, including HepG-2, MCF-7 and SKLu-1. Molecular simulations were finally performed to gain more insight into the structureactivity relationships. RESULTS It was found that among novel conjugated quinazolinone-based hydroxamic acids synthesized, compounds 15a, 15c and 15f were the most potent, both in terms of HDAC inhibition and cytotoxicity. Especially, compound 15f displayed up to nearly 4-fold more potent than SAHA (vorinostat) in terms of cytotoxicity against MCF-7 cell line with IC50 value of 1.86 μM, and HDAC inhibition with IC50 value of 6.36 μM. Docking experiments on HDAC2 isozyme showed that these compounds bound to HDAC2 with binding affinities ranging from -10.08 to -14.93 kcal/mol compared to SAHA (-15.84 kcal/mol). It was also found in this research that most of the target compounds seemed to be more cytotoxic toward SKLu-1than MCF-7 and HepG-2. CONCLUSION The resesrch results suggest that some hydroxamic acids could emerge for further evaluation and the results are well served as basics for further design of more potent HDAC inhibitors and antitumor agents.
Collapse
Affiliation(s)
- Tran Khac Vu
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Thi Thanh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Van Minh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Huong Linh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Nguyen Thi Phương Thao
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Trương Thuc Bao Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Doan Thi Hien
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Luu Van Chinh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet-Cau Giay, Hanoi, Vietnam
| | - Ta Hong Duc
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Lai Duc Anh
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Pham-The Hai
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| |
Collapse
|
12
|
Synthesis and anti-proliferative activity of a novel 1,2,3-triazole tethered chalcone acetamide derivatives. Bioorg Med Chem Lett 2020; 30:127304. [DOI: 10.1016/j.bmcl.2020.127304] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 12/18/2022]
|
13
|
Auti PS, George G, Paul AT. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Adv 2020; 10:41353-41392. [PMID: 35516563 PMCID: PMC9057921 DOI: 10.1039/d0ra06642g] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Due to the pharmacological activities of quinazoline and quinazolinone scaffolds, it has aroused great interest in medicinal chemists for the development of new drugs or drug candidates. The pharmacological activities of quinazoline and its related scaffolds include anti-cancer, anti-microbial, anti-convulsant, and antihyperlipidaemia. Recently, molecular hybridization technology is used for the development of hybrid analogues with improved potency by combining two or more pharmacophores of bioactive scaffolds. The molecular hybridization of various biologically active pharmacophores with quinazoline derivatives resulted in lead compounds with multi-faceted biological activity wherein specific as well as multiple targets were involved. The present review summarizes the advances in lead compounds of quinazoline hybrids and their related heterocycles in medicinal chemistry. Moreover, the review also helps to intensify the drug development process by providing an understanding of the potential role of these hybridized pharmacophoric features in exhibiting various pharmacological activities. Recent advances in quinazoline/quinazolinone hybrid heterocycles in medicinal chemistry and their pharmacological diversification.![]()
Collapse
Affiliation(s)
- Prashant S. Auti
- Laboratory of Natural Product Chemistry
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani (BITS Pilani)
- Pilani Campus
- India
| | - Ginson George
- Laboratory of Natural Product Chemistry
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani (BITS Pilani)
- Pilani Campus
- India
| | - Atish T. Paul
- Laboratory of Natural Product Chemistry
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani (BITS Pilani)
- Pilani Campus
- India
| |
Collapse
|
14
|
Norouzi M, Amerian M, Amerian M, Atyabi F. Clinical applications of nanomedicine in cancer therapy. Drug Discov Today 2020; 25:107-125. [DOI: 10.1016/j.drudis.2019.09.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022]
|
15
|
Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019; 183:111700. [PMID: 31546197 DOI: 10.1016/j.ejmech.2019.111700] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Anticancer agents are critical for the cancer treatment, but side effects and the drug resistance associated with the currently used anticancer agents create an urgent need to explore novel drugs with low side effects and high efficacy. 1,2,3-Triazole is privileged building block in the discovery of new anticancer agents, and some of its derivatives have already been applied in clinics or under clinical trials for fighting against cancers. Hybrid molecules occupy an important position in cancer control, and hybridization of 1,2,3-triazole framework with other anticancer pharmacophores may provide valuable therapeutic intervention for the treatment of cancer, especially drug-resistant cancer. This review emphasizes the recent advances in 1,2,3-triazole-containing hybrids with anticancer potential, covering articles published between 2015 and 2019, and the structure-activity relationships, together with mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| | - Shi-Jia Zhao
- Wuhan University of Science and Technology, Wuhan, PR China
| | - Yi Liu
- Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
16
|
McIntyre RL, Daniels EG, Molenaars M, Houtkooper RH, Janssens GE. From molecular promise to preclinical results: HDAC inhibitors in the race for healthy aging drugs. EMBO Mol Med 2019; 11:e9854. [PMID: 31368626 PMCID: PMC6728603 DOI: 10.15252/emmm.201809854] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 06/13/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Reversing or slowing the aging process brings great promise to treat or prevent age‐related disease, and targeting the hallmarks of aging is a strategy to achieve this. Epigenetics affects several if not all of the hallmarks of aging and has therefore emerged as a central target for intervention. One component of epigenetic regulation involves histone deacetylases (HDAC), which include the “classical” histone deacetylases (of class I, II, and IV) and sirtuin deacetylases (of class III). While targeting sirtuins for healthy aging has been extensively reviewed elsewhere, this review focuses on pharmacologically inhibiting the classical HDACs to promote health and longevity. We describe the theories of how classical HDAC inhibitors may operate to increase lifespan, supported by studies in model organisms. Furthermore, we explore potential mechanisms of how HDAC inhibitors may have such a strong grasp on health and longevity, summarizing their links to other hallmarks of aging. Finally, we show the wide range of age‐related preclinical disease models, ranging from neurodegeneration to heart disease, diabetes to sarcopenia, which show improvement upon HDAC inhibition.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eileen G Daniels
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Minh NV, Thanh NT, Lien HT, Anh DTP, Cuong HD, Nam NH, Hai PT, Minh-Ngoc L, Le-Thi-Thu H, Chinh LV, Vu TK. Design, Synthesis and Biological Evaluation of Novel N-hydroxyheptanamides Incorporating 6-hydroxy-2-methylquinazolin-4(3H)-ones as Histone Deacetylase Inhibitors and Cytotoxic Agents. Anticancer Agents Med Chem 2019; 19:1543-1557. [PMID: 31267876 DOI: 10.2174/1871520619666190702142654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 05/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Target-based approach to drug discovery currently attracts a great deal of interest from medicinal chemists in anticancer drug discovery and development worldwide, and Histone Deacetylase (HDAC) inhibitors represent an extensive class of targeted anti-cancer agents. Among the most explored structure moieties, hydroxybenzamides and hydroxypropenamides have been demonstrated to have potential HDAC inhibitory effects. Several compounds of these structural classes have been approved for clinical uses to treat different types of cancer, such as vorinostat and belinostat. AIMS This study aims at developing novel HDAC inhibitors bearing quinazolinone scaffolds with potential cytotoxicity against different cancer cell lines. METHODS A series of novel N-hydroxyheptanamides incorporating 6-hydroxy-2 methylquinazolin-4(3H)-ones (14a-m) was designed, synthesized and evaluated for HDAC inhibitory potency as well as cytotoxicity against three human cancer cell lines, including HepG-2 (liver cancer), MCF-7 (breast cancer) and SKLu-1 (lung cancer). Molecular simulations were finally carried out to gain more insight into the structure-activity relationships. ADME-T predictions for selected compounds were also performed to predict some important features contributing to the absorption profile of the present hydroxamic derivatives. RESULTS It was found that the N-hydroxyheptanamide 14i and 14j were the most potent, both in terms of HDAC inhibition and cytotoxicity. These compounds displayed up to 21-71-fold more potent than SAHA (suberoylanilide hydroxamic acid, vorinostat) in terms of cytotoxicity, and strong inhibition against the whole cell HDAC enzymes with IC50 values of 7.07-9.24μM. Docking experiments on HDAC2 isozyme using Autodock Vina showed all compounds bound to HDAC2 with relatively higher affinities (from -7.02 to -11.23 kcal/mol) compared to SAHA (-7.4 kcal/mol). It was also found in this research that most of the target compounds seemed to be more cytotoxic toward breast cancer cells (MCF-7) than liver (HepG2), and lung (SKLu-1) cancer cells.
Collapse
Affiliation(s)
- Nguyen V Minh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Nguyen T Thanh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Hoang T Lien
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Dinh T P Anh
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Ho D Cuong
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| | - Nguyen H Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Pham T Hai
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Le Minh-Ngoc
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Huong Le-Thi-Thu
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, Vietnam
| | - Luu V Chinh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet-Cau Giay-Hanoi, Vietnam
| | - Tran K Vu
- School of Chemical Engineering, Hanoi University of Science and Technology, No 1, Dai Co Viet, Hai Ba Trung-Hanoi, Vietnam
| |
Collapse
|
18
|
Venkatesh R, Kasaboina S, Jain N, Janardhan S, Holagunda UD, Nagarapu L. Design and synthesis of novel sulphamide tethered quinazolinone hybrids as potential antitumor agents. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
El-Sayed S, Metwally K, El-Shanawani AA, Abdel-Aziz LM, Pratsinis H, Kletsas D. Synthesis and anticancer activity of novel quinazolinone-based rhodanines. Chem Cent J 2017; 11:102. [PMID: 29086906 PMCID: PMC5640562 DOI: 10.1186/s13065-017-0333-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Background Rhodanines and quinazolinones have been reported to possess various pharmacological activities. Results A novel series of twenty quinazolinone-based rhodanines were synthesized via Knoevenagel condensation between 4-[3-(substitutedphenyl)-3,4-dihydro-4-oxoquinazolin-2-yl)methoxy]substituted-benzaldehydes and rhodanine. Elemental and spectral analysis were used to confirm structures of the newly synthesized compounds. The newly synthesized compounds were biologically evaluated for in vitro cytotoxic activity against the human fibrosarcoma cell line HT-1080 as a preliminary screen using the MTT assay. Conclusions All the target compounds were active, displaying IC50 values roughly in the range of 10–60 µM. Structure–activity relationship study revealed that bulky, hydrophobic, and electron withdrawing substituents at the para-position of the quinazolinone 3-phenyl ring as well as methoxy substitution on the central benzene ring, enhance cytotoxic activity. The four most cytotoxic compounds namely, 45, 43, 47, and 37 were further tested against two human leukemia cell lines namely, HL-60 and K-562 and showed cytotoxic activity in the low micromolar range with compound 45 being the most active, having IC50 values of 1.2 and 1.5 μM, respectively. Interestingly, all four compounds were devoid of cytotoxicity against normal human fibroblasts strain AG01523, indicating that the synthesized rhodanines may be selectively toxic against cancer cells. Mechanistic studies revealed that the most cytotoxic target compounds exhibit pro-apoptotic activity and trigger oxidative stress in cancer cells.![]()
Collapse
Affiliation(s)
- Sherihan El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Kamel Metwally
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Abdalla A El-Shanawani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Lobna M Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre of Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre of Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
20
|
Pharmaceutical prospects of naturally occurring quinazolinone and its derivatives. Fitoterapia 2017; 119:136-149. [PMID: 28495308 DOI: 10.1016/j.fitote.2017.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/06/2017] [Indexed: 12/18/2022]
Abstract
Quinazolinones belong to a family of heterocyclic nitrogen compounds that have attracted increasing interest because of their broad spectrum of biological functions. This review describes three types of natural quinazolinones and their synthesized derivatives and summarizes their various pharmacological activities, including antifungal, anti-tumor, anti-malaria, anticonvulsant, anti-microbial, anti-inflammatory and antihyperlipidemic activities. In addition, structure-activity relationships of quinazolinone derivatives are also reviewed.
Collapse
|
21
|
Novel benzothiazine-piperazine derivatives by peptide-coupling as potential anti-proliferative agents. Bioorg Med Chem Lett 2016; 27:354-359. [PMID: 27964883 DOI: 10.1016/j.bmcl.2016.10.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/06/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
In an attempt to develop potential and selective anti-proliferative agents, a series of novel benzothiazine-piperazine derivatives 8a-i and 10a-g were synthesized by coupling of 2H-1,4-benzothiazin-3(4H)-one with various amines 7a-i and 9a-g in excellent yields and evaluated for their in vitro anti-proliferative activity against four cancer cell lines, HeLa (cervical), MIAPACA (pancreatic), MDA-MB-231 (breast) and IMR32 (neuroblastoma). In vitro inhibitory activity indicated that compounds 8a, 8d, 8g, 10a, 10b, 10e, 10f were found to be good anti-proliferative agents. Among them the derivatives 8g, 10e and 10f were found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking was undertaken to investigate the probable binding mode and key active site interactions in HDAC8 and EHMT2 proteins. The docking results are complementary to the experimental results.
Collapse
|
22
|
Synthesis and evaluation of antiproliferative activity of novel quinazolin-4(3H)-one derivatives. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1632-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Guo W, Zheng LY, Li YD, Wu RM, Chen Q, Yang DQ, Fan XL. Discovery of molluscicidal and cercaricidal activities of 3-substituted quinazolinone derivatives by a scaffold hopping approach using a pseudo-ring based on the intramolecular hydrogen bond formation. Eur J Med Chem 2016; 115:291-4. [DOI: 10.1016/j.ejmech.2016.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 01/22/2023]
|
24
|
Gong CJ, Gao AH, Zhang YM, Su MB, Chen F, Sheng L, Zhou YB, Li JY, Li J, Nan FJ. Design, synthesis and biological evaluation of bisthiazole-based trifluoromethyl ketone derivatives as potent HDAC inhibitors with improved cellular efficacy. Eur J Med Chem 2016; 112:81-90. [PMID: 26890114 DOI: 10.1016/j.ejmech.2016.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 01/04/2016] [Accepted: 02/02/2016] [Indexed: 01/09/2023]
Abstract
Histone deacetylases (HDACs) are a class of epigenetic modulators with complex functions in histone post-translational modifications and are well known targets for antineoplastic drugs. We have previously developed a series of bisthiazole-based hydroxamic acids as novel potent HDAC inhibitors. In the present work, a new series of bisthiazole-based compounds with different zinc binding groups (ZBGs) have been designed and synthesized. Among them is compound 7, containing a trifluoromethyl ketone as the ZBG, which displays potent inhibitory activity towards human HDACs and improved antiproliferative activity in several cancer cell lines.
Collapse
Affiliation(s)
- Chao-Jun Gong
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, PR China
| | - An-Hui Gao
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, PR China
| | - Yang-Ming Zhang
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, PR China
| | - Ming-Bo Su
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, PR China
| | - Fei Chen
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, PR China
| | - Li Sheng
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, PR China
| | - Yu-Bo Zhou
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, PR China
| | - Jing-Ya Li
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, PR China
| | - Jia Li
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, PR China.
| | - Fa-Jun Nan
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, PR China.
| |
Collapse
|
25
|
Peng FW, Wu TT, Ren ZW, Xue JY, Shi L. Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase. Bioorg Med Chem Lett 2015; 25:5137-41. [DOI: 10.1016/j.bmcl.2015.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/29/2015] [Accepted: 10/03/2015] [Indexed: 01/07/2023]
|