1
|
Bensalah D, Gurbuz N, Özdemir I, Gatri R, Mansour L, Hamdi N. Synthesis, Characterization, Antimicrobial Properties, and Antioxidant Activities of Silver-N-Heterocyclic Carbene Complexes. Bioinorg Chem Appl 2023; 2023:3066299. [PMID: 37274082 PMCID: PMC10238139 DOI: 10.1155/2023/3066299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 04/20/2023] [Indexed: 06/06/2023] Open
Abstract
The emergence of antimicrobial resistance has become a major handicap in the fight against bacterial infections, prompting researchers to develop new, more effective, and multimodal alternatives. Silver and its complexes have long been used as antimicrobial agents in medicine because of their lack of resistance to silver, their low potency at low concentrations, and their low toxicity compared to most commonly used antibiotics. N-Heterocyclic carbenes (NHCs) are widely used for coordination of transition metals, mainly in catalytic chemistry. In this study, several N-alkylated benzimidazolium salts 2a-j were synthesized. Then, the N-heterocyclic carbene (NHC) precursor was treated with Ag2O to give silver (I) NHC complexes (3a-j) at room temperature in dichloromethane for 48 h. Ten new silver-NHC complexes were fully characterized by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and LC-MSMS (for complexes) techniques. The antibacterial and antioxidant activities of salt 2 and its silver complex 3 were evaluated. All of these complexes were more effective against bacterial strains than comparable ligands. With MIC values ranging from 6.25 to 100 g/ml, the Ag-NHC complex effectively showed strong antibacterial activity. Antioxidant activity was also tested using conventional techniques, such as 2, 2-diphenyl-1-picrylhydrazine (DPPH) and hydrogen peroxide scavenging assays. In DPPH and ABTS experiments, compounds 3a, 3b, 3c, 3e, 3g, and 3i showed significant clearance.
Collapse
Affiliation(s)
- Donia Bensalah
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia
| | - Nevin Gurbuz
- İnönü University, Faculty of Science and Art, Department of Chemistry, Malatya 44280, Turkey
- İnönü University, Catalysis Research and Application Center, Malatya 44280, Turkey
| | - Ismail Özdemir
- İnönü University, Faculty of Science and Art, Department of Chemistry, Malatya 44280, Turkey
- İnönü University, Catalysis Research and Application Center, Malatya 44280, Turkey
| | - Rafik Gatri
- Laboratory of Selective and Heterocyclic Organic Synthesis Biological Evaluation (LR17ES01), Faculty of Sciences of Tunis, University of Tunis El Manar Campus, Tunis 1092, Tunisia
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naceur Hamdi
- Department of Chemistry, College of Science and Arts at Arras, Qassim University, P.O. Box 53, Arras 51921, Saudi Arabia
| |
Collapse
|
2
|
Al Nasr IS, Koko WS, Khan TA, Gürbüz N, Özdemir I, Hamdi N. Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Enzymatic Inhibitory Agents with Antioxidant, Antimicrobial, Antiparasitical and Antiproliferative Activity. Molecules 2023; 28:molecules28031359. [PMID: 36771026 PMCID: PMC9921063 DOI: 10.3390/molecules28031359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
A series of [RuCl2(p-cymene)(NHC)] complexes were obtained by reacting [RuCl2(p-cymene)]2 with in situ generated Ag-N-heterocyclic carbene (NHC) complexes. The structure of the obtained complexes was determined by the appropriate spectroscopy and elemental analysis. In addition, we evaluated the biological activities of these compounds as antienzymatic, antioxidant, antibacterial, anticancer, and antiparasitic agents. The results revealed that complexes 3b and 3d were the most potent inhibitors against AchE with IC50 values of 2.52 and 5.06 μM mL-1. Additionally, 3d proved very good antimicrobial activity against all examined microorganisms with IZ (inhibition zone) over 25 mm and MIC (minimum inhibitory concentration) < 4 µM. Additionally, the ligand 2a and its corresponding ruthenium (II) complex 3a had good cytotoxic activity against both cancer cells HCT-116 and HepG-2, with IC50 values of (7.76 and 11.76) and (4.12 and 9.21) μM mL-1, respectively. Evaluation of the antiparasitic activity of these complexes against Leishmania major promastigotes and Toxoplasma gondii showed that ruthenium complexes were more potent than the free ligand, with an IC50 values less than 1.5 μM mL-1. However, 3d was found the best one with SI (selectivity index) values greater than 5 so it seems to be the best candidate for antileishmanial drug discovery program, and much future research are recommended for mode of action and in vivo evaluation. In general, Ru-NHC complexes are the most effective against L. major promastigotes.
Collapse
Affiliation(s)
- Ibrahim S. Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Waleed S. Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Tariq A. Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Nevin Gürbüz
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya 44280, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya 44280, Turkey
| | - Ismail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya 44280, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya 44280, Turkey
| | - Naceur Hamdi
- Department of Chemistry, College of Science and Arts at ArRass, Qassim University, Ar Rass 51921, Saudi Arabia
- Correspondence: ; Tel.: +966-556394839
| |
Collapse
|
3
|
Olgun Karataş M, Keskin T, Özdemir N, Küçükbay H, Tekin S, Mansur A, Günal S, Sandal S. Silyl-functionalised silver rhodium and iridium N-heterocyclic carbene complexes with promising cytotoxicity and antimicrobial potential. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Mondal A, Sahu P, Kisan HK, Isab AA, Chandra SK, Dinda J. Dinuclear silver(I)- and gold(I)- N heterocyclic carbene complexes; synthesis, structural characterizations, Photoluminescence and theoretical studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Chilaka SK, Chellu RK, Soda AK, Kurva S, Nanubolu JB, Madabhushi S. Base‐Catalyzed Domino Reaction Between Aldoxime and <i>N</i>‐Chlorosuccinimide in Alcohol: One‐Pot Synthesis of Alkyl 3‐(3‐Aryl‐1,2,4‐oxadiazol‐5‐yl)propanoates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Lan W, Tang X, Yu J, Fei Q, Wu W, Li P, Luo H. Design, Synthesis, and Bioactivities of Novel Trifluoromethyl Pyrimidine Derivatives Bearing an Amide Moiety. Front Chem 2022; 10:952679. [PMID: 35910720 PMCID: PMC9334529 DOI: 10.3389/fchem.2022.952679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Twenty-three novel trifluoromethyl pyrimidine derivatives containing an amide moiety were designed and synthesized through four-step reactions and evaluated for their antifungal, insecticidal, and anticancer properties. Bioassay results indicated that some of the title compounds exhibited good in vitro antifungal activities against Botryosphaeria dothidea (B. dothidea), Phompsis sp., Botrytis cinereal (B. cinerea), Colletotrichum gloeosporioides (C. gloeosporioides), Pyricutaria oryzae (P. oryzae), and Sclerotinia sclerotiorum (S. sclerotiorum) at 50 μg/ml. Meanwhile, the synthesized compounds showed moderate insecticidal activities against Mythimna separata (M. separata) and Spdoptera frugiperda (S. frugiperda) at 500 μg/ml, which were lower than those of chlorantraniliprole. In addition, the synthesized compounds indicated certain anticancer activities against PC3, K562, Hela, and A549 at 5 μg/ml, which were lower than those of doxorubicin. Notably, this work is the first report on the antifungal, insecticidal, and anticancer activities of trifluoromethyl pyrimidine derivatives bearing an amide moiety.
Collapse
Affiliation(s)
- Wenjun Lan
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xuemei Tang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Qiang Fei
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
- *Correspondence: Wenneng Wu, ; Pei Li, ; Heng Luo,
| | - Pei Li
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili, China
- *Correspondence: Wenneng Wu, ; Pei Li, ; Heng Luo,
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- *Correspondence: Wenneng Wu, ; Pei Li, ; Heng Luo,
| |
Collapse
|
7
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Zhang C. Application of Aromatic Substituted 2,2,2-Trifluoro Diazoethanes in Organic Reactions. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220516113815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
This review provides an overview of metal-, nonmetal-, light-, or catalyst free-promoting reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with organic molecules for the synthesis of trifluoromethyl-substituted compounds. Several approaches will be reviewed and divided into (i) copper-, iron-, Trop(BF4)-, B(C6F5)3-, light-, or rhodium-promoted reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with silanes, amines, mercaptans, phosphonates, p-cyanophenol, benzoic acid, diphenylphosphinic acid, boranes and nBu3SnH, (ii) rhodium-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with amides and phenylhydroxylamine, (iii) copper-, rhodium-, silver-, and light-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with alkynes, (iv) palladium-, copper-, rhodium- and iron-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with alkenes, (v) BF3·OEt2-, copper-, tin- or TBAB-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with HF·Py, (difluoroiodo)toluene (p-TolIF2), TMSCF3, AgSCF3, TMSCF2Br or 1,3-dicarbonyl compounds, (vi) palladium-, copper-, gold/silver- or rhodium-catalyzed reactions of aromatic substituted 2,2,2-trifluoro diazoethanes with indoles, benzene compounds or pyridines, and (vii) palladium-catalyzed reaction of aromatic substituted 2,2,2-trifluoro diazoethanes with benzyl or allyl bromides.
Collapse
Affiliation(s)
- Cai Zhang
- Department of safety supervision and management, Chongqing Vocational Institute of Safety Technology, Wanzhou District, Chongqing, People’s Republic of China
| |
Collapse
|
9
|
Goetzfried SK, Kapitza P, Gallati CM, Nindl A, Cziferszky M, Hermann M, Wurst K, Kircher B, Gust R. Investigations of the reactivity, stability and biological activity of halido (NHC)gold(I) complexes. Dalton Trans 2022; 51:1395-1406. [PMID: 34989741 DOI: 10.1039/d1dt03528b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The significance of the halido ligand (Cl-, Br-, I-) in halido[3-ethyl-4-phenyl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complexes (2-4) in terms of ligand exchange reactions, including the ligand scrambling to the bis[3-ethyl-4-phenyl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(I) complex (5), was evaluated by HPLC in acetonitrile/water = 50:50 (v/v) mixtures. In the presence of 0.9% NaCl, the bromido (NHC)gold(I) complex 3 was immediately transformed into the chlorido (NHC)gold(I) complex 2. The iodido (NHC)gold(I) complex 4 converted under the same conditions during 0.5 h of incubation by 52.83% to 2 and by 8.77% to 5. This proportion remained nearly constant for 72 h. The halido (NHC)gold(I) complexes also reacted very rapidly with 1 eq. of model nucleophiles, e.g., iodide or selenocysteine (Sec). For instance, Sec transformed 3 in the proportion 73.03% to the (NHC)Au(I)Sec complex during 5 min of incubation. This high reactivity against this amino acid, present in the active site of the thioredoxin reductase (TrxR), correlates with the complete inhibition of the isolated TrxR enzyme at 1 μM. Interestingly, in cellular systems (A2780cis cells), even at a 5-fold higher concentration, no increased ROS levels were detected. The concentration required for ROS generation was about 20 μM. Superficially considered, the antiproliferative and antimetabolic activities of the halido (NHC)Au(I) complexes correlate with the reactivity of the Au(I)-X bond (2 < 3 < 4). However, it is very likely that degradation products formed during the incubation in cell culture medium participated in the biological activity. In particular, the high-cytotoxic [(NHC)2Au(I)]+ complex (5) distorts the results.
Collapse
Affiliation(s)
- Sina Katharina Goetzfried
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Paul Kapitza
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Caroline Marie Gallati
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Anna Nindl
- Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| | - Monika Cziferszky
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Brigitte Kircher
- Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| | - Ronald Gust
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Raczuk E, Dmochowska B, Samaszko-Fiertek J, Madaj J. Different Schiff Bases-Structure, Importance and Classification. Molecules 2022; 27:787. [PMID: 35164049 PMCID: PMC8839460 DOI: 10.3390/molecules27030787] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Schiff bases are a vast group of compounds characterized by the presence of a double bond linking carbon and nitrogen atoms, the versatility of which is generated in the many ways to combine a variety of alkyl or aryl substituents. Compounds of this type are both found in nature and synthesized in the laboratory. For years, Schiff bases have been greatly inspiring to many chemists and biochemists. In this article, we attempt to present a new take on this group of compounds, underlining of the importance of various types of Schiff bases. Among the different types of compounds that can be classified as Schiff bases, we chose hydrazides, dihydrazides, hydrazones and mixed derivatives such as hydrazide-hydrazones. For these compounds, we presented the elements of their structure that allow them to be classified as Schiff bases. While hydrazones are typical examples of Schiff bases, including hydrazides among them may be surprising for some. In their case, this is possible due to the amide-iminol tautomerism. The carbon-nitrogen double bond present in the iminol tautomer is a typical element found in Schiff bases. In addition to the characteristics of the structure of these selected derivatives, and sometimes their classification, we presented selected literature items which, in our opinion, represent their importance in various fields well.
Collapse
Affiliation(s)
| | - Barbara Dmochowska
- Carbohydrate Chemistry Group, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.R.); (J.S.-F.); (J.M.)
| | | | | |
Collapse
|
11
|
Rana BK, Roymahapatra G, Das HS, Giri S, Cardoso MH, Franco OL, Nakka KK, Santra MK, Bag PP, Bertolasi V, Dinda J. Pyridine and pyrimidine functionalized half-sandwich Ru(II)-N heterocyclic carbene complexes: Synthesis, structures, spectra, electrochemistry and biological studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Maftei CV, Franz MH, Kleeberg C, Neda I. New Members of the Cinchona Alkaloids Family: Assembly of the Triazole Heterocycle at the 6' Position. Molecules 2021; 26:molecules26113357. [PMID: 34199504 PMCID: PMC8199664 DOI: 10.3390/molecules26113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/04/2022] Open
Abstract
The substance class of the well-known Cinchona alkaloids is widened by 6′-Amino-cinchonine and 6′-Amino-cinchonidine, novel compounds which incorporate a primary amino function in the quinolinic ring system. These key intermediates open the field for a range of fruitful chemistry. Here is described a short and direct pathway for the synthesis of triazole containing derivatives of the above-mentioned substances using the [3 + 2] Huisgen cycloaddition. For this purpose, the amines were first converted into the corresponding azides. Based on this, non-substituted and silyl-protected triazoles were synthesized as examples. Furthermore, didehydrated derivatives of quincorine and quincoridine were used as addition partners, resulting in compounds that carry the quinuclidine ring of the cinchona alkaloids at both ends. Some of these compounds were examined radiographically to investigate the position of the quinuclidine ring to the triazole. The solid-state structures of compounds 10, 11 and 28 were determined by X-ray diffraction analyses.
Collapse
Affiliation(s)
| | - Martin Heiko Franz
- InnoChemTech GmbH, Hagenring 30, 38106 Braunschweig, Germany; (C.V.M.); (M.H.F.)
| | - Christian Kleeberg
- Institut für Anorganische und Analytische Chemie, Technische Universität ‘Carola-Wilhelmina’ Braunschweig, Hagenring 30, 38106 Braunschweig, Germany;
| | - Ion Neda
- Institut für Anorganische und Analytische Chemie, Technische Universität ‘Carola-Wilhelmina’ Braunschweig, Hagenring 30, 38106 Braunschweig, Germany;
- Correspondence:
| |
Collapse
|
13
|
Rana BK, Roymahapatra G, Das HS, Giri S, Cardoso MH, Franco OL, Kiran N, Santra MK, Bag PP, Bertolasi V, Dinda J. Pyridine and pyrimidine functionalized half-sandwich Ru(II)-N heterocyclic carbene complexes: Synthesis, structures, spectra, electrochemistry and biological studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Kapoor G, Bhutani R, Pathak DP, Chauhan G, Kant R, Grover P, Nagarajan K, Siddiqui SA. Current Advancement in the Oxadiazole-Based Scaffolds as Anticancer Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1886123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Garima Kapoor
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | - Rubina Bhutani
- School of Medical and Allied Sciences, GD Goenka University, Gurgaon, Haryana, India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Garima Chauhan
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Ravi Kant
- Lloyd Institute of Management and Technology, Greater Noida, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of InstitutionsGhaziabad, Uttar Pradesh, India
| | | |
Collapse
|
15
|
Behçet A, Aktaş A, Gök Y, Kaya R, Taslimi P, Gülçin İ. Novel silver(I)
N
‐heterocyclic
carbene complexes bearing 2‐(4‐hydroxyphenyl)ethyl group: Synthesis, characterization, and enzyme inhibition properties. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ayten Behçet
- Department of Chemistry, Faculty of Arts and Sciences Inönü University Malatya Turkey
| | - Aydın Aktaş
- Department of Chemistry, Faculty of Arts and Sciences Inönü University Malatya Turkey
- Vocational School of Health Service Inonu University Malatya Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Sciences Inönü University Malatya Turkey
| | - Rüya Kaya
- Central Research and Application Laboratory Ağri İbrahim Çeçen University Agri Turkey
- Department of Chemistry, Faculty of Sciences Atatürk University Erzurum Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences Atatürk University Erzurum Turkey
| |
Collapse
|
16
|
Baikov SV, Trukhanova YA, Tarasenko MV, Kinzhalov MA. Synthesis and Study of the Structure of Palladium(II) Acyclic
Diaminocarbene Complexes Containing a 1,2,4-Oxadiazole Moiety. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220100126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Haziz UF, Haque RA, Zhan S, Abdallah HH, Razali MR. Dinuclear gold (I)‐di‐
N
‐heterocyclic carbene complexes: syntheses, structure, density functional theory calculation and photoluminescence study. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Umie F.M. Haziz
- School of Chemical Sciences Universiti Sains Malaysia, 11800, USM Penang Malaysia
| | - Rosenani A. Haque
- School of Chemical Sciences Universiti Sains Malaysia, 11800, USM Penang Malaysia
| | - Shun‐Ze Zhan
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Shantou 515063 China
| | - Hassan H. Abdallah
- Chemistry Department, College of Education Salahaddin University Erbil 44001 Iraq
| | - Mohd R. Razali
- School of Chemical Sciences Universiti Sains Malaysia, 11800, USM Penang Malaysia
| |
Collapse
|
18
|
Burdzhiev N, Ahmedova A, Borrisov B, Graf R. 13C CPMAS NMR as a Tool for Full Structural Description of 2-Phenyl Substituted Imidazoles That Overcomes the Effects of Fast Tautomerization. Molecules 2020; 25:E3770. [PMID: 32825018 PMCID: PMC7504167 DOI: 10.3390/molecules25173770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 11/21/2022] Open
Abstract
Tautomerization of 2-phenylimidazolecarbaldehydes has not been studied in detail so far, although this process is a well-known phenomenon for imidazole derivatives. That is why we focus our study on a series of 2-phenylimidazolecarbaldehydes and their parent alcohols that were synthesized and studied by detailed 1H and 13C NMR in solution and in the solid state. The apparent problem is that the fast tautomerization impedes the full structural description of the compounds by conventional 13C NMR measurements. Indeed, the 13C NMR spectra in solution exhibit poor resolution, and in most cases, signals from the imidazole ring are not detectable. To avoid this problem, we used 13C CP-MAS NMR as an alternative spectroscopic method for unambiguous spectroscopic characterization of the studied series of 2-phenylimidazoles. The data were analyzed in combination with quantum chemical DFT-GIAO methods by considering the tautomerization process and the intermolecular interactions. The DFT (B3LYP/6-31G(d,p)) calculations allowed to identify and suggest the preferred tautomer in the gas phase and in DMSO solvent, which for alcohols are (2-phenyl-1H-imidazol-4-yl)methanol and its analogs, and for the aldehydes are the 2-phenyl-1H-imidazole-5-carbaldehydes. The gas-phase calculated energy differences between the two possible tautomeric forms are in the range 0.645-1.415 kcal/mol for the alcohols and 2.510-3.059 kcal/mol for the aldehydes. In the DMSO solvent, however, for all compounds, the calculated energy differences go below 1.20 kcal/mol. These data suggest that both tautomeric forms of the studied 2-phenylimidazoles can be present in solution at room temperature. Our data from detailed 2D NMR measurements in the solid state (1H-13C HETCOR and 1H-1H double-quantum coherence MAS NMR) suggested that also in the solid state both tautomers coexist in different crystalline domains. This fact does not obscure the 13C CP-MAS NMR spectra of the studied 2-phenyl substituted imidazoles and suggests this spectroscopic method as a powerful tool for a complete structural description of tautomeric systems with aromatic conjugation.
Collapse
Affiliation(s)
- Nikola Burdzhiev
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier blvd., Sofia 1164, Bulgaria;
| | - Anife Ahmedova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier blvd., Sofia 1164, Bulgaria;
| | - Boris Borrisov
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier blvd., Sofia 1164, Bulgaria;
| | - Robert Graf
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;
| |
Collapse
|
19
|
Scattolin T, Bortolamiol E, Rizzolio F, Demitri N, Visentin F. Allyl palladium complexes bearing carbohydrate‐based
N
‐heterocyclic carbenes: Anticancer agents for selective and potent
in vitro
cytotoxicity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5876] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry Ghent University Krijgslaan 281 (S‐3) Ghent 9000 Belgium
| | - Enrica Bortolamiol
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Campus Scientifico Via Torino 155 Venezia‐Mestre 30174 Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Campus Scientifico Via Torino 155 Venezia‐Mestre 30174 Italy
- Pathology unit Centro di Riferimento Oncologico di Aviano (CRO) IRCCS via F. Gallini 2 Aviano 33081 Italy
| | - Nicola Demitri
- Hard X‐ray Diffraction Beamlines Elettra Sincrotrone Trieste S.S. 14 Km 163.5 in Area Science Park, Basovizza Trieste 34149 Italy
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Campus Scientifico Via Torino 155 Venezia‐Mestre 30174 Italy
| |
Collapse
|
20
|
Biernacki K, Daśko M, Ciupak O, Kubiński K, Rachon J, Demkowicz S. Novel 1,2,4-Oxadiazole Derivatives in Drug Discovery. Pharmaceuticals (Basel) 2020; 13:ph13060111. [PMID: 32485996 PMCID: PMC7345688 DOI: 10.3390/ph13060111] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Five-membered 1,2,4-oxadiazole heterocyclic ring has received considerable attentionbecause of its unique bioisosteric properties and an unusually wide spectrum of biological activities.Thus, it is a perfect framework for the novel drug development. After a century since the1,2,4-oxadiazole have been discovered, the uncommon potential attracted medicinal chemists'attention, leading to the discovery of a few presently accessible drugs containing 1,2,4-oxadiazoleunit. It is worth noting that the interest in a 1,2,4-oxadiazoles' biological application has been doubledin the last fifteen years. Herein, after a concise historical introduction, we present a comprehensiveoverview of the recent achievements in the synthesis of 1,2,4-oxadiazole-based compounds and themajor advances in their biological applications in the period of the last five years as well as briefremarks on prospects for further development.
Collapse
Affiliation(s)
- Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
| | - Konrad Kubiński
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland;
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
- Correspondence:
| |
Collapse
|
21
|
El‐Mekabaty A, Etman HA, Mosbah A, Fadda AA. Synthesis, In Vitro Cytotoxicity and Bleomycin‐Dependent DNA Damage Evaluation of Some Heterocyclic‐Fused Pyrimidinone Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202001006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ahmed El‐Mekabaty
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| | - Hassan A. Etman
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| | - Ahmed Mosbah
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| | - Ahmed A. Fadda
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| |
Collapse
|
22
|
Unsymmetrically substituted benzimidazolium based Silver(I)-N-heterocyclic carbene complexes: Synthesis, characterization and in vitro anticancer study against human breast cancer and colon cancer. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Synthesis and biological activity of novel 1,3,4-oxadiazole derivatives containing a pyrazole moiety. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04015-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Akkoç S, Kayser V, İlhan İÖ. Synthesis and
In Vitro
Anticancer Evaluation of Some Benzimidazolium Salts. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3687] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Senem Akkoç
- School of PharmacyThe University of Sydney Sydney NSW 2006 Australia
- Faculty of Sciences, Department of ChemistryErciyes University Kayseri 38039 Turkey
- Faculty of Pharmacy, Department of Basic Pharmaceutical SciencesSuleyman Demirel University Isparta 32260 Turkey
| | - Veysel Kayser
- School of PharmacyThe University of Sydney Sydney NSW 2006 Australia
| | - İlhan Özer İlhan
- Faculty of Sciences, Department of ChemistryErciyes University Kayseri 38039 Turkey
| |
Collapse
|
25
|
Habib A, Iqbal MA, Bhatti HN. Polynuclear Ag(I)-N-heterocyclic carbene complexes: synthesis, electrochemical and in vitro anticancer study against human breast cancer and colon cancer. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1632837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aqsa Habib
- Department of Chemistry, University of Agriculture Faisalabad, Punjab, Pakistan
| | | | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture Faisalabad, Punjab, Pakistan
| |
Collapse
|
26
|
Mohammadi-Khanaposhtani M, Fahimi K, Karimpour-Razkenari E, Safavi M, Mahdavi M, Saeedi M, Akbarzadeh T. Design, Synthesis and Cytotoxicity of Novel Coumarin-1,2,3-triazole-1,2,4- Oxadiazole Hybrids as Potent Anti-breast Cancer Agents. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180627121006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
This work reports design, synthesis, and in vitro cytotoxicity of novel
coumarin-1,2,3-triazole-1,2,4-oxadiazole hybrids against three breast cancer cell lines MCF-7,
MDA-MB-231, and T-47D.
Methods:
Synthetic procedure for the preparation of desired compounds was started from the reaction
of coumarins or with propargyl bromide to give O-propargylated coumarins or 5. Then, click
reaction between the later compounds and 3-aryl-5-(chloromethyl)-1,2,4-oxadiazoles afforded the
desired products in good yields.
Results:
Among the synthesized compounds, 4-((1-((3-(4-chlorophenyl)-1,2,4-oxadiazol-5-
yl)methyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (9a) showed the best cytotoxicity
against breast cancer cell lines.
Conclusion:
Compound 9a depicted the most activity toward MDA-MB-231 and T-47D cells while
compounds 8a and 8c were the most potent compounds against MCF-7.
Collapse
Affiliation(s)
- Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Kiana Fahimi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, 33535-111, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Onar G, Gürses C, Karataş MO, Balcıoğlu S, Akbay N, Özdemir N, Ateş B, Alıcı B. Palladium(II) and ruthenium(II) complexes of benzotriazole functionalized N-heterocyclic carbenes: Cytotoxicity, antimicrobial, and DNA interaction studies. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Patil SR, Sarkate AP, Karnik KS, Arsondkar A, Patil V, Sangshetti JN, Bobade AS, Shinde DB. A Facile Synthesis of Substituted 2‐(5‐(Benzylthio)‐1,3,4‐oxadiazol‐2‐yl)pyrazine Using Microwave Irradiation and Conventional Method with Antioxidant and Anticancer Activities. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sanjeev R. Patil
- Department of Chemical TechnologyDr. Babasaheb Ambedkar Marathwada University Aurangabad 431004 MS India
| | - Aniket P. Sarkate
- Department of Chemical TechnologyDr. Babasaheb Ambedkar Marathwada University Aurangabad 431004 MS India
| | - Kshipra S. Karnik
- Department of Chemical TechnologyDr. Babasaheb Ambedkar Marathwada University Aurangabad 431004 MS India
| | - Ashish Arsondkar
- Haffkine Institute for Training, Research and Testing Parel, Mumbai 400012 MS India
| | - Vrushali Patil
- Haffkine Institute for Training, Research and Testing Parel, Mumbai 400012 MS India
| | | | - Anil S. Bobade
- Haffkine Institute for Training, Research and Testing Parel, Mumbai 400012 MS India
| | | |
Collapse
|
29
|
The effects of counterion of silver complexes with a tri-hexacyanoethyl functionalized macrocyclic ligand on the structures, photoluminescence, thermal analysis and biological activity. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.09.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Sayin K, Kariper SE, Taştan M, Sayin TA, Karakaş D. Investigations of structural, spectral, electronic and biological properties of N-heterocyclic carbene Ag(I) and Pd(II) complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Mondal A, Tripathy RK, Dutta P, Santra MK, Isab AA, Bielawski CW, Kisan HK, Chandra SK, Dinda J. Ru(II)-based antineoplastic: A “wingtip” N-heterocyclic carbene facilitates access to a new class of organometallics that are cytotoxic to common cancer cell lines. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ambarish Mondal
- Department of Chemistry; Utkal University; Vani Bihar Bhubaneswar 751004 Odisha India
| | - Rajat K. Tripathy
- Department of Chemistry; Utkal University; Vani Bihar Bhubaneswar 751004 Odisha India
| | - Parul Dutta
- National Centre for Cell Science; Pune 411007 Maharastra India
| | | | - Anvarhusein A. Isab
- Department of Chemistry; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM); Institute for Basic Science (IBS); Ulsan 44919 Republic of Korea
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
- Department of Energy Engineering; Ulsan National Institute of Science and technology (UNIST); Ulsan 44919 Republic of Korea
| | - Hemanta K. Kisan
- Department of Chemistry; Utkal University; Vani Bihar Bhubaneswar 751004 Odisha India
| | - Swapan K. Chandra
- Department of Chemistry; Visva Bharati University; Santiniketan 731235 West Bengal India
| | - Joydev Dinda
- Department of Chemistry; Utkal University; Vani Bihar Bhubaneswar 751004 Odisha India
| |
Collapse
|
32
|
Onar G, Karataş MO, Balcıoğlu S, Tok TT, Gürses C, Kılıç-Cıkla I, Özdemir N, Ateş B, Alıcı B. Benzotriazole functionalized N-heterocyclic carbene–silver(I) complexes: Synthesis, cytotoxicity, antimicrobial, DNA binding, and molecular docking studies. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.06.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Zhang C, Maddelein ML, Wai-Yin Sun R, Gornitzka H, Cuvillier O, Hemmert C. Pharmacomodulation on Gold-NHC complexes for anticancer applications - is lipophilicity the key point? Eur J Med Chem 2018; 157:320-332. [PMID: 30099254 DOI: 10.1016/j.ejmech.2018.07.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 12/20/2022]
Abstract
A series of four new mononuclear cationic gold(I) complexes containing nitrogen functionalized N-heterocyclic carbenes (NHCs) was synthesized and fully characterized by spectroscopic methods. The X-ray structures of three complexes are presented. These lipophilic gold(I) complexes originate from a pharmacomodulation of previously described gold(I)-NHC complexes, by replacing an aliphatic spacer with an aromatic one. The Log P values of the resulting complexes increased by 0.7-1.5, depending on the substituents in comparison to the aliphatic-linker systems. The new series of complexes has been investigated in vitro for their anti-cancer activities in PC-3 (prostate cancer) and T24 (bladder cancer) cell lines and in the non-cancerous MC3T3 (osteoblast) cell line. All tested complexes show high activities against the cancer cell lines with GI50 values lower than 500 nM. One complex (11) has been selected for further investigations. It has been tested in vitro in six cancer cell lines from different origins (prostate, bladder, lung, bone, liver and breast) and two non-cancerous cell lines (osteoblasts, fibroblasts). Moreover, cellular uptake measurements were indicative of a good bioavailability. By various biochemical assays, this complex was found to effectively inhibit the thioredoxin reductase (TrxR) and its cytotoxicity towards prostate PC-3, bladder T24 and liver HepG2 cells was found to be ROS-dependent.
Collapse
Affiliation(s)
- Chen Zhang
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Lise Maddelein
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Raymond Wai-Yin Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Heinz Gornitzka
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | |
Collapse
|
34
|
Seku K, Yamala AK, Kancherla M, Kumar K K, Badathala V. Synthesis of moxifloxacin–Au (III) and Ag (I) metal complexes and their biological activities. J Anal Sci Technol 2018. [DOI: 10.1186/s40543-018-0147-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
35
|
Synthesis of N-heterocyclic carbene-palladium-PEPPSI complexes and their catalytic activity in the direct C-H bond activation. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.10.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Xu F, Wang Y, Luo D, Yu G, Wu Y, Dai A, Zhao Y, Wu J. Novel Trifluoromethyl Pyridine Derivatives Bearing a 1,3,4-Oxadiazole Moiety as Potential Insecticide. ChemistrySelect 2018. [DOI: 10.1002/slct.201800123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fangzhou Xu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering; Ministry of Education; Research and Development Center for Fine Chemicals; Guizhou University; China.South Huaxi St. Guiyang China, 550025
| | - Yanyan Wang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering; Ministry of Education; Research and Development Center for Fine Chemicals; Guizhou University; China.South Huaxi St. Guiyang China, 550025
| | - Dexia Luo
- Key Laboratory of Green Pesticide and Agricultural Bioengineering; Ministry of Education; Research and Development Center for Fine Chemicals; Guizhou University; China.South Huaxi St. Guiyang China, 550025
| | - Gang Yu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering; Ministry of Education; Research and Development Center for Fine Chemicals; Guizhou University; China.South Huaxi St. Guiyang China, 550025
| | - Yikun Wu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering; Ministry of Education; Research and Development Center for Fine Chemicals; Guizhou University; China.South Huaxi St. Guiyang China, 550025
| | - Ali Dai
- Key Laboratory of Green Pesticide and Agricultural Bioengineering; Ministry of Education; Research and Development Center for Fine Chemicals; Guizhou University; China.South Huaxi St. Guiyang China, 550025
| | - Yonghui Zhao
- Institute for the Control of Agrochemicals; Ministry of Agriculture, Beijing, China, No. 22; Mai zajie Street, Agricultural Ministry of agriculture China 550025
| | - Jian Wu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering; Ministry of Education; Research and Development Center for Fine Chemicals; Guizhou University; China.South Huaxi St. Guiyang China, 550025
| |
Collapse
|
37
|
Porchia M, Pellei M, Marinelli M, Tisato F, Del Bello F, Santini C. New insights in Au-NHCs complexes as anticancer agents. Eur J Med Chem 2018; 146:709-746. [PMID: 29407992 DOI: 10.1016/j.ejmech.2018.01.065] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/03/2023]
Abstract
Within the research field of antitumor metal-based agents alternative to platinum drugs, gold(I/III) coordination complexes have always been in the forefront due mainly to the familiarity of medicinal chemists with gold compounds, whose application in medicine goes back in the ancient times, and to the rich chemistry shown by this metal. In the last decade, N-heterocyclic carbene ligands (NHC), a class of ligands that largely resembles the chemical properties of phosphines, became of interest for gold(I) medicinal applications, and since then, the research on NHC-gold(I/III) coordination complexes as potential antiproliferative agents boosted dramatically. Different classes of gold(I/III)-NHC complexes often showed an outstanding in vitro antiproliferative activity, however up to now very few in vivo data have been reported to corroborate the in vitro results. This review summarizes all achievements in the field of gold (I/III) complexes comprising NHC ligands proposed as potential antiproliferative agents in the period 2004-2016, and critically analyses biological data (mainly IC50 values) in relation to the chemical structures of Au compounds. The state of art of the in vivo studies so far described is also reported.
Collapse
Affiliation(s)
| | - Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy.
| | - Marika Marinelli
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| |
Collapse
|
38
|
Jhulki L, Dutta P, Santra MK, Cardoso MH, Oshiro KGN, Franco OL, Bertolasi V, Isab AA, Bielawski CW, Dinda J. Synthesis and cytotoxic characteristics displayed by a series of Ag(i)-, Au(i)- and Au(iii)-complexes supported by a common N-heterocyclic carbene. NEW J CHEM 2018. [DOI: 10.1039/c8nj02008f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The design, synthesis and anticancer properties of a series of Ag(i), Au(i) and Au(iii)–NHC complexes supported by pyridyl[1,2-a]{2-acetylylphenylimidazol}-3-ylidene are described.
Collapse
Affiliation(s)
- Lalmohan Jhulki
- School of Applied Science
- Haldia Institute of Technology
- Haldia 721657
- India
| | - Parul Dutta
- National Centre for Cell Science
- Pune 411007
- India
| | | | - Marlon H. Cardoso
- Programa de Pós-Graduação em Patologia Molecular
- Faculdade de Medicina
- Universidade de Brasília
- Brasília-DF
- Brazil
| | - Karen G. N. Oshiro
- Programa de Pós-Graduação em Patologia Molecular
- Faculdade de Medicina
- Universidade de Brasília
- Brasília-DF
- Brazil
| | - Octávio L. Franco
- Programa de Pós-Graduação em Patologia Molecular
- Faculdade de Medicina
- Universidade de Brasília
- Brasília-DF
- Brazil
| | - Valerio Bertolasi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Centro di Strutturistica Diffrattometrica
- Universita' di Ferrara
- Italy
| | - Anvarhusein A. Isab
- Department of Chemistry
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM)
- Institute for Basic Science (IBS)
- Ulsan 44919
- Republic of Korea
- Department of Chemistry and Department of Energy Engineering
| | - Joydev Dinda
- Department of Chemistry
- Utkal University
- Bhubaneswar 751004
- India
| |
Collapse
|
39
|
Recent advance in oxazole-based medicinal chemistry. Eur J Med Chem 2018; 144:444-492. [DOI: 10.1016/j.ejmech.2017.12.044] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023]
|
40
|
Iacopetta D, Mariconda A, Saturnino C, Caruso A, Palma G, Ceramella J, Muià N, Perri M, Sinicropi MS, Caroleo MC, Longo P. Novel Gold and Silver Carbene Complexes Exert Antitumor Effects Triggering the Reactive Oxygen Species Dependent Intrinsic Apoptotic Pathway. ChemMedChem 2017; 12:2054-2065. [PMID: 29120085 DOI: 10.1002/cmdc.201700634] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 12/20/2022]
Abstract
Cisplatin and other platinum-based drugs are well-known valid anticancer drugs. However, during chemotherapy, the presence of numerous side effects and the onset of frequent phenomena of resistance has pushed many research groups to devise new metal-based compounds holding improved anticancer properties and fewer undesired effects. Amongst the variety of synthesized compounds, significant antiproliferative effects have been obtained by employing organometallic compounds, particularly those based on silver and gold. With this in mind, we synthesized four compounds, two silver complexes and two gold complexes, with good inhibitory effects on the in vitro proliferation of breast and ovarian cancer-cell models. The antitumor activity of the most active compound, that is, AuL4, was found to be ninefold higher than that of cisplatin, and this compound induced dramatic morphological changes in HeLa cells. AuL4 induced PARP-1 cleavage, caspases 3/7 and 9 activation, mitochondria disruption, cytochrome c release in cancer-cell cytoplasm, and the intracellular production of reactive oxygen species. Thus, AuL4 treatment caused cancer-cell death by the intrinsic apoptotic pathway, whereas no cytotoxic effects were recorded upon treating non-tumor cell lines. The reported outcomes may be an important contribution to the expanding knowledge of medicinal bio-organometallic chemistry and enlarge the available anticancer toolbox, offering improved features, such as higher activity and/or selectivity, and opening the way to new discoveries and applications.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Annaluisa Mariconda
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, Potenza, 85100, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Giuseppe Palma
- SSD Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS, "Fondazione G. Pascale", Via Mariano Semmola, Napoli, 80131, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Noemi Muià
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Mariarita Perri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| |
Collapse
|
41
|
Tapeinou A, Giannopoulou E, Simal C, Hansen BE, Kalofonos H, Apostolopoulos V, Vlamis-Gardikas A, Tselios T. Design, synthesis and evaluation of an anthraquinone derivative conjugated to myelin basic protein immunodominant (MBP 85-99) epitope: Towards selective immunosuppression. Eur J Med Chem 2017; 143:621-631. [PMID: 29216561 DOI: 10.1016/j.ejmech.2017.11.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/14/2017] [Accepted: 11/22/2017] [Indexed: 02/09/2023]
Abstract
Anthraquinone type compounds, especially di-substituted amino alkylamino anthraquinones have been widely studied as immunosuppressants. The anthraquinone ring is part of mitoxandrone that has been used for the treatment of multiple sclerosis (MS) and several types of tumors. A desired approach for the treatment of MS would be the immunosuppression and elimination of specific T cells that are responsible for the induction of the disease. Herein, the development of a peptide compound bearing an anthraquinone derivative with the potential to specifically destroy the encephalitogenic T cells responsible for the onset of MS is described. The compound consists of the myelin basic protein (MBP) 85-99 immunodominant epitope (MBP85-99) coupled to an anthraquinone type molecule (AQ) via a disulfide (S-S) and 6 amino hexanoic acid (Ahx) residues (AQ-S-S-(Ahx)6MBP85-99). AQ-S-S-(Ahx)6MBP85-99 could bind to HLA II DRB1*-1501 antigen with reasonable affinity (IC50 of 56 nM) The compound was localized to the nucleus of Jurkat cells (an immortalized line of human T lymphocytes) 10 min after its addition to the medium and resulted in lowered Bcl-2 levels (apoptosis). Entrance of the compound was abolished when cells were pre-treated with cisplatin, an inhibitor of thioredoxin reductase. Accordingly, levels of free thiols were elevated in the culture supernatants of Jurkat cells exposed to N-succinimidyl 3-(2-pyridyldithio) propionate coupled to (Ahx)6MBP85-99 via a disulphide (SPDP-S-S-(Ahx)6MBP85-99) but returned to normal after exposure to cisplatin. These results raise the possibility of AQ-S-S-(Ahx)6MBP85-99 being used as an eliminator of encephalitogenic T cells via implication of the thioredoxin system for the generation of the toxic, thiol-containing moiety (AQ-SH). Future experiments would ideally determine whether SPDP-S-S-(Ahx)6MBP85-99 could incorporate into HLA II DRB1*-1501 tetramers and neutralize encephalitogenic T cell lines sensitized to MBP85-99.
Collapse
Affiliation(s)
- Anthi Tapeinou
- Department of Chemistry, University of Patras, GR-26504, Rion, Greece
| | - Efstathia Giannopoulou
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, GR-26504, Rion, Greece
| | - Carmen Simal
- Department of Chemistry, University of Patras, GR-26504, Rion, Greece
| | - Bjarke E Hansen
- Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Haralabos Kalofonos
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, GR-26504, Rion, Greece
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | | | - Theodore Tselios
- Department of Chemistry, University of Patras, GR-26504, Rion, Greece.
| |
Collapse
|
42
|
Cucciolito ME, Trinchillo M, Iannitti R, Palumbo R, Tesauro D, Tuzi A, Ruffo F, D'Amora A. Sugar-Incorporated N-Heterocyclic-Carbene-Containing Gold(I) Complexes: Synthesis, Characterization, and Cytotoxic Evaluation. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maria E. Cucciolito
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo; Via Cintia 21 80126 Napoli Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi; Via Celso Ulpiani 27 70126 Bari Italy
| | - Marina Trinchillo
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo; Via Cintia 21 80126 Napoli Italy
| | - Roberta Iannitti
- Istituto di Biostrutture e Bioimmagini (IBB) CNR; Via Mezzocannone 16 80134 Napoli Italy
| | - Rosanna Palumbo
- Istituto di Biostrutture e Bioimmagini (IBB) CNR; Via Mezzocannone 16 80134 Napoli Italy
| | - Diego Tesauro
- Dipartimento di Farmacia & CIRPeB Università degli Studi di Napoli Federico II; Via Mezzocannone 16 80134 Napoli Italy
- Diagnostica e Farmaceutica Molecolari S.C.R.L (DFM); Via Mezzocannone 16 80134 Napoli Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo; Via Cintia 21 80126 Napoli Italy
| | - Francesco Ruffo
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo; Via Cintia 21 80126 Napoli Italy
- Consorzio Interuniversitario di Reattività Chimica e Catalisi; Via Celso Ulpiani 27 70126 Bari Italy
| | - Angela D'Amora
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo; Via Cintia 21 80126 Napoli Italy
- Diagnostica e Farmaceutica Molecolari S.C.R.L (DFM); Via Mezzocannone 16 80134 Napoli Italy
| |
Collapse
|
43
|
Studies on the constituents of Helleborus purpurascens: analysis and biological activity of the aqueous and organic extracts. Amino Acids 2017; 50:163-188. [PMID: 29027024 DOI: 10.1007/s00726-017-2502-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/03/2017] [Indexed: 01/24/2023]
Abstract
In Southeast Europe, the ethnomedicinal use of Helleborus species has a very long tradition. Cardiac steroids (Hellebrin), cysteine-rich proteins (Hellethionins) and several steroidal saponins have been identified in these plants. Aim of the present work was to investigate the amino acid composition of native extracts from the root and rootstock of Helleborus purpurascens. The amino acids have been identified by the GC-MS technique on the previously derivatised (Phenomenex Faast Kit) extract samples by comparison with the mass spectra and retention-time of the standards. A remarkable finding was a relatively intensive peak attributed to the non-proteinogenic Pipecolic acid (Pic). A cyclisation of the derivatised glutamine was observed during the GC measurement and a mechanistic pathway is described. Samples of the extract and of some isolated fractions have also been tested on; altogether 12 cancer cell lines aimed to identify further potentially cytostatic components which should be less toxic than Hellebrin. The finding of one Hellebrin-free fraction (IC50 = 0.007 mg/L) with higher cytotoxicity than Hellebrin (IC50 = 0.008 mg/L) is remarkable.
Collapse
|
44
|
Pretorius R, Olguín J, Albrecht M. Carbohydrate-Functionalized 1,2,3-Triazolylidene Complexes for Application in Base-Free Alcohol and Amine Oxidation. Inorg Chem 2017; 56:12410-12420. [DOI: 10.1021/acs.inorgchem.7b01899] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- René Pretorius
- Departement für
Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Juan Olguín
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martin Albrecht
- Departement für
Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
45
|
Synthesis, structural investigation and antibacterial studies of non–symmetrically p–nitrobenzyl substituted benzimidazole N–heterocyclic carbene–silver(I) complexes. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.06.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Novel quinoline-based oxadiazole derivatives induce G2/M arrest and apoptosis in human breast cancer MCF-7 cell line. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3078-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Schmidt C, Karge B, Misgeld R, Prokop A, Brönstrup M, Ott I. Biscarbene gold(i) complexes: structure-activity-relationships regarding antibacterial effects, cytotoxicity, TrxR inhibition and cellular bioavailability. MEDCHEMCOMM 2017; 8:1681-1689. [PMID: 30108879 PMCID: PMC6072206 DOI: 10.1039/c7md00269f] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022]
Abstract
A series of gold(i) complexes with two N-heterocyclic carbene ligands (biscarbene gold complexes) were prepared and evaluated for their effects against cancer cells and pathogenic bacteria. Proliferation inhibition was observed in cancer cells and in Gram-positive bacteria, whereas Gram-negative bacteria were less sensitive towards the compounds. The protein binding and cellular uptake were quantified and the combined results indicated a strong correlation between cellular bioavailability and antiproliferative effects. The biscarbene gold complexes inhibited bacterial and mammalian TrxRs with low to moderate potency. However, based on the obtained structure-activity-relationships and the high cellular accumulation levels, TrxR inhibition can be considered as a relevant contributor to the cellular pharmacology of biscarbene gold(i) complexes.
Collapse
Affiliation(s)
- Claudia Schmidt
- Institute of Medicinal and Pharmaceutical Chemistry , Technische Universität Braunschweig , Beethovenstr. 55 , 38106 Braunschweig , Germany .
| | - Bianka Karge
- Department of Chemical Biology , Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , Inhoffenstr. 7 , 38124 Braunschweig , Germany
| | - Rainer Misgeld
- Department of Pediatric Oncology , Children's Hospital Cologne , Amsterdamer Strasse 59 , 50735 Cologne , Germany
| | - Aram Prokop
- Department of Pediatric Oncology , Children's Hospital Cologne , Amsterdamer Strasse 59 , 50735 Cologne , Germany
| | - Mark Brönstrup
- Department of Chemical Biology , Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF) , Inhoffenstr. 7 , 38124 Braunschweig , Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry , Technische Universität Braunschweig , Beethovenstr. 55 , 38106 Braunschweig , Germany .
| |
Collapse
|
48
|
Al-Majid AM, Choudhary MI, Yousuf S, Jabeen A, Imad R, Javeed K, Shaikh NN, Collado A, Sioriki E, Nahra F, Nolan SP. In vitro Biological Activities of Gold(I) and Gold(III) Bis(N-Heterocyclic Carbene) Complexes. ChemistrySelect 2017. [DOI: 10.1002/slct.201700795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Abdullah M. Al-Majid
- Chemistry Department, College of Science; King Saud University; PO Box 2455 Riyadh 11451 Saudi Arabia
| | - Muhammad Iqbal Choudhary
- Chemistry Department, College of Science; King Saud University; PO Box 2455 Riyadh 11451 Saudi Arabia
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences; University of Karachi; Karachi- 75270 Pakistan
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences; University of Karachi; Karachi- 75270 Pakistan
| | - Almas Jabeen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences; University of Karachi; Karachi- 75270 Pakistan
| | - Rehan Imad
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences; University of Karachi; Karachi- 75270 Pakistan
| | - Kulsoom Javeed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences; University of Karachi; Karachi- 75270 Pakistan
| | - Nimra Naveed Shaikh
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences; University of Karachi; Karachi- 75270 Pakistan
| | - Alba Collado
- School of Chemistry; University of St Andrews; St Andrews KY169ST United Kingdom
| | - Eleni Sioriki
- Department of Inorganic and Physical Chemistry; Universiteit Gent; Krijgslaan 281, S-3, B- 9000 Ghent Belgium
| | - Fady Nahra
- Department of Inorganic and Physical Chemistry; Universiteit Gent; Krijgslaan 281, S-3, B- 9000 Ghent Belgium
| | - Steven P. Nolan
- Chemistry Department, College of Science; King Saud University; PO Box 2455 Riyadh 11451 Saudi Arabia
- Department of Inorganic and Physical Chemistry; Universiteit Gent; Krijgslaan 281, S-3, B- 9000 Ghent Belgium
| |
Collapse
|
49
|
Wang PY, Shao WB, Xue HT, Fang HS, Zhou J, Wu ZB, Song BA, Yang S. Synthesis of novel 1,3,4-oxadiazole derivatives containing diamides as promising antibacterial and antiviral agents. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2980-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Kaloğlu N, Özdemir İ, Günal S, Özdemir İ. Synthesis and antimicrobial activity of bulky 3,5‐di‐
tert
‐butyl substituent‐containing silver–N‐heterocyclic carbene complexes. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nazan Kaloğlu
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryInönü University 44280 Malatya Turkey
- Catalysis Research and Application CenterInönü University 44280 Malatya Turkey
| | - İlknur Özdemir
- Faculty of Science and Arts, Department of ChemistryInönü University 44280 Malatya Turkey
| | - Selami Günal
- Faculty of Pharmacy, Department of Pharmaceutical MicrobiologyInönü University 44280 Malatya Turkey
| | - İsmail Özdemir
- Catalysis Research and Application CenterInönü University 44280 Malatya Turkey
- Faculty of Science and Arts, Department of ChemistryInönü University 44280 Malatya Turkey
| |
Collapse
|