1
|
Wu D, Li H, Wang L, Hu Y, Huang H, Li J, Yang Y, Wu X, Ye X, Mao R, Li J, Shi X, Xie C, Yang C. Echinocystic acid inhibits sepsis-associated renal inflammation and apoptosis by targeting protein tyrosine phosphatase 1B. Int Immunopharmacol 2024; 142:113076. [PMID: 39298825 DOI: 10.1016/j.intimp.2024.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Thefruits of Gleditsia sinensis Lam. have been utilized to treat inflammatory diseases in China. Echinocystic acid (EA), one pentacyclic triterpenoid isolated from thefruits of G. sinensis, exhibits an anti-inflammatory effect. However, its anti-sepsis activity and mechanism of action, especially the protective effect against sepsis-associated acute kidney injury (SA-AKI), are not investigated yet. This study is to explore the efficacy and potential mechanism of EA on SA-AKI. EA elevated the function of multiple organs and effectively reduced the increased inflammation and apoptosis of kidney tissue and HK-2 cells. DARTS, CETSA, and molecular docking experiments revealed that EA could directly bind to protein tyrosine phosphatase 1B (PTP1B), a widespread prototype non-receptor tyrosine phosphatase. Collectively, EA can alleviate murine SA-AKI though restraining inflammation and apoptosis and may be a potential natural drug for remedying SA-AKI.
Collapse
Affiliation(s)
- Dan Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Hailong Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Lin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Yayue Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Hong Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Jinhe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Ying Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Xi Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Xiaoman Ye
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Ruiqi Mao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Jiahang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Xue Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| |
Collapse
|
2
|
Xu B, Bai L, Chen L, Tong R, Feng Y, Shi J. Terpenoid natural products exert neuroprotection via the PI3K/Akt pathway. Front Pharmacol 2022; 13:1036506. [PMCID: PMC9606746 DOI: 10.3389/fphar.2022.1036506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
PI3K/Akt, an essential signaling pathway widely present in cells, has been shown to be relevant to neurological disorders. As an important class of natural products, terpenoids exist in large numbers and have diverse backbones, so they have a great chance to be identified as neuroprotective agents. In this review, we described and summarized recent research for a range of terpenoid natural products associated with the PI3K/Akt pathway by classifying their basic chemical structures of the terpenes, identified by electronic searches on PubMed, Web of Science for research, and Google Scholar websites. Only articles published in English were included. Our discussion here concerned 16 natural terpenoids and their mechanisms of action, the associated diseases, and the methods of experimentation used. We also reviewed the discovery of their chemical structures and their derivatives, and some compounds have been concluded for their structure–activity relationships (SAR). As a result, terpenoids are excellent candidates for research as natural neuroprotective agents, and our content will provide a stepping stone for further research into these natural products. It may be possible for more terpenoids to serve as neuroprotective agents in the future.
Collapse
Affiliation(s)
- Bingyao Xu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Rongsheng Tong, ; Yibin Feng, ; Jianyou Shi,
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- *Correspondence: Rongsheng Tong, ; Yibin Feng, ; Jianyou Shi,
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Rongsheng Tong, ; Yibin Feng, ; Jianyou Shi,
| |
Collapse
|
3
|
Fuentes R, Aguinagalde L, Pifferi C, Plata A, Sacristán N, Castellana D, Anguita J, Fernández-Tejada A. Novel Oxime-Derivatized Synthetic Triterpene Glycosides as Potent Saponin Vaccine Adjuvants. Front Immunol 2022; 13:865507. [PMID: 35603193 PMCID: PMC9121768 DOI: 10.3389/fimmu.2022.865507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Vaccine adjuvants are key for optimal vaccine efficacy, increasing the immunogenicity of the antigen and potentiating the immune response. Saponin adjuvants such as the carbohydrate-based QS-21 natural product are among the most promising candidates in vaccine formulations, but suffer from inherent drawbacks that have hampered their use and approval as stand-alone adjuvants. Despite the recent development of synthetic derivatives with improved properties, their full potential has not yet been reached, allowing the prospect of discovering further optimized saponin variants with higher potency. Herein, we have designed, chemically synthesized, and immunologically evaluated novel oxime-derivatized saponin adjuvants with targeted structural modifications at key triterpene functionalities. The resulting analogues have revealed important findings into saponin structure-activity relationships, including adjuvant mechanistic insights, and have shown superior adjuvant activity in terms of significantly increased antibody response augmentation compared to our previous saponin leads. These newly identified saponin oximes emerge as highly promising synthetic adjuvants for further preclinical development towards potential next generation immunotherapeutics for future vaccine applications.
Collapse
Affiliation(s)
- Roberto Fuentes
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
| | - Leire Aguinagalde
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
| | - Carlo Pifferi
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
| | - Adrián Plata
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
| | - Nagore Sacristán
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
| | - Donatello Castellana
- Research and Development, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alberto Fernández-Tejada
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance BRTA, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Alberto Fernández-Tejada,
| |
Collapse
|
4
|
Yang XT, Li TZ, Geng CA, Liu P, Chen JJ. Synthesis and biological evaluation of (20 S,24 R)-epoxy-dammarane-3β,12β,25-triol derivatives as α-glucosidase and PTP1B inhibitors. Med Chem Res 2022; 31:350-367. [PMID: 35035203 PMCID: PMC8749348 DOI: 10.1007/s00044-021-02836-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
The dammarane triterpenoid (20S,24R)-epoxy-dammarane-3β,12β,25-triol obtained from Cyclocarya paliurus in our previous study showed inhibitory activity on α-glucosidase in vitro with an inhibitory ratio of 32.2% at the concentration of 200 μM. In order to reveal the structure-activity relationships (SARs) and get more active compounds, 42 derivatives of (20S,24R)-epoxy-dammarane-3β,12β,25-triol were synthesized by chemical modification on the hydroxyls (C-3 and C-12), rings A and E, and assayed for their α-glucosidase and PTP1B inhibitory activities. Two compounds (8, 26) increased activity against α-glucosidase, and four compounds (8, 15, 26, 42) significantly inhibited PTP1B. It was noted that compounds 8 and 26 could inhibit both α-glucosidase and PTP1B as dual-target inhibitors with IC50 values of 489.8, 467.7 μM (α-glucosidase) and 319.7, 269.1 μM (PTP1B). Compound 26 was revealed to be a mix-type inhibitor on α-glucosidase and a noncompetitive-type inhibitor on PTP1B based on enzyme kinetic study. Furthermore, compound 42 could selectively inhibited PTP1B as a mix-type inhibitor with IC50 value of 134.9 μM, which was 2.5-fold higher than the positive control, suramin sodium (IC50 339.0 μM), but not inhibit α-glucosidase. ![]()
Collapse
Affiliation(s)
- Xiao-Tong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences; Yunnan Key Laboratory of Natural Medicinal Chemistry, 650201 Kunming, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences; Yunnan Key Laboratory of Natural Medicinal Chemistry, 650201 Kunming, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences; Yunnan Key Laboratory of Natural Medicinal Chemistry, 650201 Kunming, People's Republic of China
| | - Pei Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences; Yunnan Key Laboratory of Natural Medicinal Chemistry, 650201 Kunming, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences; Yunnan Key Laboratory of Natural Medicinal Chemistry, 650201 Kunming, People's Republic of China.,University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| |
Collapse
|
5
|
Chen B, Zhao Y, Li W, Hang J, Yin M, Yu H. Echinocystic acid provides a neuroprotective effect via the PI3K/AKT pathway in intracerebral haemorrhage mice. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:6. [PMID: 32055597 DOI: 10.21037/atm.2019.12.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Echinocystic acid (EA), a natural extract from plants of Gleditsia sinensis Lam, exhibits anti-inflammatory, antioxidant and analgesic activities in different diseases. In this study, we explored the pharmacological effects of EA on intracerebral haemorrhage (ICH) in a collagenase-induced ICH mouse model. Methods EA (50 mg/kg, i.p. q.d) was injected after the establishment of ICH, and we measured the amount of degraded neurons in brain tissue with Fluoro-Jade C staining and the haemorrhagic injury volume with Luxol fast blue staining on day 3 after ICH. We also assessed animal behaviour by rotarod test, claw force test and modified neurological severity score (mNSS) score. The expression of apoptosis-related proteins such as Bcl-2, Bax and cleaved caspase-3 was analysed by Western blot. Results EA reduced both the death of neurons and the volume of haemorrhagic injury after ICH. The haemorrhage infarct volume of the ICH+EA group was 9.84%±3.32% lower than that in the ICH group of mice (P<0.01). The mNSS score of the ICH+EA treated group was 4.75±0.55 lower than that in the ICH group (P<0.01). With the administration of EA after ICH, the expression of Bcl-2 was upregulated while the Bax level was downregulated. The cleaved caspase-3 level was also significantly decreased. We further investigated the neuroprotective mechanism of EA. Western blot results showed that the expression of P-AKT increased after EA treatment and decreased after LY294002, an inhibitor of the PI3K/AKT pathway, treatment. Conclusions EA may provide neuroprotection via activation of the PI3K/AKT pathway. Given the safety of EA has been proven, further studies are required to investigate whether EA is a potential agent for the treatment of ICH.
Collapse
Affiliation(s)
- Beilei Chen
- Clinical Medical College of Yangzhou University, Yangzhou 225009, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou 225001, China.,Dalian Medical University, Dalian 116044, China
| | - Yuanyuan Zhao
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou 225001, China.,Dalian Medical University, Dalian 116044, China
| | - Wei Li
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou 225001, China.,Dalian Medical University, Dalian 116044, China
| | - Jing Hang
- Clinical Medical College of Yangzhou University, Yangzhou 225009, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Mengmei Yin
- Clinical Medical College of Yangzhou University, Yangzhou 225009, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou 225001, China
| | - Hailong Yu
- Clinical Medical College of Yangzhou University, Yangzhou 225009, China.,Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou 225001, China.,Affiliated of Drum Tower Hospital, Medical school of Nanjing University, Nanjing 210008, China
| |
Collapse
|
6
|
Liang S, Li M, Yu X, Jin H, Zhang Y, Zhang L, Zhou D, Xiao S. Synthesis and structure-activity relationship studies of water-soluble β-cyclodextrin-glycyrrhetinic acid conjugates as potential anti-influenza virus agents. Eur J Med Chem 2019; 166:328-338. [PMID: 30731401 PMCID: PMC7115653 DOI: 10.1016/j.ejmech.2019.01.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/24/2022]
Abstract
Glycyrrhetinic acid (GA) is a major constituent of the herb Glycyrrhiza glabra, and many of its derivatives demonstrate a broad spectrum of antiviral activities. In the current study, 18 water-soluble β-cyclodextrin (CD)-GA conjugates, in which GA was covalently coupled to the primary face of β-CD using 1,2,3-triazole moiety along with varying lengths of linker, were synthesized via copper-catalyzed azide-alkyl cycloaddition reaction. Benefited from the attached β-CD moiety, all these conjugates showed lower hydrophobicity (AlogP) compared with their parent compound GA. With the exception of per-O-methylated β-CD-GA conjugate (35), all other conjugates showed no significant cytotoxicity to MDCK cells, and these conjugates were then screened against A/WSN/33 (H1N1) virus using the cytopathic effect assay. The preliminary results indicated that six conjugates showed promising antiviral activity, and the C-3 and C-30 of GA could tolerate some modifications. Our findings suggested that GA could be used as a lead compound for the development of potential anti-influenza virus agents.
Collapse
Affiliation(s)
- Shuobin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Man Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaojuan Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yongmin Zhang
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
7
|
Microbe-mediate transformation of echinocystic acid by whole cells of filamentous fungus Cunninghamella blakesleana CGMCC 3.910. Mol Biol Rep 2018; 45:2795-2800. [PMID: 30194559 DOI: 10.1007/s11033-018-4357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
Structural modification of echinocystic acid (EA), a pentacyclic triterpenoid with wide spread biological activities was investigated by microbial transformation. Microbe-mediate transformation of EA was carried out by filamentous fungus Cunninghamella blakesleana CGMCC 3.910. Four metabolites 3β, 7β, 16α-trihydroxy-olean-12-en-28-oic acid (EA-2); 3β, 7β, 16β,19β-tetrahydroxy-olean-12-en-28-oic acid (EA-3); 3β, 7β, 16α, 21β-tetrahydroxy-olean-12-en-28-oic acid (EA-4); 3β, 7β, 16α-trihydroxy-olean-11, 13(18)-dien-28-oic acid (EA-5) were produced. Structures of transformed products were elucidated by 1D and 2D NMR and HR-MS data. EA-3 and EA-4 were new compounds.
Collapse
|
8
|
Park HJ, Kwon H, Lee S, Jung JW, Ryu JH, Jang DS, Lee YC, Kim DH. Echinocystic Acid Facilitates Neurite Outgrowth in Neuroblastoma Neuro2a Cells and Enhances Spatial Memory in Aged Mice. Biol Pharm Bull 2018; 40:1724-1729. [PMID: 28966244 DOI: 10.1248/bpb.b17-00324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging leads to functional changes in the brain and decreases ability of learning and memory. Neurite outgrowth is important in learning and memory, therefore regulation of neurite outgrowth might be a candidate for treating aged brain. Echinocystic acid (EA), a pentacyclic triterpene, has shown to exert various neurological effects. However, the effect of EA on neurite outgrowth has not been studied. In this study, we examined if EA is effective on neurite outgrowth and memory in aged mice. The effect of EA on neurite outgrowth was observed by examining neurite processes of Neuro2a cells treated with EA. Western blot analysis was conducted to examine possible mechanisms. Morris water maze test was used to examine the effect of EA on learning and memory in aged mice. Immunohistochemistry was conducted to observe the effect of EA on neurite outgrowth in the hippocampus. EA was shown to induce neurite outgrowth in a concentration dependent manner without affecting cell viability. Moreover, EA treatment increased phosphorylation of c-jun N-terminal kinase (JNK) and JNK inhibitor, SP600125, blocked the effect of EA on neurite outgrowth. These results demonstrated that EA treatment promotes neurite outgrowth through the JNK signaling pathway. In in vivo experiments, EA treatment increased neurite outgrowth in aged mouse hippocampus. Moreover, EA treatment enhanced spatial learning and memory in aged mice. These results suggest that EA can be developed as a new, naturally occurring drug to treat ageing-related neurological diseases.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University
| | - Seungheon Lee
- Department of Aquatic Biomedical Sciences, School of Marine Biomedical Science, College of Ocean Science, Jeju National University
| | - Ji Wook Jung
- Department of Herbal Medicinal Pharmacology, College of Herbal Bio-industry, Daegu Haany University
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University.,Institute of Convergence Bio-health, Dong-A University
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University.,Institute of Convergence Bio-health, Dong-A University
| |
Collapse
|
9
|
Fu SB, Feng X, Meng QF, Cai Q, Sun DA. Two new echinocystic acid derivatives catalyzed by filamentous fungus Gliocladium roseum CGMCC 3.3657. Nat Prod Res 2018; 33:1842-1848. [DOI: 10.1080/14786419.2018.1477148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shao-Bin Fu
- Institute of Medical Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
- Pharmacy School of Zunyi Medical University , Zunyi, China
| | - Xu Feng
- Institute of Medical Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
- Navy Medical Research Institute , Shanghai, China
| | - Qing-Feng Meng
- Department of Public Health, Zunyi Medical University , Zunyi, China
| | - Qing Cai
- Pharmacy School of Zunyi Medical University , Zunyi, China
| | - Di-An Sun
- Institute of Medical Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| |
Collapse
|
10
|
Li Z, Min Q, Huang H, Liu R, Zhu Y, Zhu Q. Design, synthesis and biological evaluation of seco-A-pentacyclic triterpenoids-3,4-lactone as potent non-nucleoside HBV inhibitors. Bioorg Med Chem Lett 2018; 28:1501-1506. [PMID: 29627260 DOI: 10.1016/j.bmcl.2018.03.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/08/2023]
Abstract
A series of seco-A-pentacyclic triterpenoids-3,4-lactone were synthesized and the anti-HBV activities were evaluated in vitro. Several compounds inhibited the secretion of HBV antigen and the replication of HBV DNA in micromolar level. Compounds D7 and D10, seco-A-oleanane-3,4-lactone, suppressed the HBeAg secretion with IC50 values of 0.14 μM and 0.86 μM respectively, and the inhibitory activities were also confirmed by detecting the fluorescence intensity of FITC-labeled monoclonal mouse HBeAg antibody via flow cytometry. Compounds D7 and D10 as well as B4, ring-A cleaved 3,30-dioic acid, also displayed remarkable inhibition on both HBV DNA replication at the concentration of 25 μM and HBV cccDNA (covalently closed circularDNA) replication with IC50 values of 33.5 μM, 32.7 μM and 12.3 μM respectively.
Collapse
Affiliation(s)
- Zhijian Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Qingxi Min
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, PR China
| | - Haoji Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Ruixuan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yongyan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Quanhong Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, PR China.
| |
Collapse
|
11
|
Xiao S, Tian Z, Wang Y, Si L, Zhang L, Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev 2018; 38:951-976. [PMID: 29350407 PMCID: PMC7168445 DOI: 10.1002/med.21484] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022]
Abstract
Viral infections cause many serious human diseases with high mortality rates. New drug‐resistant strains are continually emerging due to the high viral mutation rate, which makes it necessary to develop new antiviral agents. Compounds of plant origin are particularly interesting. The pentacyclic triterpenoids (PTs) are a diverse class of natural products from plants composed of three terpene units. They exhibit antitumor, anti‐inflammatory, and antiviral activities. Oleanolic, betulinic, and ursolic acids are representative PTs widely present in nature with a broad antiviral spectrum. This review focuses on the recent literatures in the antiviral efficacy of this class of phytochemicals and their derivatives. In addition, their modes of action are also summarized.
Collapse
Affiliation(s)
- Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenyu Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yufei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Longlong Si
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
12
|
Fu S, Meng Q, Yang J, Tu J, Sun DA. Biocatalysis of ursolic acid by the fungus Gliocladium roseum CGMCC 3.3657 and resulting anti-HCV activity. RSC Adv 2018; 8:16400-16405. [PMID: 35542219 PMCID: PMC9080225 DOI: 10.1039/c8ra01217b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/21/2018] [Indexed: 01/23/2023] Open
Abstract
Biocatalysis of ursolic acid (UA 1) by Gliocladium roseum CGMCC 3.3657 was investigated.
Collapse
Affiliation(s)
- Shaobin Fu
- Institute of Medical Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| | - Qingfeng Meng
- Department of Public Health
- Zunyi Medical University
- Zunyi 563000
- China
| | - Junshan Yang
- Institute of Medical Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| | - Jiajia Tu
- Pharmacy School of Zunyi Medical University
- Zunyi 563000
- China
| | - Di-An Sun
- Institute of Medical Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| |
Collapse
|
13
|
Li S, Jia X, Shen X, Wei Z, Jiang Z, Liao Y, Guo Y, Zheng X, Zhong G, Song G. Structure-activity relationships of 3-O-β-chacotriosyl oleanic acid derivatives as entry inhibitors for highly pathogenic H5N1 influenza virus. Bioorg Med Chem 2017; 25:4384-4396. [DOI: 10.1016/j.bmc.2017.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/05/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
|
14
|
Meng L, Wang Q, Tang T, Xiao S, Zhang L, Zhou D, Yu F. Design, Synthesis and Biological Evaluation of Pentacyclic Triterpene Dimers as HCV Entry Inhibitors. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lingkuan Meng
- Medical Faculty of Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Tao Tang
- Medical Faculty of Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Fei Yu
- Medical Faculty of Kunming University of Science and Technology; Kunming Yunnan 650500 China
| |
Collapse
|
15
|
Xiao S, Wang Q, Si L, Zhou X, Zhang Y, Zhang L, Zhou D. Synthesis and biological evaluation of novel pentacyclic triterpene α -cyclodextrin conjugates as HCV entry inhibitors. Eur J Med Chem 2016; 124:1-9. [DOI: 10.1016/j.ejmech.2016.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/11/2023]
|
16
|
Wang H, Xu R, Shi Y, Si L, Jiao P, Fan Z, Han X, Wu X, Zhou X, Yu F, Zhang Y, Zhang L, Zhang L, Zhou D, Xiao S. Design, synthesis and biological evaluation of novel l-ascorbic acid-conjugated pentacyclic triterpene derivatives as potential influenza virus entry inhibitors. Eur J Med Chem 2016; 110:376-88. [DOI: 10.1016/j.ejmech.2016.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/02/2016] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
|
17
|
Han X, Shi Y, Si L, Fan Z, Wang H, Xu R, Jiao P, Meng K, Tian Z, Zhou X, Jin H, Wu X, Chen H, Zhang Y, Zhang L, Xiao S, Zhou D. Design, synthesis and biological activity evaluation of novel conjugated sialic acid and pentacyclic triterpene derivatives as anti-influenza entry inhibitors. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00292g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A total of 24 novel sialic acid–pentacyclic triterpene conjugates were synthesized and evaluated as anti-influenza virus entry inhibitors.
Collapse
|