1
|
Wang F, Ma J, Yang L, Hu P, Tang S, Wang J, Li Z. Discovery of novel CXCR4 inhibitors for the treatment of inflammation by virtual screening and biological evaluation. Eur J Med Chem 2024; 275:116605. [PMID: 38885550 DOI: 10.1016/j.ejmech.2024.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
C-X-C chemokine receptor type 4 (CXCR4) exerts considerable influence on the pathogenesis of inflammatory disorders and offers a potent avenue for drug intervention. This research utilizes a hybrid virtual screening methodology constructed using computer-aided drug design to discover novel CXCR4 inhibitors for the treatment of inflammation. First, a compound library was screened by Lipinski's five rules and adsorption, distribution, metabolism, excretion and toxicity properties. Second, the HypoGen algorithm was used in constructing a 3D-QSAR pharmacophore model and verify it layer by layer, and the obtained optimal pharmacophore 1 (Hypo 1) was used as a 3D query for compound screening. Then, hit compounds were obtained through molecular docking (Libdock and CDOCKER). The toxicity of the compounds to MDA-MB-231 cells was evaluated in vitro, and their binding affinity to the target was evaluated according to how they compete with 12G5 antibody for CXCR4 on the surfaces of the MDA-MB-231 cells. Compound Hit14 showed the strongest binding affinity among the hit compounds and inhibited cell migration and invasion in Matrigel invasion and wound healing assay at a concentration of 100 nM, demonstrating a better effect than AMD3100. Western Blot experiments further showed that Hit14 blocked the CXCR4/CXCL12-mediated phosphorylation of Akt. Meanwhile, cellular thermal displacement assay analysis showed that CXCR4 protein bound to Hit14 had high thermal stability. Finally, through in vivo experiments, we found that Hit14 inhibited mouse ear inflammation and reduced ear swelling and damage. Therefore, Hit14 is a promising drug for the further development of CXCR4 inhibitors for inflammation treatment.
Collapse
Affiliation(s)
- Fang Wang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jie Ma
- The Central Hospital of Wuhan, Tongji Medical College of HUST, Wuhan, China
| | - Lili Yang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ping Hu
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Siming Tang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jing Wang
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Zeng Li
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Jiang X, Lu L, Li J, Jiang J, Zhang J, Zhou S, Wen H, Cai H, Luo X, Li Z, Wang J, Ju B, Bai R. Synthetically Feasible De Novo Molecular Design of Leads Based on a Reinforcement Learning Model: AI-Assisted Discovery of an Anti-IBD Lead Targeting CXCR4. J Med Chem 2024; 67:10057-10075. [PMID: 38863440 DOI: 10.1021/acs.jmedchem.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Artificial intelligence (AI) de novo molecular generation provides leads with novel structures for drug discovery. However, the target affinity and synthesizability of the generated molecules present critical challenges for the successful application of AI technology. Therefore, we developed an advanced reinforcement learning model to bridge the gap between the theory of de novo molecular generation and the practical aspects of drug discovery. This model utilizes chemical reaction templates and commercially available building blocks as a starting point and employs forward reaction prediction to generate molecules, while real-time docking and drug-likeness predictions are conducted to ensure synthesizability and drug-likeness. We applied this model to design active molecules targeting the inflammation-related receptor CXCR4 and successfully prepared them according to the AI-proposed synthetic routes. Several molecules exhibited potent anti-CXCR4 and anti-inflammatory activity in subsequent in vitro and in vivo assays. The top-performing compound XVI alleviated symptoms related to inflammatory bowel disease and showed reasonable pharmacokinetic properties.
Collapse
Affiliation(s)
- Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Liuxin Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jing Jiang
- SanOmics AI Co. Ltd., Hangzhou 311103, PR China
| | - Jiapeng Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Shengbin Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhen Li
- SanOmics AI Co. Ltd., Hangzhou 311103, PR China
| | - Jiahui Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Bin Ju
- SanOmics AI Co. Ltd., Hangzhou 311103, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| |
Collapse
|
3
|
Bai R, Jiang X, Hui Z, Yoon Y, Ge J, longZhu J, Shim H. Bisamide CXCR4 Modulators: Novel Anti‐IBD Agents Acting on the Chemotaxis of Inflammatory Cells. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Renren Bai
- School of Pharmacy Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Hangzhou Normal University Hangzhou 311121 P.R. China
| | - Zi Hui
- School of Pharmacy Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Younghyoun Yoon
- Department of Radiation Oncology, School of Medicine Emory University Atlanta GA 30322 USA
| | - Jiamin Ge
- School of Pharmacy Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Jun longZhu
- School of Pharmacy Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Hyunsuk Shim
- Department of Radiation Oncology, School of Medicine Emory University Atlanta GA 30322 USA
- Winship Cancer Institute Emory University Atlanta Georgia 30322 USA
| |
Collapse
|
4
|
Fang X, Meng Q, Zhang H, Liang B, Zhu S, Wang J, Zhang C, Huang LS, Zhang X, Schooley RT, An J, Xu Y, Huang Z. Design, synthesis, and biological characterization of a new class of symmetrical polyamine-based small molecule CXCR4 antagonists. Eur J Med Chem 2020; 200:112410. [PMID: 32492596 DOI: 10.1016/j.ejmech.2020.112410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
CXCR4, a well-studied coreceptor of human immunodeficiency virus type 1 (HIV-1) entry, recognizes its cognate ligand SDF-1α (also named CXCL12) which plays many important roles, including regulating immune cells, controlling hematopoietic stem cells, and directing cancer cells migration. These pleiotropic roles make CXCR4 an attractive target to mitigate human disorders. Here a new class of symmetrical polyamines was designed and synthesized as potential small molecule CXCR4 antagonists. Among them, a representative compound 21 (namely HF50731) showed strong CXCR4 binding affinity (mean IC50 = 19.8 nM) in the CXCR4 competitive binding assay. Furthermore, compound 21 significantly inhibited SDF-1α-induced calcium mobilization and cell migration, and blocked HIV-1 infection via antagonizing CXCR4 coreceptor function. The structure-activity relationship analysis, site-directed mutagenesis, and molecular docking were conducted to further elucidate the binding mode of compound 21, suggesting that compound 21 could primarily occupy the minor subpocket of CXCR4 and partially bind in the major subpocket by interacting with residues W94, D97, D171, and E288. Our studies provide not only new insights for the fragment-based design of small molecule CXCR4 antagonists for clinical applications, but also a new and effective molecular probe for CXCR4-targeting biological studies.
Collapse
Affiliation(s)
- Xiong Fang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qian Meng
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huijun Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Boqiang Liang
- Nobel Institute of Biomedicine, Zhuhai, 519080, China
| | - Siyu Zhu
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Juan Wang
- Nobel Institute of Biomedicine, Zhuhai, 519080, China
| | - Chaozai Zhang
- Department of Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Lina S Huang
- Department of Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Xingquan Zhang
- Department of Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Robert T Schooley
- Department of Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Jing An
- Department of Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Yan Xu
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China.
| | - Ziwei Huang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Bruns D, Gawehn E, Kumar KS, Schneider P, Baumgartner M, Schneider G. Identification of Synthetic Activators of Cancer Cell Migration by Hybrid Deep Learning. Chembiochem 2020; 21:500-507. [PMID: 31418992 DOI: 10.1002/cbic.201900346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/07/2019] [Indexed: 12/22/2022]
Abstract
Deep convolutional neural networks (CNNs) are a method of choice for image recognition. Herein a hybrid CNN approach is presented for molecular pattern recognition in drug discovery. Using self-organizing map images of molecular pharmacophores as input, CNN models were trained to identify chemokine receptor CXCR4 modulators with high accuracy. This machine learning classifier identified first-in-class synthetic CXCR4 full agonists. The receptor-activating effects were confirmed by intracellular cAMP response and in a phenotypic spheroid invasion assay of medulloblastoma cell invasion. Additional macromolecular targets of the small molecules were predicted in silico and tested in vitro, revealing modulatory effects on dopamine receptors and CCR1. These results positively advocate the applicability of molecular image recognition by CNNs to ligand-based virtual compound screening, and demonstrate the complementarity of machine intelligence and human expert knowledge.
Collapse
Affiliation(s)
- Dominique Bruns
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, RETHINK, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Erik Gawehn
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, RETHINK, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Karthiga Santhana Kumar
- Paediatric Neuro-Oncology Research Group, Department of Oncology, Children's Research Center, University Children's Hospital Zürich, Lengghalde 5, 8008, Zürich, Switzerland
| | - Petra Schneider
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, RETHINK, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Martin Baumgartner
- Paediatric Neuro-Oncology Research Group, Department of Oncology, Children's Research Center, University Children's Hospital Zürich, Lengghalde 5, 8008, Zürich, Switzerland
| | - Gisbert Schneider
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, RETHINK, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
6
|
Gaines T, Garcia F, Virani S, Liang Z, Yoon Y, Oum YH, Shim H, Mooring SR. Synthesis and evaluation of 2,5-furan, 2,5-thiophene and 3,4-thiophene-based derivatives as CXCR4 inhibitors. Eur J Med Chem 2019; 181:111562. [PMID: 31377592 DOI: 10.1016/j.ejmech.2019.111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
Abstract
The interaction between G-Protein coupled receptor CXCR4 and its natural ligand CXCL12 has been linked to inflammation experienced by patients with Irritable Bowel Disease (IBD). Blocking this interaction could potentially reduce inflammatory symptoms in IBD patients. In this work, several thiophene-based and furan-based compounds modeled after AMD3100 and WZ811-two known antagonists that interrupt the CXCR4-CXCL12 interaction-were synthesized and analyzed. Fifteen hit compounds were identified; these compounds exhibited effective concentrations (EC) lower than 1000 nM (AMD3100) and inhibited invasion of metastatic cells by at least 45%. Selected compounds (2d, 2j, 8a) that inhibited metastatic invasion at a higher rate than WZ811 (62%) were submitted for a carrageenan inflammation test, where both 8a and 2j reduced inflammation in the same range as WZ811 (40%) but did not reduce inflammation more than 40%. Select compounds were also modeled in silico to show key residue interactions. These preliminary results with furan-based and thiophene-based analogues contribute to the new class on heterocyclic aromatic-based CXCR4 antagonists.
Collapse
Affiliation(s)
- Theresa Gaines
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Francisco Garcia
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Saniya Virani
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Zhongxing Liang
- Department of Radiology and Imaging Science, Emory University School of Medicine, Atlanta, GA, 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Younghyoun Yoon
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Yoon Hyeun Oum
- Department of Radiology and Imaging Science, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hyunsuk Shim
- Department of Radiology and Imaging Science, Emory University School of Medicine, Atlanta, GA, 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | | |
Collapse
|
7
|
Guo Z, Jie X, Zhu P, Sun J, Gu J, Su F, Bai R, Xie Y. Fragmentation pathways of deprotonated amide-sulfonamide CXCR4 inhibitors investigated by ESI-IT-MS n , ESI-Q-TOF-MS/MS and DFT calculations. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:869-877. [PMID: 31749257 DOI: 10.1002/jms.4439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Amide-sulfonamides provide a potent anti-inflammatory scaffold targeting the CXCR4 receptor. A series of novel amide-sulfonamide derivatives were investigated for their gas-phase fragmentation behaviors using electrospray ionization ion trap mass spectrometry and quadrupole time-of-flight mass spectrometry in negative ion mode. Upon collision-induced dissociation (CID), deprotonated amide-sulfonamides mainly underwent either an elimination of the amine to form the sulfonyl anion and amide anion or a benzoylamide derivative to provide sulfonamide anion bearing respective substituent groups. Based on the characteristic fragment ions and the deuterium-hydrogen exchange experiments, three possible fragmentation mechanisms corresponding to ion-neutral complexes including [sulfonyl anion/amine] complex (INC-1), [sulfonamide anion/benzoylamide derivative] complex (INC-2) and [amide anion/sulfonamide] complex (INC-3), respectively, were proposed. These three ion-neutral complexes might be produced by the cleavages of S-N and C-N bond from the amide-sulfonamides, which generated the sulfonyl anion (Route 1), sulfonamide anion (Route 2) and the amide anion (Route 3). DFT calculations suggested that Route 1, which generated the sulfonyl anion (ion c) is more favorable. In addition, the elimination of SO2 through a three-membered-ring transition state followed by the formation of C-N was observed for all the amide-sulfonamides.
Collapse
Affiliation(s)
- Zili Guo
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Xiaokang Jie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peixi Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jian Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jinping Gu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Feng Su
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
8
|
Wu R, Yu W, Yao C, Liang Z, Yoon Y, Xie Y, Shim H, Bai R. Amide-sulfamide modulators as effective anti-tumor metastatic agents targeting CXCR4/CXCL12 axis. Eur J Med Chem 2019; 185:111823. [PMID: 31698158 DOI: 10.1016/j.ejmech.2019.111823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second common cause of death in women worldwide. High mortality in breast cancer is frequently associated with metastatic progression rather than the primary tumor itself. It has been recently identified that the CXCR4/CXCL12 axis plays a pivotal role in breast cancer metastasis, especially in directing metastatic cancer cells to CXCL12-riched organs and tissues. Herein, taking the amide-sulfamide as the lead structure, the second-round structural modifications to the sulfamide structure were performed to obtain more active CXCR4 modulators against tumor metastasis. Both in vivo and in vitro experiments illustrated that compound IIIe possessed potent CXCR4 binding affinity, excellent anti-metastatic and anti-angiogenetic activity against breast cancer. More importantly, in a mouse breast cancer lung metastasis model, compound IIIe exerted a significant inhibitory effect on breast cancer metastasis. Taken together, all these positive results demonstrated that developing of CXCR4 modulators is a promising strategy to mediate breast cancer metastasis.
Collapse
Affiliation(s)
- Rui Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Wenyan Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Chuansheng Yao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhongxing Liang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Younghyoun Yoon
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
9
|
Development of CXCR4 modulators based on the lead compound RB-108. Eur J Med Chem 2019; 173:32-43. [PMID: 30981691 DOI: 10.1016/j.ejmech.2019.03.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/28/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022]
Abstract
The CXCR4/CXCL12 axis plays prominent roles in tumor metastasis and inflammation. CXCR4 has been shown to be involved in a variety of inflammation-related diseases. Therefore, CXCR4 is a promising potential target to develop novel anti-inflammatory agents. Taking our previously discovered CXCR4 modulator RB-108 as the lead compound, a series of derivatives were synthesized structurally modifying and optimizing the amide and sulfamide side chains. The derivatives successfully maintained potent CXCR4 binding affinity. Furthermore, compounds IIb, IIc, IIIg, IIIj, and IIIm were all efficacious in inhibiting the invasion of CXCR4-positive cells, displaying a much more potent effect than the lead compound RB-108. Notably, compound IIIm significantly decreased carrageenan-induced swollen volume and paw thickness in a mouse paw edema model. More importantly, IIIm exhibited satisfying PK profiles with a half-life of 4.77 h in an SD rat model. In summary, we have developed compound IIIm as a new candidate for further investigation based on the lead compound RB-108.
Collapse
|
10
|
Abstract
The CXCR4/CXCL12 chemokine axis can chemotactically accumulate inflammatory cells to local tissues and regulate the release of inflammatory factors. Developing novel CXCR4 modulators may provide a desirable strategy to control the development of inflammation. A series of novel hybrids were designed by integrating the key pharmacophores of three CXCR4 modulators. The majority of compounds displayed potent CXCR4 binding affinity. Compound 7a exhibited 1000-fold greater affinity than AMD3100 and significantly inhibited invasion of CXCR4-positive tumor cells. Additionally, compound 7a blocked mice ear inflammation by 67% and suppressed the accumulation of inflammatory cells in an in vivo mouse ear edema evaluation. Western blot analyses revealed that 7a inhibited the CXCR4/CXCL12-mediated phosphorylation of Akt and p44 in a dose-dependent manner. Moreover, compound 7a had no observable cytotoxicity and displayed a favorable plasma stability in our preliminary pharmacokinetic study. These results confirmed that this is a feasible method to develop CXCR4 modulators for the regulation and reduction of inflammation.
Collapse
|
11
|
Peng D, Cao B, Zhou YJ, Long YQ. The chemical diversity and structure-based evolution of non-peptide CXCR4 antagonists with diverse therapeutic potential. Eur J Med Chem 2018; 149:148-169. [PMID: 29500940 DOI: 10.1016/j.ejmech.2018.02.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
The CXC chemokine receptor 4 (CXCR4) is a highly reserved G-protein coupled 7-transmembrane (TM) chemokine receptor which consists of 352 amino acids. CXCR4 has only one endogenous chemokine ligand of CXCL12, besides several other natural nonchemokine ligands such as extracellular ubiquitin and noncognate ligand of MIF. CXCR4 strongly binds to CXCL12 and the resulting CXCLl2/CXCR4 axis is the molecular basis of their various biological functions, which include: (1) mediating immune and inflammatory response; (2) regulation of hematopoietic stem cell migration and homing; (3) an essential co-receptor for HIV entry into host cells; (4) participation in the process of embryonic development; (5) malignant tumor invasion and metastasis; (6) myocardial infarction, ischemic stroke and acute kidney injury. Correspondingly, CXCR4 antagonists find potential therapeutic applications in HIV infection, as well as hematopoietic stem cell migration, inflammation, immune-related diseases, tumor and ischemic diseases. Recently, great achievements have been made and a number of non-peptide CXCR4 antagonists with diversity scaffolds have been discovered. In this review, the discovery of small molecule CXCR4 antagonists focused on the structures, activities, evolution and development of representative CXCR4 antagonists is comprehensively described. The central role of CXCR4 in diverse cellular signaling pathways and its involvement in several diseases progressions are discussed as well.
Collapse
Affiliation(s)
- Dian Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Bin Cao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying-Jun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Ya-Qiu Long
- College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou 215123, China.
| |
Collapse
|
12
|
Wu CH, Song JS, Kuan HH, Wu SH, Chou MC, Jan JJ, Tsou LK, Ke YY, Chen CT, Yeh KC, Wang SY, Yeh TK, Tseng CT, Huang CL, Wu MH, Kuo PC, Lee CJ, Shia KS. Development of Stem-Cell-Mobilizing Agents Targeting CXCR4 Receptor for Peripheral Blood Stem Cell Transplantation and Beyond. J Med Chem 2018; 61:818-833. [PMID: 29314840 DOI: 10.1021/acs.jmedchem.7b01322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The function of the CXCR4/CXCL12 axis accounts for many disease indications, including tissue/nerve regeneration, cancer metastasis, and inflammation. Blocking CXCR4 signaling with its antagonists may lead to moving out CXCR4+ cell types from bone marrow to peripheral circulation. We have discovered a novel series of pyrimidine-based CXCR4 antagonists, a representative (i.e., 16) of which was tolerated at a higher dose and showed better HSC-mobilizing ability at the maximal response dose relative to the approved drug 1 (AMD3100), and thus considered a potential drug candidate for PBSCT indication. Docking compound 16 into the X-ray crystal structure of CXCR4 receptor revealed that it adopted a spider-like conformation striding over both major and minor subpockets. This putative binding mode provides a new insight into CXCR4 receptor-ligand interactions for further structural modifications.
Collapse
Affiliation(s)
- Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Hsuan-Hao Kuan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Ming-Chen Chou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Jiing-Jyh Jan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Lun K Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Kai-Chia Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Sing-Yi Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Chen-Tso Tseng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Po-Chu Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Chia-Jui Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| |
Collapse
|
13
|
Panozzo-Zénere EA, Porta EOJ, Arrizabalaga G, Fargnoli L, Khan SI, Tekwani BL, Labadie GR. A minimalistic approach to develop new anti-apicomplexa polyamines analogs. Eur J Med Chem 2018; 143:866-880. [PMID: 29223887 PMCID: PMC6209510 DOI: 10.1016/j.ejmech.2017.11.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 01/08/2023]
Abstract
The development of new chemical entities against the major diseases caused by parasites is highly desired. A library of thirty diamines analogs following a minimalist approach and supported by chemoinformatics tools have been prepared and evaluated against apicomplexan parasites. Different member of the series of N,N'-disubstituted aliphatic diamines shown in vitro activities at submicromolar concentrations and high levels of selectivity against Toxoplasma gondii and in chloroquine-sensitive and resistant-strains of Plasmodium falciparum. In order to demonstrate the importance of the secondary amines, ten N,N,N',N'-tetrasubstituted aliphatic diamines derivatives were synthesized being considerably less active than their disubstituted counterpart. Theoretical studies were performed to establish the electronic factors that govern the activity of the compounds.
Collapse
Affiliation(s)
- Esteban A Panozzo-Zénere
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Exequiel O J Porta
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Gustavo Arrizabalaga
- Departments of Microbiology and Immunology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Lucía Fargnoli
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Shabana I Khan
- National Center for Natural Products Research & Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Babu L Tekwani
- National Center for Natural Products Research & Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Guillermo R Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
14
|
GPCR Modulation of Thieno[2,3-b]pyridine Anti-Proliferative Agents. Molecules 2017; 22:molecules22122254. [PMID: 29258235 PMCID: PMC6149898 DOI: 10.3390/molecules22122254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/26/2022] Open
Abstract
A panel of docking scaffolds was developed for the known molecular targets of the anticancer agents, thieno[2,3-b]pyridines, in order to glean insight into their mechanism of action. The reported targets are the copper-trafficking antioxidant 1 protein, tyrosyl DNA phosphodiesterase 1, the colchicine binding site in tubulin, adenosine A2A receptor, and, finally, phospholipase C-δ1. According to the panel, the A2A receptor showed the strongest binding, inferring it to be the most plausible target, closely followed by tubulin. To investigate whether the thieno[2,3-b]pyridines modulate G protein-coupled receptors (GPCRs) other than A2A, a screen against 168 GPCRs was conducted. According to the results, ligand 1 modulates five receptors in the low µM region, four as an antagonist; CRL-RAMP3 (IC50—11.9 µM), NPSR1B (IC50—1.0 µM), PRLHR (IC50—9.3 µM), and CXCR4 (IC50—6.9 µM). Finally, one agonist, GPRR35, was found (EC50 of 7.5 µM). Molecular modelling showed good binding to all of the receptors investigated; however, none of these surpass the A2A receptor. Furthermore, the newly-identified receptors are relatively modestly expressed in the cancer cell lines most affected by the thieno[2,3-b]pyridines, making them less likely to be the main targets of the mechanism of action for this compound class. Nevertheless, new modulators against GPCRs are of an interest as potential hits for further drug development.
Collapse
|
15
|
Grande F, Giancotti G, Ioele G, Occhiuzzi MA, Garofalo A. An update on small molecules targeting CXCR4 as starting points for the development of anti-cancer therapeutics. Eur J Med Chem 2017; 139:519-530. [PMID: 28826086 DOI: 10.1016/j.ejmech.2017.08.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022]
Abstract
CXCR4 (C-X-C Chemokine Receptor type 4) and its natural ligand SDF-1α (Stromal-Derived-Factor-1α) are involved in a number of physiological and pathological processes including cancer spread and progression. Over the past few years, numerous CXCR4 antagonists have been identified and currently are in different development stages as potential agents for the treatment of several diseases involving the CXCR4/SDF-1α axis. Herein, we focus on small molecules reported in literature between 2013 and 2017, claimed as CXCR4 antagonists and potentially useful in the treatment of cancer and other diseases where this receptor is involved. Most of the compounds resulted from a chemical optimization of previously identified molecules and some of them could represent suitable candidates for the development of advanced anticancer agents.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Gilda Giancotti
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy
| | - Maria A Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy
| |
Collapse
|
16
|
Bai R, Liang Z, Yoon Y, Salgado E, Feng A, Gurbani S, Shim H. Novel anti-inflammatory agents targeting CXCR4: Design, synthesis, biological evaluation and preliminary pharmacokinetic study. Eur J Med Chem 2017; 136:360-371. [PMID: 28521261 DOI: 10.1016/j.ejmech.2017.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/25/2022]
Abstract
CXCR4 plays a crucial role in the inflammatory disease process, providing an attractive means for drug targeting. A series of novel amide-sulfamide derivatives were designed, synthesized and comprehensively evaluated. This new scaffold exhibited much more potent CXCR4 inhibitory activity, with more than 70% of the compounds showed notably better binding affinity than the reference drug AMD3100 in the binding assay. Additionally, in the Matrigel invasion assay, most of our compounds significantly blocked the tumor cell invasion, demonstrating superior efficacy compared to AMD3100. Furthermore, compound IIj blocked mice ear inflammation by 75% and attenuated ear edema and damage substantially in an in vivo model of inflammation. Western blot analyses revealed that CXCR4 modulator IIj significantly blocked CXCR4/CXCL12-mediated phosphorylation of Akt. Moreover, compound IIj had no observable cytotoxicity and displayed a favourable plasma stability in our preliminary pharmacokinetic study. The preliminary structure-activity relationships were also summarized. In short, this novel amide-sulfamide scaffold exhibited potent CXCR4 inhibitory activity both in vitro and in vivo. These results also confirmed that developing modulators targeting CXCR4 provides an exciting avenue for treatment of inflammation.
Collapse
Affiliation(s)
- Renren Bai
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Zhongxing Liang
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Younghyoun Yoon
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Eric Salgado
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Amber Feng
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Saumya Gurbani
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Hyunsuk Shim
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA; Department of Radiology and Imaging Science, School of Medicine, Emory University, Atlanta, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Gaines T, Camp D, Bai R, Liang Z, Yoon Y, Shim H, Mooring SR. Synthesis and evaluation of 2,5 and 2,6 pyridine-based CXCR4 inhibitors. Bioorg Med Chem 2016; 24:5052-5060. [DOI: 10.1016/j.bmc.2016.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022]
|