1
|
Wang JM, Zhang FH, Liu ZX, Tang YJ, Li JF, Xie LP. Cancer on motors: How kinesins drive prostate cancer progression? Biochem Pharmacol 2024; 224:116229. [PMID: 38643904 DOI: 10.1016/j.bcp.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
2
|
Hefny SM, El-Moselhy TF, El-Din N, Giovannuzzi S, Bin Traiki T, Vaali-Mohammed MA, El-Dessouki AM, Yamaguchi K, Sugiura M, Shaldam MA, Supuran CT, Abdulla MH, Eldehna WM, Tawfik HO. Discovery and Mechanistic Studies of Dual-Target Hits for Carbonic Anhydrase IX and VEGFR-2 as Potential Agents for Solid Tumors: X-ray, In Vitro, In Vivo, and In Silico Investigations of Coumarin-Based Thiazoles. J Med Chem 2024. [PMID: 38642371 DOI: 10.1021/acs.jmedchem.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
A dual-targeting approach is predicted to yield better cancer therapy outcomes. Consequently, a series of coumarin-based thiazoles (5a-h, 6, and 7a-e) were designed and constructed as potential carbonic anhydrase (CA) and VEGFR-2 suppressors. The inhibitory actions of the target compounds were assessed against CA isoforms IX and VEGFR-2. The assay results showed that coumarin-based thiazoles 5a, 5d, and 5e can effectively inhibit both targets. 5a, 5d, and 5e cytotoxic effects were tested on pancreatic, breast, and prostate cancer cells (PANC1, MCF7, and PC3). Further mechanistic investigation disclosed the ability of 5e to interrupt the PANC1 cell progression in the S stage by triggering the apoptotic cascade, as seen by increased levels of caspases 3, 9, and BAX, alongside the Bcl-2 decline. Moreover, the in vivo efficacy of compound 5e as an antitumor agent was evaluated. Also, molecular docking and dynamics displayed distinctive interactions between 5e and CA IX and VEGFR-2 binding pockets.
Collapse
Affiliation(s)
- Salma M Hefny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Nabaweya El-Din
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Thamer Bin Traiki
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | | | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, sixth of October City, Giza 12566, Egypt
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Maha-Hamadien Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
3
|
Dai P, Jiao J, Li Y, Teng P, Wang Q, Zhu Y, Zhang W. Novel 5-Sulfonyl-1,3,4-thiadiazole-Substituted Flavonoids as Potential Bactericides and Fungicides: Design, Synthesis, Three-Dimensional Quantitative Structure-Activity Relationship Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6672-6683. [PMID: 38481361 DOI: 10.1021/acs.jafc.3c06367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Flavonoids, ubiquitous natural products, provide sources for drug discovery owing to their structural diversity, broad-spectrum pharmacological activity, and excellent environmental compatibility. To develop antibacterial and antifungal agents with novel mechanisms of action and innovative structures, a series of novel 5-sulfonyl-1,3,4-thiadiazole-substituted flavonoids were designed and synthesized, and their biological activities against seven agriculturally common phytopathogenic microorganisms were evaluated. The results of the antimicrobial bioassay showed that most of the target compounds displayed excellent inhibitory effects against Xanthomonas oryzae, Rhizoctonia solani, and Colletotrichum orbiculare. Compounds 1, 3, 7, 9, 13, and 14 exhibited remarkable antibacterial activity against X. oryzae pv. oryzae with EC50 values below 10 μg/mL, which were superior to bismerthiazol (70.89 μg/mL). Compound 2 (EC50 = 0.41 μg/mL) displayed the most effective inhibitory potency against R. solani in vivo, comparable protective effects with the positive control carbendizam. Preliminary mechanistic studies indicated that compound 2 induced disordered entanglement of hyphae, shrinkage of hyphal surfaces, extravasation of cellular contents, and vacuole swelling and rupture, which disrupted normal hyphal growth. Subsequently, compounds 35-53 with good antifungal activity were designed and synthesized based on reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) models. Compound 49 showed high efficacy and superior antifungal activity against R. solani, with an EC50 value of 0.28 μg/mL and a half-maximal effective concentration of 0.46 μg/mL.
Collapse
Affiliation(s)
- Peng Dai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Jiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Teng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingqing Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuchuan Zhu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Yang C, Li Y, Zhang Y, Hu Q, Liu Y, Li YF, Shi HC, Song LL, Cao H, Hao XJ, Zhi XY. Natural Sesquiterpene Lactone as Source of Discovery of Novel Fungicidal Candidates: Structural Modification and Antifungal Activity Evaluation of Xanthatin Derived from Xanthium strumarium L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37449982 DOI: 10.1021/acs.jafc.3c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
As part of our ongoing efforts to discover novel agricultural fungicidal candidates from natural sesquiterpene lactones, in the present work, sixty-three xanthatin-based derivatives containing a arylpyrazole, arylimine, thio-acylamino, oxime, oxime ether, or oxime ester moiety were synthesized. Their structures were well characterized by 1H and 13C nuclear magnetic resonance and high-resolution mass spectrometry, while the absolute configurations of compounds 5' and 6a were further determined by single-crystal X-ray diffraction. Meanwhile, the antifungal activities of the prepared compounds against several phytopathogenic fungi were investigated using the spore germination method and the mycelium growth rate method in vitro. The bioassay results illustrated that compounds 5, 5', and 15 exhibited excellent inhibitory activity against the tested fungal spores and displayed remarkable inhibitory effects on fungal mycelia. Compounds 5 and 5' exhibited more potent inhibitory activity (IC50 = 1.1 and 24.8 μg/mL, respectively) against the spore of Botrytis cinerea than their precursor xanthatin (IC50 = 37.6 μg/mL), wherein the antifungal activity of compound 5 was 34-fold higher than that of xanthatin and 71-fold higher than that of the positive control, difenoconazole (IC50 = 78.5 μg/mL). Notably, compound 6'a also demonstrated broad-spectrum inhibitory activity against the four tested fungal spores. Meanwhile, compounds 2, 5, 8, and 15 showed prominent inhibitory activity against the mycelia of Cytospora mandshurica with the EC50 values of 2.3, 11.7, 11.1, and 3.0 μg/mL, respectively, whereas the EC50 value of xanthatin was 14.8 μg/mL. Additionally, compounds 5' and 15 exhibited good in vivo therapeutic and protective effects against B. cinerea with values of 55.4 and 62.8%, respectively. The preliminary structure-activity relationship analysis revealed that the introduction of oxime, oxime ether, or oxime ester structural fragment at the C-4 position of xanthatin or the introduction of a chlorine atom at the C-3 position of xanthatin might be significantly beneficial to antifungal activity. In conclusion, the comprehensive investigation indicated that partial xanthatin-based derivatives from this study could be considered for further exploration as potential lead structures toward developing novel fungicidal candidates for crop protection.
Collapse
Affiliation(s)
- Chun Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Yang Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Yuan Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Qiang Hu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Ying Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Yang-Fan Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Hong-Cheng Shi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Li-Li Song
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Hui Cao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Xiao-Juan Hao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| | - Xiao-Yan Zhi
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi Province, P. R. China
| |
Collapse
|
5
|
Hekal MH, Farag PS, Hemdan MM, El-Sayed AA, Hassaballah AI, El-Sayed WM. New 1,3,4-thiadiazoles as potential anticancer agents: pro-apoptotic, cell cycle arrest, molecular modelling, and ADMET profile. RSC Adv 2023; 13:15810-15825. [PMID: 37250214 PMCID: PMC10209631 DOI: 10.1039/d3ra02716c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
A series of novel 1,3,4-thiadiazoles was synthesized via the reaction of N-(5-(2-cyanoacetamido)-1,3,4-thiadiazol-2-yl)benzamide (3) with different carbon electrophiles and evaluated as potential anticancer agents. The chemical structures of these derivatives were fully elucidated using various spectral and elemental analyses. Out of 24 new thiadiazoles, derivatives 4, 6b, 7a, 7d, and 19 have significant antiproliferative activity. However, derivatives 4, 7a, and 7d were toxic to the normal fibroblasts, and therefore were excluded from further investigations. Derivatives 6b and 19 with IC50 at less than 10 μM and with high selectivity were selected for further studies in breast cells (MCF-7). Derivative 19 arrested the breast cells at G2/M probably through inhibition of CDK1, while 6b significantly increased the sub-G1 percent of cells probably through induction of necrosis. These results were confirmed by the annexin V-PI assay where 6b did not induce apoptosis and increased the necrotic cells to 12.5%, and compound 19 significantly increased the early apoptosis to 15% and increased the necrotic cells to 15%. Molecular docking showed that compound 19 was like FB8, an inhibitor of CDK1, in binding the CDK1 pocket. Therefore, compound 19 could be a potential CDK1 inhibitor. Derivatives 6b and 19 did not violate Lipinski's rule of five. In silico studies showed that these derivatives have a low blood-brain barrier penetration capability and high intestinal absorption. Taken together, derivatives 6b and 19 could serve as potential anticancer agents and merit further investigations.
Collapse
Affiliation(s)
- Mohamed H Hekal
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Paula S Farag
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Magdy M Hemdan
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Amira A El-Sayed
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Aya I Hassaballah
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt +202 2684 2123 +202 2482 1633
| |
Collapse
|
6
|
Laamari Y, Bimoussa A, Fawzi M, Oubella A, Rohand T, Van Meervelt L, IttoMorjani MYA, Auhmani A. Synthesis, crystal structure and evaluation of anticancer activities of some novel heterocyclic compounds based on thymol. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Baird SR, Vogels CM, Geier SJ, Watanabe LK, Binder JF, Macdonald CLB, Westcott SA. The phosphinoboration of thiosemicarbazones. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study reports on the exploration of the phosphinoboration reaction with several thiosemicarbazones (R5R4NC(S)NR3N=CR1R2). Reactions between either Ph2PBpin (pin = 1,2-O2C2Me4) or Ph2PBcat (cat = 1,2-O2C6H4) with thiosemicarbazones containing a terminal primary or secondary amine afforded boron-containing heterocyclic 1,3,4-thiadiazoline products in excellent yield. The addition of Ph2PBpin to thiosemicarbazones containing an NMe2 group in the terminal position generated novel five-membered heterocycles in moderate yield, which included boron, sulfur, and nitrogen atoms. Heterocyclization of the thiosemicarbazones occurs preferentially in the presence of functional groups such as acetyl and pyridyl groups.
Collapse
Affiliation(s)
- Samuel R. Baird
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Lara K. Watanabe
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Justin F. Binder
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | | | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
8
|
Ekrek S, Şenkardeş S, Erdoğan Ö, Çevik Ö. Synthesis and biological evaluation of thiazole and thiadiazole derivatives as potential anticancer agents. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2136665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Sedanur Ekrek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Sevil Şenkardeş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Ömer Erdoğan
- Department of Biochemistry, School of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Özge Çevik
- Department of Biochemistry, School of Medicine, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
9
|
Kinesin Eg5 Selective Inhibition by Newly Synthesized Molecules as an Alternative Approach to Counteract Breast Cancer Progression: An In Vitro Study. BIOLOGY 2022; 11:biology11101450. [PMID: 36290354 PMCID: PMC9598199 DOI: 10.3390/biology11101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Breast cancer (BC) is one of the most diagnosed cancers in women. Recently, a promising target for BC treatment was found in kinesin Eg5, a mitotic motor protein that allows bipolar spindle formation and cell replication. Thus, the aim of this work was to evaluate the effects of novel thiadiazoline-based Eg5 inhibitors, analogs of K858, in an in vitro model of BC (MCF7 cell line). Compounds 2 and 41 were selected for their better profile as they reduce MCF7 viability at lower concentrations and with minimal effect on non-tumoral cells with respect to K858. Compounds 2 and 41 counteract MCF7 migration by negatively modulating the NF-kB/MMP-9 pathway. The expression of HIF-1α and VEGF appeared also reduced by 2 and 41 administration, thus preventing the recruitment of the molecular cascade involved in angiogenesis promotion. In addition, 2 provokes an increased caspase-3 activation thus triggering the MCF7 apoptotic event, while 41 and K858 seem to induce the necrosis axis, as disclosed by the increased expression of PARP. These results allow us to argue that 2 and 41 are able to simultaneously intervene on pivotal molecular signaling involved in breast cancer progression, leading to the assumption that Eg5 inhibition can represent a valid approach to counteract BC progression.
Collapse
|
10
|
Dou X, Sun Q, Xu G, Liu Y, Zhang C, Wang B, Lu Y, Guo Z, Su L, Huo T, Zhao X, Wang C, Yu Z, Song S, Zhang L, Liu Z, Lai L, Jiao N. Discovery of 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 main protease. Eur J Med Chem 2022; 238:114508. [PMID: 35688005 PMCID: PMC9162962 DOI: 10.1016/j.ejmech.2022.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
The COVID-19 posed a serious threat to human life and health, and SARS-CoV-2 Mpro has been considered as an attractive drug target for the treatment of COVID-19. Herein, we report 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 Mpro developed by in-house library screening and biological evaluation. Similarity search led to the identification of compound F8–S43 with the enzymatic IC50 value of 10.76 μM. Further structure-based drug design and synthetic optimization uncovered compounds F8–B6 and F8–B22 as novel non-peptidomimetic inhibitors of Mpro with IC50 values of 1.57 μM and 1.55 μM, respectively. Moreover, enzymatic kinetic assay and mass spectrometry demonstrated that F8–B6 was a reversible covalent inhibitor of Mpro. Besides, F8–B6 showed low cytotoxicity with CC50 values of more than 100 μM in Vero and MDCK cells. Overall, these novel SARS-CoV-2 Mpro non-peptidomimetic inhibitors provide a useful starting point for further structural optimization.
Collapse
Affiliation(s)
- Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qi Sun
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Guofeng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yameng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Caifang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bingding Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yangbin Lu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zheng Guo
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lingyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhongtian Yu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Luhua Lai
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
11
|
Fessard TC, Gospodinov I, Klapötke TM, Stierstorfer J, Voggenreiter M. Energetic but insensitive
spiro
‐tetrahydrotetrazines based on oxetane‐3‐one. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ivan Gospodinov
- Spirochem AG, WRO‐1047‐3, Mattenstrasse 24 Basel Switzerland
| | - Thomas M. Klapötke
- Ludwig Maximilian University Munich, Department of Chemistry Butenandtstr. 5‐13 München Germany
| | - Jörg Stierstorfer
- Ludwig Maximilian University Munich, Department of Chemistry Butenandtstr. 5‐13 München Germany
| | - Michael Voggenreiter
- Ludwig Maximilian University Munich, Department of Chemistry Butenandtstr. 5‐13 München Germany
| |
Collapse
|
12
|
Nicolai A, Taurone S, Carradori S, Artico M, Greco A, Costi R, Scarpa S. The kinesin Eg5 inhibitor K858 exerts antiproliferative and proapoptotic effects and attenuates the invasive potential of head and neck squamous carcinoma cells. Invest New Drugs 2022; 40:556-564. [PMID: 35312942 PMCID: PMC9098576 DOI: 10.1007/s10637-022-01238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
Abstract
Our group recently demonstrated that K858, an inhibitor of motor kinesin Eg5, has important antiproliferative and apoptotic effects on breast cancer, prostatic cancer, melanoma and glioblastoma cells. Since high levels of kinesin Eg5 expression have been correlated with a poor prognosis in laryngeal carcinoma, we decided to test the anticancer activity of K858 toward this tumor, which belongs to the group of head and neck squamous cell carcinomas (HNSCCs). These cancers are characterized by low responsiveness to therapy. The effects of K858 on the proliferation and assembly of mitotic spindles of three human HNSCC cell lines were studied using cytotoxicity assays and immunofluorescence for tubulin. The effect of K858 on the cell cycle was analyzed by FACS. The expression levels of cyclin B1 and several markers of apoptosis and invasion were studied by Western blot. Finally, the negative regulation of the malignant phenotype by K858 was evaluated by an invasion assay. K858 inhibited cell replication by rendering cells incapable of developing normal bipolar mitotic spindles. At the same time, K858 blocked the cell cycle in the G2 phase and induced the accumulation of cytoplasmic cyclin B and, eventually, apoptosis. Additionally, K858 inhibited cell migration and attenuated the malignant phenotype. The data described confirm that kinesin Eg5 is an interesting target for new anticancer strategies and suggest that this compound may be a powerful tool for an alternative therapeutic approach to HNSCCs.
Collapse
|
13
|
Negative Modulation of the Angiogenic Cascade Induced by Allosteric Kinesin Eg5 Inhibitors in a Gastric Adenocarcinoma In Vitro Model. Molecules 2022; 27:molecules27030957. [PMID: 35164221 PMCID: PMC8840372 DOI: 10.3390/molecules27030957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Eg5 is a kinesin essential in bipolar spindle formation, overexpressed in tumours, thus representing a new target in cancer therapy. We aimed at evaluating the anti-cancer activity of Eg5 thiadiazoline inhibitors 2 and 41 on gastric adenocarcinoma cells (AGS), focusing on the modulation of angiogenic signalling. Docking studies confirmed a similar interaction with Eg5 to that of the parent compound K858. Thiadiazolines were also tested in combination with Hesperidin (HSD). Cell cycle analysis reveals a reduction of G1 and S phase percentages when 41 is administered as well as HSD in combination with K858. Western blot reveals Eg5 inhibitors capability to reduce PI3K, p-AKT/Akt and p-Erk/Erk expressions; p-Akt/Akt ratio is even more decreased in HSD+2 sample than the p-Erk/Erk ratio in HSD+41 or K858. VEGF expression is reduced when HSD+2 and HSD+41 are administered with respect to compounds alone, after 72 h. ANGPT2 gene expression increases in cells treated with 41 and HSD+2 compared to K858. The wound-healing assay highlights a reduction in the cut in HSD+2 sample compared to 2 and HSD. Thus, Eg5 inhibitors appear to modulate angiogenic signalling by controlling VEGF activity even better if combined with HSD. Overall, Eg5 inhibitors can represent a promising starting point to develop innovative anti-cancer strategies.
Collapse
|
14
|
2,2-Dichloro-N-[5-[2-[3-(4-methoxyphenyl)-5-phenyl-3,4-dihydro-2H-pyrazol-2-yl]-2-oxoethyl]sulfanyl-1,3,4-thiadiazol-2-yl]acetamide. MOLBANK 2022. [DOI: 10.3390/m1328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pharmacophore hybridization approach is widely used for the design of drug-like small molecules with anticancer properties. In the present work, a “cost-effective” approach to the synthesis of the novel non-condensed pyrazoline-bearing hybrid molecule with 1,3,4-thiadiazole and dichloroacetic acid moieties is proposed. The 5-amino-1,3,4-thiadiazole-2-thiol was used as a starting reagent, and the synthetic strategy includes stepwise alkylation of the sulfur atom and acylation of the nitrogen atom to obtain the target title compound. The structure of the synthesized 2,2-dichloro-N-[5-[2-[3-(4-methoxyphenyl)-5-phenyl-3,4-dihydro-2H-pyrazol-2-yl]-2-oxoethyl]sulfanyl-1,3,4-thiadiazol-2-yl]acetamide (yield 90%) was confirmed by 1H, 13C, 2D NMR and LC-MS spectra. Anticancer activity in “60 lines screening” (NCI DTP protocol) was studied in vitro for the title compound.
Collapse
|
15
|
Chamariya R, Suvarna V. Role of KSP inhibitors as anti-cancer therapeutics: an update. Anticancer Agents Med Chem 2022; 22:2517-2538. [PMID: 35043768 DOI: 10.2174/1871520622666220119093105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/03/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Regardless of the growing discovery of anticancer treatments, targeting cancer-specific pathways, cytotoxic therapy still maintained its abundant clinical significance based on the fact that tumours harbour a greater population of actively dividing cells than normal tissues. Conventional anti-mitotic agents or microtubule poisons acting on the major mitotic spindle protein tubulin have been effectively used in clinical settings for cancer chemotherapy over the last three decades. However, use of these drugs is associated with limited clinical utility due to serious side effects such as debilitating and dose-limiting peripheral neuropathy, myelosuppression, drug resistance and allergic reactions. Therefore, research initiatives have been undertaken to develop novel microtubule motor proteins inhibitors that can potentially circumvent the limitations associated with conventional microtubule poisons. Kinesin spindle proteins (KSP) belonging to the kinesin-5 family play a crucial role during mitosis and unregulated cell proliferation. Several evidences from preclinical studies and different phases of clinical trials have presented kinesin spindle protein as a promising target for cancer therapeutics. kinesin spindle protein inhibitors causing mitosis disruption without interfering with microtubule dynamics in non-dividing cells offer a potential therapeutic alternative for the management of several major cancer types and are devoid of side effects associated with classical anti-mitotic drugs. This review summarizes recent data highlighting progress in the discovery of targeted KSP inhibitors and presents the development of scaffolds, structure-activity relationships, and outcomes of biological, and enzyme inhibition studies. We reviewed the recent literature reports published over last decade, using various electronic database searches such as PubMed, Embase, Medline, Web of Science, and Google Scholar. Clinical trial data till 2021 was retrieved from ClinicalTrial.gov. Major chemical classes developed as selective KSP inhibitors include dihydropyrimidines, β-carbolines, carbazoles, benzimidazoles, fused aryl derivatives, pyrimidines, fused pyrimidines, quinazolines, quinolones, thiadiazolines, spiropyran and azobenzenes. Drugs such as filanesib, litronesib, ispinesib have entered clinical trials, the most advanced phase explored being Phase II. KSP inhibitors have exhibited promising results; however, continued exploration is greatly required to establish the clinical potential of KSP inhibitors.
Collapse
Affiliation(s)
- Rinkal Chamariya
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai - 400056, Maharashtra, India
| | - Vasanti Suvarna
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai - 400056, Maharashtra, India
| |
Collapse
|
16
|
Obakachi VA, Kushwaha B, Kushwaha ND, Mokoena S, Ganai AM, Pathan TK, van Zyl WE, Karpoormath R. Synthetic and anti-cancer activity aspects of 1, 3, 4-thiadiazole containing bioactive molecules: A concise review. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.1963441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vincent A. Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sithabile Mokoena
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tabasum Khan Pathan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Werner E. van Zyl
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Ngoc Toan V, Dinh Thanh N, Minh Tri N. 1,3,4-Thiadiazoline−coumarin hybrid compounds containing D-glucose/D-galactose moieties: Synthesis and evaluation of their antiproliferative activity. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
18
|
Two metal complex derivatives of pyridine thiazole ligand: synthesis, characterization and biological activity. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-020-00442-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Szeliga M. Thiadiazole derivatives as anticancer agents. Pharmacol Rep 2020; 72:1079-1100. [PMID: 32880874 PMCID: PMC7550299 DOI: 10.1007/s43440-020-00154-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
In spite of substantial progress made toward understanding cancer pathogenesis, this disease remains one of the leading causes of mortality. Thus, there is an urgent need to develop novel, more effective anticancer therapeutics. Thiadiazole ring is a versatile scaffold widely studied in medicinal chemistry. Mesoionic character of this ring allows thiadiazole-containing compounds to cross cellular membrane and interact strongly with biological targets. Consequently, these compounds exert a broad spectrum of biological activities. This review presents the current state of knowledge on thiadiazole derivatives that demonstrate in vitro and/or in vivo efficacy across the cancer models with an emphasis on targets of action. The influence of the substituent on the compounds' activity is depicted. Furthermore, the results from clinical trials assessing thiadiazole-containing drugs in cancer patients are summarized.
Collapse
Affiliation(s)
- Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Str, 02-106, Warsaw, Poland.
| |
Collapse
|
20
|
Apaza Ticona L, Arnanz Sebastián J, Serban AM, Rumbero Sánchez Á. Alkaloids isolated from Tropaeolum tuberosum with cytotoxic activity and apoptotic capacity in tumour cell lines. PHYTOCHEMISTRY 2020; 177:112435. [PMID: 32562919 DOI: 10.1016/j.phytochem.2020.112435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Two alkaloids were isolated and identified for the first time in the black tubers of Tropaeolum tuberosum, collected from the Titicani-Taca, Ingavi province in La Paz, Bolivia. Their structures were elucidated by extensive NMR and MS spectroscopic analyses. The isolated compounds were evaluated for their cytotoxicity and apoptotic capacity against four human cancer cell lines. 2-Benzyl-3-thioxohexahydropyrrolo[1,2-c]imidazole-1-one (1) showed slight cytotoxic activity against all the cancer cell lines which were tested, with IC50 values ranging from 27.45 ± 0.80 to 31.07 ± 0.87 μM. Moreover, N-(4-acetyl-5-methyl-5-phenyl-4,5-dihydro-1,3,4-thiadiazol-2-yl) acetamide (2) showed significant anti-cancer potential, with IC50 values between 1.26 ± 0.57 μM and 1.37 ± 0.09 μM against all human cancer cell lines which were tested. Treatment of tumour cell lines with the compounds caused an increase in the apoptotic rate of these cells, observing that compound 2 presented an apoptotic effect which was double with respect to the control (Dimethylenastron).
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049, Madrid, Spain; Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid. Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Julia Arnanz Sebastián
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049, Madrid, Spain
| | - Andreea Madalina Serban
- Maria Sklodowska Curie University Hospital for Children. Constantin Brancoveanu Boulevard, 077120, Bucharest, Romania
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
21
|
Marconi GD, Carradori S, Ricci A, Guglielmi P, Cataldi A, Zara S. Kinesin Eg5 Targeting Inhibitors as a New Strategy for Gastric Adenocarcinoma Treatment. Molecules 2019; 24:molecules24213948. [PMID: 31683688 PMCID: PMC6864856 DOI: 10.3390/molecules24213948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 01/30/2023] Open
Abstract
The Kinesins are proteins involved in several biological processes such as mitosis, intracellular transport, and microtubule movement. The mitotic process is allowed by the correct formation of the mitotic spindle which consists of microtubules originating from the spindle poles. In recent years, kinesin Eg5 inhibitors were studied as new chemotherapeutic drugs, due to the lack of side effects and resistance mechanisms. The aim of this work was to investigate the molecular signaling underlying the administration of novel kinesis Eg5 inhibitors in an in vitro model of gastric adenocarcinoma. Data obtained from analogues of K858 led us to select compounds 2 and 41, due to their lower IC50 values. The ability of kinesin inhibitors to induce apoptosis was investigated by evaluating Bax and Caspase-3 protein expression, evidencing that compound 41 and K858 markedly raise Bax expression, while only compounds 2 and 41 co-administrated with K858 trigger Caspase-3 activation. The inhibition of mitotic spindle was measured by β-tubulin immunofluorescence analysis revealing monopolar spindles formation in gastric cancer cells treated with compounds 2, 41, and K858. Nitric Oxide Synthase (NOS-2) and Matrix Metalloproteinase 9 (MMP-9) expression levels were measured finding a NOS-2-mediated downregulation of MMP-9 when compound 41 and K858 are co-administered. However, this is in contrast to what was reported by migration assay in which both novel compounds and K858 in monotherapy markedly reduce cell migration. This work remarks the importance of understanding and exploring the biological effects of different novel Eg5 kinesin inhibitors administered in monotherapy and in combination with K858 as potential strategy to counteract gastric cancer.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Alessia Ricci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Amelia Cataldi
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Susi Zara
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| |
Collapse
|
22
|
Giantulli S, De Iuliis F, Taglieri L, Carradori S, Menichelli G, Morrone S, Scarpa S, Silvestri I. Growth arrest and apoptosis induced by kinesin Eg5 inhibitor K858 and by its 1,3,4-thiadiazoline analogue in tumor cells. Anticancer Drugs 2019; 29:674-681. [PMID: 29738338 DOI: 10.1097/cad.0000000000000641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tumors are complex and heterogeneous but, despite this, they share the ability to proliferate continuously, irrespective of the presence of growth signals, leading to a higher fraction of actively growing and dividing cells compared with normal tissues. For this reason, the cytotoxic antimitotic treatments remain an important clinical tool for tumors. Among these drugs, antitubulin compounds constitute one of the most effective anticancer chemotherapies; however, they cause dose-limiting side effects. Therefore, it is still necessary to develop compounds with new targets and new mechanisms of action to reduce side effects or chemoresistance. Mitosis-specific kinesin Eg5 can represent an attractive target for discovering such new anticancer agents because its role is fundamental in mitotic progression. Therefore, we analyzed the effects induced by an inhibitor of kinesin Eg5, K858, and by its 1,3,4-thiadiazoline analogue on human melanoma and prostate cancer cell lines. We found that both compounds have an antiproliferative effect, induce apoptosis, and can determine a downmodulation of survivin.
Collapse
Affiliation(s)
| | | | | | - Simone Carradori
- Department of Pharmacy, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | | | | | - Susanna Scarpa
- Experimental Medicine, Sapienza University of Rome, Rome
| | | |
Collapse
|
23
|
Secci D, Locatelli M, Kabir A, Salvatorelli E, Macedonio G, Mollica A, Carradori S. Investigation on the Stability of New Biologically Active Thiosemicarbazone- Derived Compounds by a Validated HPLC-PDA Method. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180502105225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
New Chemical Entities (NCEs) could be generally exposed to several stress
conditions of hydrolysis, oxidation, photolysis and thermal degradation in order to better characterize
the compounds and to know if the degradation processes lead to generate undesired (or toxic) products.
Objective:
This paper reports the development and validation of an HPLC-PDA method for the qualiquantitative
profiles determination and chemical-physical stability evaluation after forced decomposition
studies of thiosemicarbazone-derived compounds endowed with interesting pharmacological activities.
Methods:
All compounds and two possible degradation products were resolved by using a Grace® C-18
(ODS) column (250 mm × 4.6 mm; 5 mm particle size) in gradient elution mode. The chromatographic
analysis was run in 28 min. The analytical method was correctly validated using weighted-matrix
matched standard curves in the following ranges: 1-100 µg mL-1 for the lead compounds, and 0.1-8 μg
mL-1 for the two possible degradation products showing a good correlation coefficients (≥0.9756). Precision
and trueness comply with International Guidelines on method validation.
Results:
The obtained results demonstrated an excellent stability of the thiosemicarbazone-derived
products following the treatment with UV set at 254 nm and heat (at 80°C). In solution, however, the
compounds showed different stability profiles.
Conclusion:
The results obtained through the forced degradation studies provided important information
not only for handling, formulation and storage of the substances, but also for the possible chemical
changes in order to increase the stability. Given the importance of the non-conventional dosage
forms, the stability of the substances was also analyzed in the presence of widely used surfactants.
Collapse
Affiliation(s)
- Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy
| | | | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | | | | | | | | |
Collapse
|
24
|
Talapatra SK, Tham CL, Guglielmi P, Cirilli R, Chandrasekaran B, Karpoormath R, Carradori S, Kozielski F. Crystal structure of the Eg5 - K858 complex and implications for structure-based design of thiadiazole-containing inhibitors. Eur J Med Chem 2018; 156:641-651. [DOI: 10.1016/j.ejmech.2018.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
25
|
Lino CI, Gonçalves de Souza I, Borelli BM, Silvério Matos TT, Santos Teixeira IN, Ramos JP, Maria de Souza Fagundes E, de Oliveira Fernandes P, Maltarollo VG, Johann S, de Oliveira RB. Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. Eur J Med Chem 2018; 151:248-260. [PMID: 29626797 DOI: 10.1016/j.ejmech.2018.03.083] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/02/2018] [Accepted: 03/30/2018] [Indexed: 01/05/2023]
Abstract
In the search for new antifungal agents, a novel series of fifteen hydrazine-thiazole derivatives was synthesized and assayed in vitro against six clinically important Candida and Cryptococcus species and Paracoccidioides brasiliensis. Eight compounds showed promising antifungal activity with minimum inhibitory concentration (MIC) values ranging from 0.45 to 31.2 μM, some of them being equally or more active than the drug fluconazole and amphotericin B. Active compounds were additionally tested for toxicity against human embryonic kidney (HEK-293) cells and none of them exhibited significant cytotoxicity, indicating high selectivity. Molecular modeling studies results corroborated experimental SAR results, suggesting their use in the design of new antifungal agents.
Collapse
Affiliation(s)
- Cleudiomar Inácio Lino
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Igor Gonçalves de Souza
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz Martins Borelli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thelma Tirone Silvério Matos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Iasmin Natália Santos Teixeira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jonas Pereira Ramos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elaine Maria de Souza Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Philipe de Oliveira Fernandes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
26
|
Thiadiazoline- and Pyrazoline-Based Carboxamides and Carbothioamides: Synthesis and Inhibition against Nitric Oxide Synthase. J CHEM-NY 2018. [DOI: 10.1155/2018/9242616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Two new families of pyrazoline and thiadiazoline heterocycles have been developed. Their inhibitory activities against two different isoforms of nitric oxide synthase (inducible and neuronal NOS) are reported. The novel derivatives were synthesized combining the arylthiadiazoline or arylpyrazoline skeleton and a carboxamide or carbothioamide moiety, used as starting material ethyl 2-nitrobenzoates or substituted nitrobenzaldehydes, respectively. The structure-activity relationships of final molecules are discussed in terms of the R1 radical effects in the aromatic ring, the Y atom in the heterocyclic system, the X heteroatom in the main chain, and the R2 substituent in the carboxamide or carbothioamide rest. In general, thiadiazolines (5a–e) inhibit preferentially the neuronal isoform; among them, 5a is the best nNOS inhibitor (74.11% at 1 mM, IC50 = 420 μM). In contrast, pyrazolines (6a–r) behave better as iNOS than nNOS inhibitors, 6m being the best molecule of this series (76.86% at 1 mM of iNOS inhibition, IC50 = 130 μM) and the most potent of all tested compounds.
Collapse
|
27
|
Abstract
INTRODUCTION Four isomeric structures of thiadiazole motifs have outstanding pharmacological inhibitory applications are reported in this review. Thiadiazole nucleus is present in several biologically active natural products and commercial drugs. Most of thiadiazoles reported herein are emphasized to have broad spectrum of medicinal activities. Areas covered: This review represents the recent inhibitory activities of thiadiazole isomeric scaffolds and their broad-spectrum biological applications published as full texts during 2010-2016 as well as the patents published during 2005-2016. The inhibition areas covered included anti-inflammatory, antimicrobial, antitumor, antioxidant, antitubercular, antiviral, antileishmanial, anticonvulsant, herbicidal and algicidal activities in addition to enzymes, human platelet aggregation and neuroprotective inhibitors. Expert opinion: This survey revealed very interesting data about the applications of thiadiazoles, where some synthetic or natural thiadiazole derivatives were components of drugs available in the market. Many thiadiazole derivatives can be considered as lead compounds for drug synthesis. The most inhibitory active 1,3,4-thiadiazole compounds are those incorporating secondary alkyl(aryl)amido- and/or benzylthio(mercapto) groups at positions 2 and 5. Several thiadiazole derivatives demonstrated higher antibacterial, antitumor and antiviral activities than the standard drugs. Some thiadiazole derivatives exhibited high selective enzymes inhibitory activities based on the electronic properties of the substituents at positions 2 or 5.
Collapse
Affiliation(s)
- Kamal M Dawood
- a Department of Chemistry, Faculty of Science , Kuwait University , Safat , Kuwait.,b Department of Chemistry, Faculty of Science , Cairo University , Giza , Egypt
| | - Thoraya A Farghaly
- b Department of Chemistry, Faculty of Science , Cairo University , Giza , Egypt.,c Department of Chemistry, Faculty of Applied Science , Umm Al-Qura University , Makkah Almukkarramah , Saudi Arabia
| |
Collapse
|
28
|
Bonnett SA, Ollinger J, Chandrasekera S, Florio S, O’Malley T, Files M, Jee JA, Ahn J, Casey A, Ovechkina Y, Roberts D, Korkegian A, Parish T. A Target-Based Whole Cell Screen Approach To Identify Potential Inhibitors of Mycobacterium tuberculosis Signal Peptidase. ACS Infect Dis 2016; 2:893-902. [PMID: 27642770 PMCID: PMC5215716 DOI: 10.1021/acsinfecdis.6b00075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 12/31/2022]
Abstract
The general secretion (Sec) pathway is a conserved essential pathway in bacteria and is the primary route of protein export across the cytoplasmic membrane. During protein export, the signal peptidase LepB catalyzes the cleavage of the signal peptide and subsequent release of mature proteins into the extracellular space. We developed a target-based whole cell assay to screen for potential inhibitors of LepB, the sole signal peptidase in Mycobacterium tuberculosis, using a strain engineered to underexpress LepB (LepB-UE). We screened 72,000 compounds against both the Lep-UE and wild-type (wt) strains. We identified the phenylhydrazone (PHY) series as having higher activity against the LepB-UE strain. We conducted a limited structure-activity relationship determination around a representative PHY compound with differential activity (MICs of 3.0 μM against the LepB-UE strain and 18 μM against the wt); several analogues were less potent against the LepB overexpressing strain. A number of chemical modifications around the hydrazone moiety resulted in improved potency. Inhibition of LepB activity was observed for a number of compounds in a biochemical assay using cell membrane fraction derived from M. tuberculosis. Compounds did not increase cell permeability, dissipate membrane potential, or inhibit an unrelated mycobacterial enzyme, suggesting a specific mode of action related to the LepB secretory mechanism.
Collapse
Affiliation(s)
- Shilah A. Bonnett
- TB Discovery
Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite
400, Seattle, Washington 98102, United States
| | - Juliane Ollinger
- TB Discovery
Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite
400, Seattle, Washington 98102, United States
| | - Susantha Chandrasekera
- TB Discovery
Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite
400, Seattle, Washington 98102, United States
| | - Stephanie Florio
- TB Discovery
Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite
400, Seattle, Washington 98102, United States
| | - Theresa O’Malley
- TB Discovery
Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite
400, Seattle, Washington 98102, United States
| | - Megan Files
- TB Discovery
Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite
400, Seattle, Washington 98102, United States
| | - Jo-Ann Jee
- TB Discovery
Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite
400, Seattle, Washington 98102, United States
| | - James Ahn
- TB Discovery
Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite
400, Seattle, Washington 98102, United States
| | - Allen Casey
- TB Discovery
Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite
400, Seattle, Washington 98102, United States
| | - Yulia Ovechkina
- TB Discovery
Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite
400, Seattle, Washington 98102, United States
| | - David Roberts
- TB Discovery
Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite
400, Seattle, Washington 98102, United States
| | - Aaron Korkegian
- TB Discovery
Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite
400, Seattle, Washington 98102, United States
| | - Tanya Parish
- TB Discovery
Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite
400, Seattle, Washington 98102, United States
| |
Collapse
|
29
|
De Iuliis F, Taglieri L, Salerno G, Giuffrida A, Milana B, Giantulli S, Carradori S, Silvestri I, Scarpa S. The kinesin Eg5 inhibitor K858 induces apoptosis but also survivin-related chemoresistance in breast cancer cells. Invest New Drugs 2016; 34:399-406. [PMID: 26994617 DOI: 10.1007/s10637-016-0345-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 01/29/2023]
Abstract
Inhibitors of kinesin spindle protein Eg5 are characterized by pronounced antitumor activity. Our group has recently synthesized and screened a library of 1,3,4-thiadiazoline analogues with the pharmacophoric structure of K858, an Eg5 inhibitor. We herein report the effects of K858 on four different breast cancer cell lines: MCF7 (luminal A), BT474 (luminal B), SKBR3 (HER2 like) and MDA-MB231 (basal like). We demonstrated that K858 displayed anti-proliferative activity on every analyzed breast cancer cell line by inducing apoptosis. However, at the same time, we showed that K858 up-regulated survivin, an anti-apoptotic molecule. We then performed a negative regulation of survivin expression, with the utilization of wortmannin, an AKT inhibitor, and obtained a significant increase of K858-dependent apoptosis. These data demonstrate that K858 is a potent inhibitor of replication and induces apoptosis in breast tumor cells, independently from the tumor phenotype. This anti-proliferative response of tumor cells to K858 can be limited by the contemporaneous over-expression of survivin; consequently, the reduction of survivin levels, obtained with AKT inhibitors, can sensitize tumor cells to K858-induced apoptosis.
Collapse
Affiliation(s)
- Francesca De Iuliis
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Ludovica Taglieri
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Gerardo Salerno
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Anna Giuffrida
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Bernardina Milana
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Sabrina Giantulli
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Ida Silvestri
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Susanna Scarpa
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
30
|
Novel 1,3-thiazolidin-4-one derivatives as promising anti-Candida agents endowed with anti-oxidant and chelating properties. Eur J Med Chem 2016; 117:144-56. [PMID: 27100030 DOI: 10.1016/j.ejmech.2016.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/23/2016] [Accepted: 04/05/2016] [Indexed: 11/20/2022]
Abstract
Pursuing our recent outcomes regarding the antifungal activity of N-substituted 1,3-thiazolidin-4-ones, we synthesized thirty-six new derivatives introducing aliphatic, cycloaliphatic and heteroaromatic moieties at N1-hydrazine connected with C2 position of the thiazolidinone nucleus and functionalizing the lactam nitrogen with differently substituted (NO2, NH2, Cl and F) benzyl groups. These compounds were tested to evaluate their minimum inhibitory concentration (MIC) against several clinical Candida spp. with respect to topical and systemic reference drugs (clotrimazole, fluconazole, ketoconazole, miconazole, tioconazole, amphotericin B). Moreover, anti-oxidant properties were also evaluated by using different protocols including free radical scavenging (DPPH and ABTS), reducing power (CUPRAC and FRAP), metal chelating and phosphomolybdenum assays. Moreover, for the most active derivatives we assessed the toxicity (CC50) against Hep2 human cells in order to characterize them as multi-target agents for fungal infections.
Collapse
|
31
|
Carradori S, Secci D, De Monte C, Mollica A, Ceruso M, Akdemir A, Sobolev AP, Codispoti R, De Cosmi F, Guglielmi P, Supuran CT. A novel library of saccharin and acesulfame derivatives as potent and selective inhibitors of carbonic anhydrase IX and XII isoforms. Bioorg Med Chem 2016; 24:1095-105. [DOI: 10.1016/j.bmc.2016.01.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
|
32
|
Menta S, Carradori S, Siani G, Secci D, Mannina L, Sobolev AP, Cirilli R, Pierini M. Elucidation of the mechanisms governing the thermal diastereomerization of bioactive chiral 1,3,4-thiadiazoline spiro-cyclohexyl derivatives towards their anancomeric stereoisomers. RSC Adv 2016. [DOI: 10.1039/c6ra13727j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of bioactive 1,3,4-thiadiazoline-spiro-cyclohexyl-alkyl-substituted diastereomers by effective switching between kinetic and thermodynamic control.
Collapse
Affiliation(s)
- S. Menta
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- 00185 Rome
- Italy
| | - S. Carradori
- Department of Pharmacy
- “G. D'Annunzio” University of Chieti-Pescara
- 66100 Chieti
- Italy
| | - G. Siani
- Department of Pharmacy
- “G. D'Annunzio” University of Chieti-Pescara
- 66100 Chieti
- Italy
| | - D. Secci
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- 00185 Rome
- Italy
| | - L. Mannina
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- 00185 Rome
- Italy
| | - A. P. Sobolev
- Laboratorio di Risonanza Magnetica “AnnalauraSegre”
- Istituto di Metodologie Chimiche CNR Area della Ricerca di Roma
- 00015 Monterotondo
- Italy
| | - R. Cirilli
- Dipartimento del Farmaco
- Istituto Superiore di Sanità
- 00161 Rome
- Italy
| | - M. Pierini
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Università di Roma
- 00185 Rome
- Italy
| |
Collapse
|