1
|
Zhu X, Li Q, Wu J, Ju Z. Discovery of Safe COX-2 Inhibitors: Achieving Reduced Colitis Side Effects through Balanced COX Inhibition. ChemMedChem 2025:e202500096. [PMID: 40012482 DOI: 10.1002/cmdc.202500096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 02/28/2025]
Abstract
The severe adverse effects associated with imbalanced cyclooxygenase-2 (COX-2) inhibition continue to pose significant challenges in the development of contemporary anti-inflammatory drugs. In recent years, the approach to COX-2 inhibitor drug development has shifted from a focus on highly selective inhibition of COX-2 to a strategy that emphasizes more moderate selectivity. The amino acid sequence and structural similarities between inducible COX-2 and constitutive cyclooxygenase-1 (COX-1) isoforms present both substantial opportunities and challenges for the design of next generation of balanced COX-2 inhibitors. As part of our ongoing research into the discovering novel and safer COX-2 inhibitors, we reported herein a highly potent and balanced COX-2 inhibitor 21 d (IC50 value=1.35 μM, selectivity profile (IC50 (COX-1)/IC50 (COX-2)=22.34)). In vivo assays demonstrated that 21 d significantly alleviated histological damage and provided robust protection against dextran sulfate sodium (DSS)-induced acute colitis.
Collapse
Affiliation(s)
- Xinlin Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qin Li
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400000, China
| | - Junhui Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhiran Ju
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Hamdi A, Tawfik SS, Ali AR, Ewes WA, Haikal A, El-Azab AS, Bakheit AH, Hefnawy MM, Ghabbour HA, Abdel-Aziz AAM. Harnessing potential COX-2 engagement for boosting anticancer activity of substituted 2-mercapto-4(3H)-quinazolinones with promising EGFR/VEGFR-2 inhibitory activities. Bioorg Chem 2024; 153:107951. [PMID: 39541892 DOI: 10.1016/j.bioorg.2024.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
We designed and synthesized new quinazolinone-tethered phenyl thiourea/thiadiazole derivatives 4-26. Based on their structural characteristics, these compounds were proposed to have a multi-target mode of action for their anticancer activities. Using the MTT assay method, antiproliferative effects were assessed against three human cancer cell lines (HEPG-2, MCF-7, and HCT-116). In vitro assessment for enzymatic inhibitory activity of the most active compounds 4, 9 and 20 was done for EGFR, VEGFR-2 and COX-2 as potential targets. The screened compounds showed low micromolar IC50 inhibitory effects against the three targets. Compound 9 demonstrated similar EGFR/VEGFR-2 inhibitory effect to the control drugs and potential inhibitory activity for COX-2 enzyme. In MCF-7 cells, the most active analog 9 caused 41.02% total apoptosis, and arrested the cell cycle at the G2/M phase. Taken as a whole, the findings of this study provide significant new understandings into the relationship between COX inhibition and cancer therapy. Furthermore, the outcomes showcased the encouraging efficacy of these compounds with a multi-target mechanism, making them excellent choices for additional research and development into possible anticancer drug.
Collapse
Affiliation(s)
- Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Samar S Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Wafaa A Ewes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Abdullah Haikal
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed M Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hazem A Ghabbour
- School of Health and Biomedical Sciences, RMIT University, Melbourne 3083, Australia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Elgohary MK, Abo-Ashour MF, Abd El Hadi SR, El Hassab MA, Abo-El Fetoh ME, Afify H, Abdel-Aziz HA, Abou-Seri SM. Novel anti-inflammatory agents featuring phenoxy acetic acid moiety as a pharmacophore for selective COX-2 inhibitors: Synthesis, biological evaluation, histopathological examination and molecular modeling investigation. Bioorg Chem 2024; 152:107727. [PMID: 39167872 DOI: 10.1016/j.bioorg.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Inflammation management presents a critical challenge in modern medicine, with nonsteroidal anti-inflammatory drugs (NSAIDs) being a widely used therapeutic option. However, their efficacy is often accompanied by significant gastrointestinal adverse effects, necessitating the exploration of safer alternatives, particularly through the investigation of cyclooxygenase-2 (COX-2) inhibitors. This study endeavors to address this imperative through the synthesis and evaluation of pyrazoline-phenoxyacetic acid derivatives. Among the synthesized compounds, 6a and 6c emerged as promising candidates, demonstrating potent COX-2 inhibition with IC50 values of 0.03 µM for both and selectivity index = 365.4 and 196.9, respectively. Furthermore, these compounds exhibited efficacy in mitigating formalin-induced edema in male Wistar rats, accompanied by favorable safety profiles upon histological examination of vital organs. Comprehensive safety assessments, including evaluation of creatinine, AST, and ALT enzymatic as well as troponin T and creatine kinase-MB levels, further reinforce the promising attributes of the synthetic candidates. Molecular docking studies endorsed by molecular dynamic simulations corroborate the biological findings, elucidating significant protein-ligand interactions at COX-2 active sites indicative of therapeutic potential.
Collapse
Affiliation(s)
- Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Mahmoud F Abo-Ashour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, El Saleheya El Gadida University, Egypt
| | - Soha R Abd El Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt.
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Mohammed E Abo-El Fetoh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hassan Afify
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| | - Sahar M Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt.
| |
Collapse
|
4
|
Sheta YS, Sarg MT, Abdulrahman FG, Nossier ES, Husseiny EM. Novel imidazolone derivatives as potential dual inhibitors of checkpoint kinases 1 and 2: Design, synthesis, cytotoxicity evaluation, and mechanistic insights. Bioorg Chem 2024; 149:107471. [PMID: 38823311 DOI: 10.1016/j.bioorg.2024.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Applying various drug design strategies including ring variation, substituents variation, and ring fusion, two series of 2-(alkylthio)-5-(arylidene/heteroarylidene)imidazolones and imidazo[1,2-a]thieno[2,3-d]pyrimidines were designed and prepared as dual potential Chk1 and Chk2 inhibitors. The newly synthesized hybrids were screened in NCI 60 cell line panel where the most active derivatives 4b, d-f, and 6a were further estimated for their five dose antiproliferative activity against the most sensitive tumor cells including breast MCF-7 and MDA-MB-468 and non-small cell lung cancer EKVX as well as normal WI-38 cell. Noticeably, increasing the carbon chain attached to thiol moiety at C-2 of imidazolone scaffold elevated the cytotoxic activity. Hence, compounds 4e and 4f, containing S-butyl fragment, exhibited the most antiproliferative activity against the tested cells where 4f showed extremely potent selectivity toward them. As well, compound 6a, containing imidazothienopyrimidine core, exerted significant cytotoxic activity and selectivity toward the examined cells. The mechanistic investigation of the most active cytotoxic analogs was achieved through the evaluation of their inhibitory activity against Chk1 and Chk2. Results revealed that 4f displayed potent dual inhibition of both Chk1 and Chk2 with IC50 equal 0.137 and 0.25 μM, respectively. It also promoted its antiproliferative and Chk suppression activity via EKVX cell cycle arrest at S phase through stimulating the apoptotic approach. The apoptosis induction was also emphasized by elevating the expression of Caspase-3 and Bax, that are accompanied by Bcl-2 diminution. The in silico molecular docking and ADMET profiles of the most active analogs have been carried out to evaluate their potential as significant anticancer drug candidates.
Collapse
Affiliation(s)
- Yasmin S Sheta
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Marwa T Sarg
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Fatma G Abdulrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt; The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo 11516, Egypt
| | - Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt.
| |
Collapse
|
5
|
Xiao D, Wang Y, Gao C, Zhang X, Feng W, Lu X, Feng B. A New Quinazolinone Alkaloid along with Known Compounds with Seed-Germination-Promoting Activity from Rhodiola tibetica Endophytic Fungus Penicillium sp. HJT-A-6. Molecules 2024; 29:2112. [PMID: 38731603 PMCID: PMC11085523 DOI: 10.3390/molecules29092112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
A new quinazolinone alkaloid named peniquinazolinone A (1), as well as eleven known compounds, 2-(2-hydroxy-3-phenylpropionamido)-N-methylbenzamide (2), viridicatin (3), viridicatol (4), (±)-cyclopeptin (5a/5b), dehydrocyclopeptin (6), cyclopenin (7), cyclopenol (8), methyl-indole-3-carboxylate (9), 2,5-dihydroxyphenyl acetate (10), methyl m-hydroxyphenylacetate (11), and conidiogenone B (12), were isolated from the endophytic Penicillium sp. HJT-A-6. The chemical structures of all the compounds were elucidated by comprehensive spectroscopic analysis, including 1D and 2D NMR and HRESIMS. The absolute configuration at C-13 of peniquinazolinone A (1) was established by applying the modified Mosher's method. Compounds 2, 3, and 7 exhibited an optimal promoting effect on the seed germination of Rhodiola tibetica at a concentration of 0.01 mg/mL, while the optimal concentration for compounds 4 and 9 to promote Rhodiola tibetica seed germination was 0.001 mg/mL. Compound 12 showed optimal seed-germination-promoting activity at a concentration of 0.1 mg/mL. Compared with the positive drug 6-benzyladenine (6-BA), compounds 2, 3, 4, 7, 9, and 12 could extend the seed germination period of Rhodiola tibetica up to the 11th day.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuan Lu
- College of Life and Health, Dalian University, Dalian 116622, China; (D.X.); (Y.W.); (C.G.); (X.Z.); (W.F.)
| | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (D.X.); (Y.W.); (C.G.); (X.Z.); (W.F.)
| |
Collapse
|
6
|
Huang S, Jin L, Liu Y, Yang G, Wang A, Le Z, Jiang G, Xie Z. Visible light-mediated synthesis of quinazolinones from benzyl bromides and 2-aminobenzamides without using any photocatalyst or additive. Org Biomol Chem 2024; 22:784-789. [PMID: 38168690 DOI: 10.1039/d3ob01491f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This paper reports a novel method for the visible-light-mediated synthesis of quinazolinones from the reaction of benzyl bromides with 2-aminobenzamides. The reaction proceeded efficiently at room temperature upon irradiation with an 18 W blue light-emitting diode in air without photocatalysts or additives. By varying the solvent type, substrate molar ratio, and reaction time, the optimal reaction conditions, including the use of methanol solvent, room temperature, and reaction time of 28 h, were identified. Under these conditions, various quinazolinones were obtained using 18 substrates, with the highest yield of 93%. To determine the industrial value of the proposed method, a scale-up reaction was performed and 80% product yield was achieved. Mechanistic studies revealed that the reaction likely proceeded via a radical pathway and that the hydrogen bromide by-product generated during the first step of the reaction of benzyl bromide with 2-aminobenzamide promoted the subsequent step.
Collapse
Affiliation(s)
- Sheng Huang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Liang Jin
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Yufeng Liu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Guoping Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Aixin Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Guofang Jiang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|
7
|
El-Azab AS, A.-M. Abdel-Aziz A, Bua S, Nocentini A, Bakheit AH, Alkahtani HM, Hefnawy MM, Supuran CT. Design, synthesis, and carbonic anhydrase inhibition activities of Schiff bases incorporating benzenesulfonamide scaffold: Molecular docking application. Saudi Pharm J 2023; 31:101866. [PMID: 38033749 PMCID: PMC10682911 DOI: 10.1016/j.jsps.2023.101866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
In this study, The inhibitory actions of human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII are being examined using recently synthesized substituted hydroxyl Schiff derivatives based on the quinazoline scaffold 4-22. Quinazolines 2, 3, 4, 5, 7, 10, 15, and 18 reduce the activity of hCA I isoform effectively to a Ki of 87.6-692.3 nM, which is nearly equivalent to or more potent than that of the standard drug AAZ (Ki, 250.0 nM). Similarly, quinazolines 2, 3, and 5 and quinazoline 14 effectively decrease the inhibitory activity of the hCA II isoform to a KI of 16.9-29.7 nM, comparable to that of AAZ (Ki, 12.0 nM). The hCA IX isoform activity is substantially diminished by quinazolines 2-12 and 14-21 (Ki, 8.9-88.3 nM against AAZ (Ki, 25.0 nM). Further, the activity of the hCA XII isoform is markedly inhibited by the quinazolines 3, 5, 7, 14, and 16 (Ki, 5.4-19.5 nM). Significant selectivity levels are demonstrated for inhibiting tumour-associated isoforms hCA IX over hCAI, for sulfonamide derivatives 6-15 (SI; 10.68-186.29), and 17-22 (SI; 12.52-57.65) compared to AAZ (SI; 10.0). Sulfonamide derivatives 4-22 (SI; 0.50-20.77) demonstrated a unique selectivity in the concurrent inhibition of hCA IX over hCA II compared to AAZ (SI; 0.48). Simultaneously, benzenesulfonamide derivative 14 revealed excellent selectivity for inhibiting hCA XII over hCA I (SI; 60.35), whereas compounds 5-8, 12-14, 16, and 18-22 demonstrated remarkable selectivity for hCA XII inhibitory activity over hCA II (SI; 2.09-7.27) compared to AAZ (SI; 43.86 and 2.10, respectively). Molecular docking studies additionally support 8 to hCA IX and XII binding, thus indicating its potential as a lead compound for inhibitor development.
Collapse
Affiliation(s)
- Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Silvia Bua
- Department of Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Department of Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed M. Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Claudiu T. Supuran
- Department of Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
8
|
Lv L, Maimaitiming M, Huang Y, Yang J, Chen S, Sun Y, Zhang X, Li X, Xue C, Wang P, Wang CY, Liu Z. Discovery of quinazolin-4(3H)-one derivatives as novel AChE inhibitors with anti-inflammatory activities. Eur J Med Chem 2023; 254:115346. [PMID: 37043994 DOI: 10.1016/j.ejmech.2023.115346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
A series of quinazolin-4(3H)-one derivatives was designed through scaffold-hopping strategy and synthesized as novel multifunctional anti-AD agents demonstrating both cholinesterase inhibition and anti-inflammatory activities. Their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were evaluated, and the enzyme kinetics study as well as detailed binding mode via molecular docking were performed for selected compounds. MR2938 (B12) displayed promising AChE inhibitory activity with an IC50 value of 5.04 μM and suppressed NO production obviously (IC50 = 3.29 μM). Besides, it was able to decrease the mRNA levels of pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and CCL2 at 1.25 μM. Further mechanism study suggested that MR2938 suppressed the neuroinflammation through blocking MAPK/JNK and NF-κB signaling pathways. All these results indicate that MR2938 is a good starting point to develop multifunctional anti-AD lead compounds.
Collapse
|
9
|
Men Y, Li Z, Wang H, Liu Y, Liu X, Chen B. Synthesis and antiproliferative evaluation of novel 1,3,4-thiadiazole-S-alkyl derivatives based on quinazolinone. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2176500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Yanle Men
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Zijian Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Hongying Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Yuming Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Baoquan Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
10
|
Synthesis, antiproliferative and enzymatic inhibition activities of quinazolines incorporating benzenesulfonamide: cell cycle analysis and molecular modeling study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Alkahtani HM, Zen AA, Obaidullah AJ, Alanazi MM, Almehizia AA, Ansari SA, Aleanizy FS, Alqahtani FY, Aldossari RM, Algamdi RA, Al-Rasheed LS, Abdel-Hamided SG, Abdel-Aziz AAM, El-Azab AS. Synthesis, Cytotoxic Evaluation, and Structure-Activity Relationship of Substituted Quinazolinones as Cyclin-Dependent Kinase 9 Inhibitors. Molecules 2022; 28:120. [PMID: 36615314 PMCID: PMC9822073 DOI: 10.3390/molecules28010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcriptional elongation, through which short-lived antiapoptotic proteins are overexpressed and make cancer cells resistant to apoptosis. Therefore, CDK9 inhibition depletes antiapoptotic proteins, which in turn leads to the reinstatement of apoptosis in cancer cells. Twenty-seven compounds were synthesized, and their CDK9 inhibitory and cytotoxic activities were evaluated. Compounds 7, 9, and 25 were the most potent CDK9 inhibitors, with IC50 values of 0.115, 0.131, and 0.142 μM, respectively. The binding modes of these molecules were studied via molecular docking, which shows that they occupy the adenosine triphosphate binding site of CDK9. Of these three molecules, compound 25 shows good drug-like properties, as it does not violate Lipinski's rule of five. In addition, this molecule shows promising ligand and lipophilic efficiency values and is an ideal candidate for further optimization.
Collapse
Affiliation(s)
- Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Amer Alhaj Zen
- Chemistry & Forensics Department, Clifton Campus, Nottingham Trent University, Nottingham Ng11 8NS, UK
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Fulwah Yahya Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rana M. Aldossari
- Department of Pharmacology & Toxicology, College of Pharmacy, 11 Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Raghad Abdullah Algamdi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Lamees S. Al-Rasheed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sami G. Abdel-Hamided
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Emami L, Khabnadideh S, Faghih Z, Farahvasi F, Zonobi F, Gheshlaghi SZ, Daili S, Ebrahimi A, Faghih Z. Synthesis, biological evaluation, and computational studies of some novel quinazoline derivatives as anticancer agents. BMC Chem 2022; 16:100. [PMID: 36419100 PMCID: PMC9682696 DOI: 10.1186/s13065-022-00893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
A series of quinazolinone derivatives (7a-7h) were synthesized as antiproliferative agents. All compounds, were synthesized through three steps method and structurally evaluated by FTIR, 1H-NMR, 13CNMR and Mass spectroscopy. Their cytotoxic activities were assessed using MTT protocol against three humans cancerous (MCF-7, A549 and 5637) and normal (MRC-5) cell lines. In addition, molecular docking and simulation studies of the synthesized compounds were performed to assessment their orientation, interaction mode against EGFR as plausible mechanism of quinazoline compounds as anticancer agents. The synthesized compounds mostly showed moderate activity against the three studied cell lines. They also indicated an appropriate selectivity against tumorigenic and non-tumorigenic cell line. The molecular docking results also confirmed biological activity. Most of the compounds fulfilled Lipinski rule. Collectively, these compounds with further modification can be considered as potent antiproliferative agents.
Collapse
Affiliation(s)
- Leila Emami
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Soghra Khabnadideh
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran ,grid.412571.40000 0000 8819 4698Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Zahra Faghih
- grid.412571.40000 0000 8819 4698Shiraz Institute for Cancer Research, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Farahvasi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran ,grid.412571.40000 0000 8819 4698Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Fatemeh Zonobi
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran ,grid.412571.40000 0000 8819 4698Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Saman Zare Gheshlaghi
- grid.412796.f0000 0004 0612 766XDepartment of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Shadi Daili
- grid.17063.330000 0001 2157 2938Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4 Canada
| | - Ali Ebrahimi
- grid.412796.f0000 0004 0612 766XDepartment of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Zeinab Faghih
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| |
Collapse
|
13
|
El-Azab AS, Abdel-Aziz AAM, Ghabbour HA, Bua S, Nocentini A, Alkahtani HM, Alsaif NA, Al-Agamy MHM, Supuran CT. Carbonic Anhydrase Inhibition Activities of Schiff's Bases Based on Quinazoline-Linked Benzenesulfonamide. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227703. [PMID: 36431826 PMCID: PMC9697198 DOI: 10.3390/molecules27227703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
Human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII were investigated for their inhibitory activity with a series of new Schiff's bases based on quinazoline scaffold 4-27. The hCA I isoform was efficiently inhibited by Schiff's bases 4-6, 10-19, 22-27 and had an inhibition constant (Ki) value of 52.8-991.7 nM compared with AAZ (Ki, 250 nM). Amongst the quinazoline derivatives, the compounds 2, 3, 4, 10, 11, 16, 18, 24, 26, and 27 were proven to be effective hCA II inhibitors, with Ki values of 10.8-52.6 nM, measuring up to AAZ (Ki, 12 nM). Compounds 2-27 revealed compelling hCA IX inhibitory interest with Ki values of 10.5-99.6 nM, rivaling AAZ (Ki, 25.0 nM). Quinazoline derivatives 3, 10, 11, 13, 15-19, and 24 possessed potent hCA XII inhibitory activities with KI values of 5.4-25.5 nM vs. 5.7 nM of AAZ. Schiff's bases 7, 8, 9, and 21 represented attractive antitumor hCA IX carbonic anhydrase inhibitors (CAIs) with KI rates (22.0, 34.8, 49.2, and 45.3 nM, respectively). Compounds 5, 7, 8, 9, 14, 18, 19, and 21 showed hCA I inhibitors on hCA IX with a selectivity index of 22.46-107, while derivatives 12, 14, and 18 showed selective hCA I inhibitors on hCA XII with a selectivity profile of 45.04-58.58, in contrast to AAZ (SI, 10.0 and 43.86). Compounds 2, 5, 7-14, 19-23, and 25 showed a selectivity profile for hCA II inhibitors over hCA IX with a selectivity index of 2.02-19.67, whereas derivatives 5, 7, 8, 13, 14, 15, 17, 20, 21, and 22 showed selective hCA II inhibitors on hCA XII with a selectivity profile of 4.84-26.60 balanced to AAZ (SI, 0.48 and 2.10).
Collapse
Affiliation(s)
- Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.S.E.-A.); (C.T.S.)
| | - Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hazem A. Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Silvia Bua
- Department of Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Department of Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed H. M. Al-Agamy
- Department of Pharmaceutics and Microbiology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Claudiu T. Supuran
- Department of Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
- Correspondence: (A.S.E.-A.); (C.T.S.)
| |
Collapse
|
14
|
Sanad DG, Youssef ASA, El-Mariah FA, Hashem HE. Synthesis, Molecular Docking Study, and ADMET Properties of New Antimicrobial Quinazolinone and Fused Quinazoline Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2061529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dina G. Sanad
- Department of Chemistry, Faculty of Women, Ain Shams University, Cairo, Egypt
| | - Ahmed S. A. Youssef
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fatma A. El-Mariah
- Department of Chemistry, Faculty of Women, Ain Shams University, Cairo, Egypt
| | - Heba E. Hashem
- Department of Chemistry, Faculty of Women, Ain Shams University, Cairo, Egypt
| |
Collapse
|
15
|
Sevik Kilicaslan O, Cretton S, Quirós-Guerrero L, Bella MA, Kaiser M, Mäser P, Ndongo JT, Cuendet M. Isolation and Structural Elucidation of Compounds from Pleiocarpa bicarpellata and Their In Vitro Antiprotozoal Activity. Molecules 2022; 27:2200. [PMID: 35408605 PMCID: PMC9000413 DOI: 10.3390/molecules27072200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/07/2022] Open
Abstract
Species of the genus Pleiocarpa are used in traditional medicine against fever and malaria. The present study focuses on the isolation and identification of bioactive compounds from P. bicarpellata extracts, and the evaluation of their antiprotozoal activity. Fractionation and isolation combined to LC-HRMS/MS-based dereplication provided 16 compounds: seven indole alkaloids, four indoline alkaloids, two secoiridoid glycosides, two iridoid glycosides, and one phenolic glucoside. One of the quaternary indole alkaloids (7) and one indoline alkaloid (15) have never been reported before. Their structures were elucidated by analysis of spectroscopic data, including 1D and 2D NMR experiments, UV, IR, and HRESIMS data. The absolute configurations were determined by comparison of the experimental and calculated ECD data. The extracts and isolated compounds were evaluated for their antiprotozoal activity towards Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum, as well as for their cytotoxicity against rat skeletal myoblast L6 cells. The dichloromethane/methanol (1:1) root extract showed strong activity against P. falciparum (IC50 value of 3.5 µg/mL). Among the compounds isolated, tubotaiwine (13) displayed the most significant antiplasmodial activity with an IC50 value of 8.5 µM and a selectivity index of 23.4. Therefore, P. bicarpallata extract can be considered as a source of indole alkaloids with antiplasmodial activity.
Collapse
Affiliation(s)
- Ozlem Sevik Kilicaslan
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (O.S.K.); (S.C.); (L.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Sylvian Cretton
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (O.S.K.); (S.C.); (L.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Luis Quirós-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (O.S.K.); (S.C.); (L.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Merveilles A. Bella
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, Yaoundé P.O. Box 47, Cameroon; (M.A.B.); (J.T.N.)
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland; (M.K.); (P.M.)
- University of Basel, 4003 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland; (M.K.); (P.M.)
- University of Basel, 4003 Basel, Switzerland
| | - Joseph T. Ndongo
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, Yaoundé P.O. Box 47, Cameroon; (M.A.B.); (J.T.N.)
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (O.S.K.); (S.C.); (L.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
16
|
Haghighijoo Z, Zamani L, Moosavi F, Emami S. Therapeutic potential of quinazoline derivatives for Alzheimer's disease: A comprehensive review. Eur J Med Chem 2022; 227:113949. [PMID: 34742016 DOI: 10.1016/j.ejmech.2021.113949] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Quinazolines are considered as a promising class of bioactive heterocyclic compounds with broad properties. Particularly, the quinazoline scaffold has an impressive role in the design and synthesis of new CNS-active drugs. The drug-like properties and pharmacological characteristics of quinazoline could lead to different drugs with various targets. Among CNS disorders, Alzheimer's disease (AD) is a progressive neurodegenerative disorder with memory loss, cognitive decline and language dysfunction. AD is a complex and multifactorial disease therefore, the need for finding multi-target drugs against this devastative disease is urgent. A literature survey revealed that quinazoline derivatives have diverse therapeutic potential for AD as modulators/inhibitors of β-amyloid, tau protein, cholinesterases, monoamine oxidases, and phosphodiesterases as well as other protective effects. Thus, we describe here the most relevant and recent studies about anti-AD agents with quinazoline structure which can further aid the development and discovery of new anti-AD agents.
Collapse
Affiliation(s)
- Zahra Haghighijoo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Leila Zamani
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
17
|
Wahan SK, Sharma B, Chawla PA. Medicinal perspective of quinazolinone derivatives: Recent developments and
structure–activity
relationship studies. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Bharti Sharma
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga India
| |
Collapse
|
18
|
Biological activities of a polysaccharide from the coculture of Ganoderma lucidum and Flammulina velutipes mycelia in submerged fermentation. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Selective Synthesis of 2-(1,2,3-Triazoyl) Quinazolinones through Copper-Catalyzed Multicomponent Reaction. Catalysts 2021. [DOI: 10.3390/catal11101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We describe here our results from the copper-catalyzed three component reaction of 2-azidobenzaldehyde, anthranilamide and terminal alkynes, using Et3N as base, and DMSO as solvent. Depending on the temperature and amount of Et3N used in the reactions, 1,2,3-triazolyl-quinazolinones or 1,2,3-triazolyl-dihydroquinazolinone could be obtained. When the reactions were performed at 100 °C using 2 equivalents of Et3N, 1,2,3-triazolyl-dihydroquinazolinone was formed in 82% yield, whereas reactions carried out at 120 °C using 1 equivalent of Et3N provided 1,2,3-triazolyl-quinazolinones in moderate-to-good yields.
Collapse
|
20
|
Sakr A, Rezq S, Ibrahim SM, Soliman E, Baraka MM, Romero DG, Kothayer H. Design and synthesis of novel quinazolinones conjugated ibuprofen, indole acetamide, or thioacetohydrazide as selective COX-2 inhibitors: anti-inflammatory, analgesic and anticancer activities. J Enzyme Inhib Med Chem 2021; 36:1810-1828. [PMID: 34338135 PMCID: PMC8330735 DOI: 10.1080/14756366.2021.1956912] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Novel quinazolinones conjugated with indole acetamide (4a–c), ibuprofen (7a–e), or thioacetohydrazide (13a,b, and 14a-d) were designed to increase COX-2 selectivity. The three synthesised series exhibited superior COX-2 selectivity compared with the previously reported quinazolinones and their NSAID analogue and had equipotent COX-2 selectivity as celecoxib. Compared with celecoxib, 4 b, 7c, and 13 b showed similar anti-inflammatory activity in vivo, while 13 b and 14a showed superior inhibition of the inflammatory mediator nitric oxide, and 7 showed greater antioxidant potential in macrophages cells. Moreover, all selected compounds showed improved analgesic activity and 13 b completely abolished the pain response. Additionally, compound 4a showed anticancer activity in tested cell lines HCT116, HT29, and HCA7. Docking results were consistent with COX-1/2 enzyme assay results. In silico studies suggest their high oral bioavailability. The overall findings for compounds (4a,b, 7c, 13 b, and 14c) support their potential role as anti-inflammatory agents.
Collapse
Affiliation(s)
- Asmaa Sakr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA.,Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Samy M Ibrahim
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed M Baraka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA.,Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Rao MS, Hussain S. One-Pot, Borax-mediated synthesis of structurally diverse N, S-heterocycles in water. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Borik RM, Hussein MA. Synthesis, Molecular Docking, biological potentials, and Structure-Activity Relationship of new quinazoline & quinazoline-4-one derivatives. Curr Pharm Biotechnol 2021; 23:1179-1203. [PMID: 34077343 DOI: 10.2174/1389201022666210601170650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
CONTEXT Quinazolines are a common class of nitrogen-containing heterocyclic scaffolds exhibiting a broad spectrum of pharmacological activities. OBJECTIVE In the present study, quinazoline and quinazolin-4-one derivatives were prepared, characterized to evaluate their biological which may pave the way for possible therapeutic applications. MATERIALS & METHODS A new derivative of quinazoline and quinazolin-4-one derivatives was prepared and tested for antiulcerogenic, anti-inflammatory and hepatoprotective activity. RESULTS The synthesized compounds were characterized by elemental analysis and spectral data. Also, the median lethal doses (LD50s) of compounds 1-3 in rats were 1125, 835 and 1785 mg/kg b.w., respectively. IC50 values of compounds (1-3) as measured by ABTS+ radical method was 0.8, 0.92 and 0.08 mg/mL, respectively. Antiulcerogenic activities at dose 1/20 LD50 in albino rats were 47.94, 24.60 and 56.45%, respectively. Anti-inflammatory effect at dose 1/20 LD50 of compounds (1-3) induced edema model after 120 min. The prepared compounds possess hepato gastric mucosa protective activity against ibuprofen-induced ulceration and LPS-induced liver toxicity, respectively in rats via normalization of oxidative stress biomarkers and inflammatory mediators were inhibited in peritoneal macrophage cells at concentration of 100 µg/L. Molecular docking suggested that the most active compounds 1 and 2 can be positioned within the active sites of COX-2 at Arg121 & Tyr356 similar to ibuprofen (Arg-120, Glu-524, and Tyr-355). The compound 3-COX-2 complex generated by docking revealed intricate interactions with a COX-2 channel. CONCLUSION These findings suggest that compounds 1-3 exhibited good antioxidant, antiulcer, anti-inflammatory activity and safe on liver enzymes in rats.
Collapse
Affiliation(s)
- Rita M Borik
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Saudi Arabia
| | - Mohammed Abdalla Hussein
- Biochemistry Department, Faculty of Applied Medical Sciences, October 6 University, Sixth of October City, Egypt
| |
Collapse
|
23
|
Altamimi AS, El-Azab AS, Abdelhamid SG, Alamri MA, Bayoumi AH, Alqahtani SM, Alabbas AB, Altharawi AI, Alossaimi MA, Mohamed MA. Synthesis, Anticancer Screening of Some Novel Trimethoxy Quinazolines and VEGFR2, EGFR Tyrosine Kinase Inhibitors Assay; Molecular Docking Studies. Molecules 2021; 26:molecules26102992. [PMID: 34069962 PMCID: PMC8157871 DOI: 10.3390/molecules26102992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
A new series of 8-methoxy-2-trimethoxyphenyl-3-substituted quinazoline-4(3)-one compounds were designed, synthesized, and screened for antitumor activity against three cell lines, namely, Hela, A549, and MDA compared to docetaxel as reference drug. The molecular docking was performed using Autodock Vina program and 20 ns molecular dynamics (MD) simulation was performed using GROMACS 2018.1 software. Compound 6 was the most potent antitumor of the new synthesized compounds and was evaluated as a VEGFR2 and EGFR inhibitor with (IC50, 98.1 and 106 nM respectively) compared to docetaxel (IC50, 89.3 and 56.1 nM respectively). Compounds 2, 6, 10, and 8 showed strong cytotoxic activities against the Hela cell line with IC50 of, 2.13, 2.8, 3.98, and 4.94 µM, respectively, relative to docetaxel (IC50, 9.65 µM). Compound 11 showed strong cytotoxic activity against A549 cell line (IC50, 4.03 µM) relative to docetaxel (IC50, 10.8 µM). Whereas compounds 6 and 9 showed strong cytotoxic activity against MDA cell line (IC50, 0.79, 3.42 µM, respectively) as compared to docetaxel (IC50, 3.98 µM).
Collapse
Affiliation(s)
- Abdulmalik S. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (M.A.A.); (S.M.A.); (A.B.A.); (A.I.A.); (M.A.A.)
- Correspondence: (A.S.A.); (M.A.M.)
| | - Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sami G. Abdelhamid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (M.A.A.); (S.M.A.); (A.B.A.); (A.I.A.); (M.A.A.)
| | - Ashraf H. Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Safar M. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (M.A.A.); (S.M.A.); (A.B.A.); (A.I.A.); (M.A.A.)
| | - Alhumaidi B. Alabbas
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (M.A.A.); (S.M.A.); (A.B.A.); (A.I.A.); (M.A.A.)
| | - Ali I. Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (M.A.A.); (S.M.A.); (A.B.A.); (A.I.A.); (M.A.A.)
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (M.A.A.); (S.M.A.); (A.B.A.); (A.I.A.); (M.A.A.)
| | - Menshawy A. Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (M.A.A.); (S.M.A.); (A.B.A.); (A.I.A.); (M.A.A.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
- Correspondence: (A.S.A.); (M.A.M.)
| |
Collapse
|
24
|
Neha K, Wakode S. Contemporary advances of cyclic molecules proposed for inflammation. Eur J Med Chem 2021; 221:113493. [PMID: 34029774 DOI: 10.1016/j.ejmech.2021.113493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
This review stretches insight about the advancement (2011-2021) of synthesized non-heterocyclic, heterocyclic and natural occurring cyclic molecules for inflammation. While inflammation is very significant in the abolition of pathogens and other causes of soreness, a protracted inflammatory procedure takes to outcomes in chronic disease that might finally affect in organ failure or damage. Thus, restraining the provocative process by the use of anti-inflammatory agents is chief in controlling this damage. It also reveals other pursuit along with their anti-inflammatory activity. Molecular docking studies represent most suitable PDB (Protein Data Bank) ID for the synthesized heterocyclic molecules with their selective inhibitor. It discusses the findings presented in recent research papers and provides understanding to researchers intended for the growth of newer combinations/molecules having littler side things.
Collapse
Affiliation(s)
- Kumari Neha
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India.
| |
Collapse
|
25
|
Dvorakova M, Langhansova L, Temml V, Pavicic A, Vanek T, Landa P. Synthesis, Inhibitory Activity, and In Silico Modeling of Selective COX-1 Inhibitors with a Quinazoline Core. ACS Med Chem Lett 2021; 12:610-616. [PMID: 33854702 PMCID: PMC8040043 DOI: 10.1021/acsmedchemlett.1c00004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Selective cyclooxygenase-1 (COX-1) inhibition has got into the spotlight with the discovery of COX-1 upregulation in various cancers and the cardioprotective role of COX-1 in control of thrombocyte aggregation. Yet, COX-1-selective inhibitors are poorly explored. Thus, three series of quinazoline derivatives were prepared and tested for their potential inhibitory activity toward COX-1 and COX-2. Of the prepared compounds, 11 exhibited interesting COX-1 selectivity, with 8 compounds being totally COX-1-selective. The IC50 value of the best quinazoline inhibitor was 64 nM. The structural features ensuring COX-1 selectivity were elucidated using in silico modeling.
Collapse
Affiliation(s)
- Marcela Dvorakova
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| | - Lenka Langhansova
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| | - Veronika Temml
- Department
of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Antonio Pavicic
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| | - Tomas Vanek
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| | - Premysl Landa
- Laboratory
of Plant Biotechnologies, Czech Academy
of Sciences, Institute of Experimental Botany, Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech
Republic
| |
Collapse
|
26
|
Remarkable Conversion of 2-Thioxo-2,3-dihydroquinazolin-4(1H)-ones into the Corresponding Quinazoline-2,4(1H,3H)-diones: Spectroscopic Analysis and X-Ray Crystallography. J CHEM-NY 2021. [DOI: 10.1155/2021/6612177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A simple and efficient new synthetic method to obtain 3-substituted quinazolin-2,4-diones 9–16 by the reaction of 3-substituted 2-thioxo-quinazolin-4-ones 1–8 with sodamide under mild conditions was presented. The structure of the newly synthesized compounds was determined by infrared spectroscopy, UV-visible spectroscopy, nuclear magnetic resonance, and single-crystal X-ray crystallographic analysis. The crystal structure of 6-methyl-3-phenylquinazoline-2,4(1H,3H)-dione (11) [C15H12N2O2: MF = 252.27, triclinic, P-1, a = 7.8495 (13) Å, b = 12.456 (2) Å, c = 13.350 (2) Å, α = 103.322 (3)°, β = 90.002 (3)°, γ = 102.671 (4)°, V = 1237.5 (3) Å3, Z = 4, R = 0.0592, wR = 0.1699, S = 1.039] was determined. In the crystal cell, two identical conformers of compound 11 were found connected by intramolecular hydrogen bonds, responsible for the favourable occurrence of these two independent molecules.
Collapse
|
27
|
Emami L, Faghih Z, Khabnadideh S, Rezaei Z, Sabet R, Harigh E, Faghih Z. 2-(Chloromethyl)-3-phenylquinazolin-4(3H)-ones as potent anticancer agents; cytotoxicity, molecular docking and in silico studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02168-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Rajput CS, Srivastava S, Kumar A, Pathak A. Mukaiyama’s reagent promoted mild protocol for one-pot metal-free synthesis of dihydro quinazolinones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
El-Dash Y, Khalil NA, Ahmed EM, Hassan MSA. Synthesis and biological evaluation of new nicotinate derivatives as potential anti-inflammatory agents targeting COX-2 enzyme. Bioorg Chem 2021; 107:104610. [PMID: 33454504 DOI: 10.1016/j.bioorg.2020.104610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
Two novel series derived from nicotinic acid were synthesized and evaluated for their inhibitory activity against cyclooxygenases COX-1 and COX-2, and their selectivity indices were determined. Celecoxib, diclofenac and indomethacin were used as reference drugs. All compounds showed highly potent COX-2 inhibitory activity and higher selectivity towards COX-2 inhibition compared to indomethacin. In addition, these compounds except 3a showed clear preferential COX-2 over COX-1 inhibition compared to diclofenac. Compounds 3b, 3e, 4c and 4f showed COX-2 inhibitory activity equipotent to celecoxib. Compounds 4c and 4f demonstrated selectivity indices 1.8-1.9 fold higher than celecoxib. These two most potent and COX-2 selective compounds were further tested in vivo for anti-inflammatory activity by means of carrageenan induced rat paw edema method. Ulcerogenic activity with histopathological studies were performed. The results showed no ulceration, which implies their safe gastric profile. Compound 4f exhibited the most potent in vivo anti-inflammatory activity comparable to all reference drugs. Further, compounds 4c and 4f were investigated for their influence on certain inflammatory cytokines TNF-α and IL-1β in addition to PEG2. The findings revealed that these candidates could be identified as promising potent anti-inflammatory agents. Molecular docking of 4c and 4f in the COX-2 active site was performed to rationalize their COX-2 inhibitory potency. The results were found to be in line with the biological findings as they exerted more favorable interactions compared to that of celecoxib, explaining their remarkable COX-2 inhibitory activity.
Collapse
Affiliation(s)
- Yara El-Dash
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, 33 Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Nadia A Khalil
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, 33 Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Eman M Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, 33 Kasr El-Aini Street, Cairo 11562, Egypt
| | - Marwa S A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, 33 Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
30
|
Zhang Y, Xiong W, Chen L, Shao Y, Li R, Chen Z, Ge J, Lv N, Chen J. Palladium-catalyzed cascade reactions in aqueous media: synthesis and photophysical properties of pyrazino-fused quinazolinones. Org Chem Front 2021. [DOI: 10.1039/d0qo01244k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A convenient, efficient, and direct approach toward the synthesis of pyrazino-fused quinazolinone frames has been developed. The photophysical properties of 3e with the AIE effect were investigated.
Collapse
Affiliation(s)
- Yetong Zhang
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Wenzhang Xiong
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Lepeng Chen
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Renhao Li
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou 325035
- P. R. China
| | - Zhongyan Chen
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Jingyuan Ge
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Ningning Lv
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| |
Collapse
|
31
|
Abdel-Aziz AAM, El-Azab AS, AlSaif NA, Alanazi MM, El-Gendy MA, Obaidullah AJ, Alkahtani HM, Almehizia AA, Al-Suwaidan IA. Synthesis, anti-inflammatory, cytotoxic, and COX-1/2 inhibitory activities of cyclic imides bearing 3-benzenesulfonamide, oxime, and β-phenylalanine scaffolds: a molecular docking study. J Enzyme Inhib Med Chem 2020; 35:610-621. [PMID: 32013633 PMCID: PMC7034070 DOI: 10.1080/14756366.2020.1722120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/26/2022] Open
Abstract
Cyclic imides containing 3-benzenesulfonamide, oxime, and β-phenylalanine derivatives were synthesised and evaluated to elucidate their in vivo anti-inflammatory and ulcerogenic activity and in vitro cytotoxic effects. Most active anti-inflammatory agents were subjected to in vitro COX-1/2 inhibition assay. 3-Benzenesulfonamides (2-4, and 9), oximes (11-13), and β-phenylalanine derivative (18) showed potential anti-inflammatory activities with 71.2-82.9% oedema inhibition relative to celecoxib and diclofenac (85.6 and 83.4%, respectively). Most active cyclic imides 4, 9, 12, 13, and 18 possessed ED50 of 35.4-45.3 mg kg-1 relative to that of celecoxib (34.1 mg kg-1). For the cytotoxic evaluation, the selected derivatives 2-6 and 8 exhibited weak positive cytotoxic effects (PCE = 2/59-5/59) at 10 μM compared to the standard drug, imatinib (PCE = 20/59). Cyclic imides bearing 3-benzenesulfonamide (2-5, and 9), acetophenone oxime (11-14, 18, and 19) exhibited high selectivity against COX-2 with SI > 55.6-333.3 relative to that for celecoxib [SI > 387.6]. β-Phenylalanine derivatives 21-24 and 28 were non-selective towards COX-1/2 isozymes as indicated by their SI of 0.46-0.68.
Collapse
Affiliation(s)
- Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adel S. El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf A. AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal A. El-Gendy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A. Al-Suwaidan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Rasapalli S, Murphy ZF, Sammeta VR, Golen JA, Weig AW, Melander RJ, Melander C, Macha P, Vasudev MC. Synthesis and biofilm inhibition studies of 2-(2-amino-6-arylpyrimidin-4-yl)quinazolin-4(3H)-ones. Bioorg Med Chem Lett 2020; 30:127550. [PMID: 32927027 PMCID: PMC7704793 DOI: 10.1016/j.bmcl.2020.127550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022]
Abstract
Synthesis of novel 4(3H)-quinazolinonyl aminopyrimidine derivatives has been achieved via quinazolinonyl enones which in turn were obtained from 2-acyl-4(3H)-quinazolinone. They have been assayed for biofilm inhibition against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative bacteria (Acinetobacter baumannii). The analogues with 2,4,6-trimethoxy phenyl, 4-methylthio phenyl, and 3-bromo phenyl substituents (5h, 5j & 5k) have been shown to inhibit biofilm formation efficiently in MRSA with IC50 values of 20.7-22.4 μM). The analogues 5h and 5j have demonstrated low toxicity in human cells in vitro and can be investigated further as leads.
Collapse
Affiliation(s)
- Sivappa Rasapalli
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, 285 Old Westport Rd, North Dartmouth, MA 02747, United States.
| | - Zachary F Murphy
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, 285 Old Westport Rd, North Dartmouth, MA 02747, United States
| | - Vamshikrishna Reddy Sammeta
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, 285 Old Westport Rd, North Dartmouth, MA 02747, United States
| | - James A Golen
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, 285 Old Westport Rd, North Dartmouth, MA 02747, United States
| | - Alexander W Weig
- University of Notre Dame, Department of Chemistry and Biochemistry, 252A McCourtney Hall, Notre Dame, IN 46556, United States
| | - Roberta J Melander
- University of Notre Dame, Department of Chemistry and Biochemistry, 252A McCourtney Hall, Notre Dame, IN 46556, United States
| | - Christian Melander
- University of Notre Dame, Department of Chemistry and Biochemistry, 252A McCourtney Hall, Notre Dame, IN 46556, United States
| | - Prathyushakrishna Macha
- University of Massachusetts Dartmouth, Department of Biomedical Engineering, 285 Old Westport Rd, North Dartmouth, MA 02747, United States
| | - Milana C Vasudev
- University of Massachusetts Dartmouth, Department of Biomedical Engineering, 285 Old Westport Rd, North Dartmouth, MA 02747, United States
| |
Collapse
|
33
|
El-Azab AS, Abdel-Aziz AAM, AlSaif NA, Alkahtani HM, Alanazi MM, Obaidullah AJ, Eskandrani RO, Alharbi A. Antitumor activity, multitarget mechanisms, and molecular docking studies of quinazoline derivatives based on a benzenesulfonamide scaffold: Cell cycle analysis. Bioorg Chem 2020; 104:104345. [PMID: 33142413 DOI: 10.1016/j.bioorg.2020.104345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
The in vitro cytotoxicity of some substituted quinazolinones, 1-15, was evaluated using NCI (10 µM) in a full NCI 59-cell line panel assay. Relative to the reference drug, imatinib (PCE = 20/59), compounds 3, 4, 7, 9, and 10 exhibited remarkable antitumor activity against the tested cell lines, with positive cytotoxic effects (PCE) of 29/59, 18/59, 17/59, 44/59, and 24/59 respectively. Enzymatic inhibitory assay conducted on 3, 4, 9, and 10 as the most potent antitumor agents against EGFR, HER2 and CDK9 kinases, and COX-2 enzyme. Compound 3 possessed good COX-2 inhibitory activity (IC50 = 0.775 μM) compared to the reference drug, celecoxib (IC50 = 0.153 μM). Compounds 4 and 9 were closely potent to the reference compounds against EGFR and (HER2) tyrosine kinases, with IC50 values of 90.17 (and 131.39 for HER2) for 4 and 145.35 (and 129.07 for HER2) nM for 9; the reference drugs in this case, namely, gefitinib and erlotinib, exhibited IC50 values of 55.58 (90) and 110 (79.28) nM against the EGFR and (HER2) tyrosine kinases, respectively. Compound 4 was approximately similar potent against CDK9 kinase (IC50 = 67.04 nM) like the reference compound, dinaciclib (IC50 = 53.12 nM). Compound 9 induced cytotoxicity in the MCF-7 cell line (GI % at 10.0 μM = 47%) through pre-G1 apoptosis, thereby inhibiting cell growth at the G2/M phase. Molecular docking models of 3 and 4 with COX-2, EGFR, and CDK9 were conducted to determine their binding mode within the putative binding pockets.
Collapse
Affiliation(s)
- Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Razan O Eskandrani
- Department of Pharmaceutical Chemistry, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, P.O. Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
34
|
El-Azab AS, Abdel-Aziz AAM, Bua S, Nocentini A, AlSaif NA, Alanazi MM, El-Gendy MA, Ahmed HEA, Supuran CT. S-substituted 2-mercaptoquinazolin-4(3H)-one and 4-ethylbenzensulfonamides act as potent and selective human carbonic anhydrase IX and XII inhibitors. J Enzyme Inhib Med Chem 2020; 35:733-743. [PMID: 32189526 PMCID: PMC7144323 DOI: 10.1080/14756366.2020.1742117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We evaluated the hCA (CA, EC 4.2.1.1) inhibitory activity of novel 4-(2-(2-substituted-thio-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamides (compounds 2–20) towards the isoforms I, II, IX, and XII. hCA Isoforms were effectively inhibited by most of new compounds comparable to those of AAZ. Compounds 2 and 4 showed interestingly efficient and selective antitumor (hCA IX and hCA XII) inhibitor activities (KIs; 40.7, 13.0, and 8.0, 10.8 nM, respectively). Compounds 4 and 5 showed selective hCA IX inhibitory activity over hCA I (SI; 95 and 24), hCA IX/hCA II (SI; 23 and 5.8) and selective hCA XII inhibitory activity over hCA I (SI; 70 and 44), hCA XII/hCA II, (SI; 17 and 10) respectively compared to AAZ. Compounds 12–17, and 19–20 showed selective inhibitory activity towards hCA IX over hCA I and hCA II, with selectivity ranges of 27–195 and 3.2–19, respectively, while compounds 12, 14–17, and 19 exhibited selective inhibition towards hCA XII over hCA I and hCA II, with selectivity ratios of 48–158 and 5.4–31 respectively, compared to AAZ. Molecular docking analysis was carried out to investigate the selective interactions among the most active derivatives, 17 and 20 and hCAs isoenzymes. Compounds 17 and 20, which are highly selective CA IX and XII inhibitors, exhibited excellent interaction within the putative binding site of both enzymes, comparable to the co-crystallized inhibitors.Highlights Quinazoline-linked ethylbenzenesulfonamides inhibiting CA were synthesised. The new molecules potently inhibited the hCA isoforms I, II, IV, and IX. Compounds 4 and 5 were found to be selective hCA IX/hCA I and hCA IX/hCA II inhibitors. Compounds 4 and 5 were found to be selective hCA XII/hCA I and hCA XII/hCA II inhibitors. Compounds 12–17, 19, and 20 were found to be selective hCA IX/hCA I and hCA IX/hCA II inhibitors. Compounds 12, 14–17, 19 were found to be selective hCA XII/hCA I and hCA XII/hCA II inhibitors.
Graphical Abstract Compounds 4 and 5 are selective hCA IX and XII inhibitors over hCA I (selectivity ratios of 95, 23, and 24, 5.8, respectively) and hCA II (selectivity ratios of 70, 17, and 44, 10 respectively). Compounds 12–17, and 19–20 are selective hCA IX inhibitors over hCA I (selectivity ratios of 27-195) and hCA II (selectivity ratios of 3.2-19). Compounds 12, 14–17 and 19 are also selective hCA XII inhibitors over hCA I (selectivity ratios of 48-158) and hCA II (selectivity ratios of 5.4-31).
Collapse
Affiliation(s)
- Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Silvia Bua
- Department of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Alessio Nocentini
- Department of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal A El-Gendy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hany E A Ahmed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Claudiu T Supuran
- Department of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
35
|
El-Azab AS, Abdel-Aziz AAM, Ahmed HEA, Bua S, Nocentini A, AlSaif NA, Obaidullah AJ, Hefnawy MM, Supuran CT. Exploring structure-activity relationship of S-substituted 2-mercaptoquinazolin-4(3H)-one including 4-ethylbenzenesulfonamides as human carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2020; 35:598-609. [PMID: 32009479 PMCID: PMC7034075 DOI: 10.1080/14756366.2020.1722121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inhibitory action of newly synthesised 4-(2-(2-substituted-thio-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamides compounds 2-13 against human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII, was evaluated. hCA I was efficiently inhibited by compounds 2-13 with inhibition constants (KIs) ranging from 57.8-740.2 nM. Compounds 2, 3, 4, and 12 showed inhibitory action against hCA II with KIs between 6.4 and 14.2 nM. CA IX exhibited significant sensitivity to inhibition by derivatives 2-13 with KI values ranging from 7.1 to 93.6 nM. Compounds 2, 3, 4, 8, 9, and 12 also exerted potent inhibitory action against hCA XII (KIs ranging from 3.1 to 20.2 nM). Molecular docking studies for the most potent compounds 2 and 3 were conducted to exhibit the binding mode towards hCA isoforms as a promising step for SAR analyses which showed similar interaction with co-crystallized ligands. As such, a subset of these mercaptoquinazolin-4(3H)-one compounds represented interesting leads for developing new efficient and selective carbonic anhydrase inhibitors (CAIs) for the management of a variety of diseases including glaucoma, epilepsy, arthritis and cancer.
Collapse
Affiliation(s)
- Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hany E A Ahmed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo, Egypt.,Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Sivia Bua
- Department of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Alessio Nocentini
- Department of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Claudiu T Supuran
- Department of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
36
|
Synthesis, in vivo anti-inflammatory, COX-1/COX-2 and 5-LOX inhibitory activities of new 2,3,4-trisubstituted thiophene derivatives. Bioorg Chem 2020; 102:103890. [DOI: 10.1016/j.bioorg.2020.103890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
37
|
Turky A, Bayoumi AH, Ghiaty A, El-Azab AS, A-M Abdel-Aziz A, Abulkhair HS. Design, synthesis, and antitumor activity of novel compounds based on 1,2,4-triazolophthalazine scaffold: Apoptosis-inductive and PCAF-inhibitory effects. Bioorg Chem 2020; 101:104019. [PMID: 32615465 DOI: 10.1016/j.bioorg.2020.104019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023]
Abstract
The antitumor activity of newly synthesised triazolophthalazines (L-45 analogues) 10-32 was evaluated in human hepatocellular carcinoma (HePG-2), breast cancer (MCF-7), prostate cancer (PC3), and colorectal carcinoma (HCT-116) cells. Compounds 17, 18, 25, and 32 showed potent antitumor activity (IC50, 2.83-13.97 μM), similar to doxorubicin (IC50, 4.17-8.87 μM) and afatinib (IC50, 5.4-11.4 μM). HePG2 was inhibited by compounds 10, 17, 18, 25, 26, and 32 (IC50, 3.06-10.5 μM), similar to doxorubicin (IC50, 4.50 μM) and afatinib (IC50, 5.4 μM). HCT-116 and MCF-7 were susceptible to compounds 10, 17, 18, 25, and 32 (IC50, 2.83-10.36 and 5.69-11.36 μM, respectively), similar to doxorubicin and afatinib (IC50 = 5.23 and 4.17, and 11.4 and 7.1 μM, respectively). Compounds 17, 25, and 32 exerted potent activities against PC3 (IC50, 7.56-12.28 μM) compared with doxorubicin (IC50, 8.87 µM) and afatinib (IC50 7.7 μM). Compounds 17 and 32 were the strongest PCAF inhibitors (IC50, 5.31 and 10.30 μM, respectively) and compounds 18 and 25 exhibited modest IC50 values (17.09 and 32.96 μM, respectively) compared with bromosporine (IC50, 5.00 μM). Compound 17 was cytotoxic to HePG2 cells (IC50, 3.06 μM), inducing apoptosis in the pre-G phase and arresting the cell cycle in the G2/M phase. Molecular docking for the most active PCAF inhibitors (17 and 32) was performed.
Collapse
Affiliation(s)
- Abdallah Turky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ashraf H Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Adel Ghiaty
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Hamada S Abulkhair
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University - Egypt, International Costal Road, New Damietta, Egypt.
| |
Collapse
|
38
|
Shabaan MA, Kamal AM, Faggal SI, Elsahar AE, Mohamed KO. Synthesis and biological evaluation of pyrazolone analogues as potential anti‐inflammatory agents targeting cyclooxygenases and 5‐lipoxygenase. Arch Pharm (Weinheim) 2020; 353:e1900308. [DOI: 10.1002/ardp.201900308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Mohamed A. Shabaan
- Department of Pharmaceutical Organic Chemistry, Faculty of PharmacyCairo UniversityCairo Egypt
| | - Aliaa M. Kamal
- Department of Pharmaceutical Organic Chemistry, Faculty of PharmacyCairo UniversityCairo Egypt
- Department of Pharmaceutical Chemistry, Faculty of PharmacyOctober University for Modern Science and Arts (MSA)Giza Egypt
| | - Samar I. Faggal
- Department of Pharmaceutical Organic Chemistry, Faculty of PharmacyCairo UniversityCairo Egypt
| | - Ayman E. Elsahar
- Department of Pharmacology and Toxicology, Faculty of PharmacyCairo UniversityCairo Egypt
| | - Khaled O. Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of PharmacyCairo UniversityCairo Egypt
| |
Collapse
|
39
|
El-Husseiny WM, El-Sayed MAA, El-Azab AS, AlSaif NA, Alanazi MM, Abdel-Aziz AAM. Synthesis, antitumor activity, and molecular docking study of 2-cyclopentyloxyanisole derivatives: mechanistic study of enzyme inhibition. J Enzyme Inhib Med Chem 2020; 35:744-758. [PMID: 32183576 PMCID: PMC7144195 DOI: 10.1080/14756366.2020.1740695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A series of 24 compounds was synthesised based on a 2-cyclopentyloxyanisole scaffold 3–14 and their in vitro antitumor activity was evaluated. Compounds 4a, 4b, 6b, 7b, 13, and 14 had the most potent antitumor activity (IC50 range: 5.13–17.95 μM), compared to those of the reference drugs celecoxib, afatinib, and doxorubicin. The most active derivatives 4a, 4b, 7b, and 13 were evaluated for their inhibitory activity against COX-2, PDE4B, and TNF-α. Compounds 4a and 13 potently inhibited TNF-α (IC50 values: 2.01 and 6.72 μM, respectively) compared with celecoxib (IC50=6.44 μM). Compounds 4b and 13 potently inhibited COX-2 (IC50 values: 1.08 and 1.88 μM, respectively) comparable to that of celecoxib (IC50=0.68 μM). Compounds 4a, 7b, and 13 inhibited PDE4B (IC50 values: 5.62, 5.65, and 3.98 μM, respectively) compared with the reference drug roflumilast (IC50=1.55 μM). The molecular docking of compounds 4b and 13 with the COX-2 and PDE4B binding pockets was studied.Highlights Antitumor activity of new synthesized cyclopentyloxyanisole scaffold was evaluated. The powerful antitumor 4a, 4b, 6b, 7b & 13 were assessed as COX-2, PDE4B & TNF-α inhibitors. Compounds 4a, 7b, and 13 exhibited COX-2, PDE4B, and TNF-α inhibition. Compounds 4b and 13 showed strong interactions at the COX-2 and PDE4B binding pockets.
Collapse
Affiliation(s)
- Walaa M El-Husseiny
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Magda A-A El-Sayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Liao L, Jiang C, Chen J, Shi J, Li X, Wang Y, Wen J, Zhou S, Liang J, Lao Y, Zhang J. Synthesis and biological evaluation of 1,2,4-triazole derivatives as potential neuroprotectant against ischemic brain injury. Eur J Med Chem 2020; 190:112114. [PMID: 32061962 DOI: 10.1016/j.ejmech.2020.112114] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023]
Abstract
A series of 1,2,4-triazole derivatives 1-14 was synthesized to investigate their neuroprotective effects and mechanisms of action. Compounds 5-11 noticeably protected PC12 cells from the cytotoxicity of H2O2 or sodium nitroprusside (SNP). Compound 11 was the most effective derivative. Compound 11 chelated Fe (II) iron, scavenged reactive oxygen species (ROS), and restored the mitochondrial membrane potential (MMP). Moreover, it enhanced the activity of the antioxidant defense system by increasing the serum level of superoxide dismutase (SOD) and promoting the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Compound 11 caused certain improvements in behavior, the cerebral infarction area, and serum levels of biochemical indicators (TNF-α, IL-1β, SOD and MDA) in a rat MCAO model. The lethal dose (LD50) of compound 11 in mice receiving intraperitoneal injections was greater than 400 mg/kg. Meanwhile, pharmacokinetic experiments revealed high bioavailability of this compound after both oral and intravenous administration (F = 60.76%, CL = 0.014 mg/kg/h) and a longer half-life (4.26 and 5.11 h after oral and intravenous administration, respectively). Based on these findings, compound 11 may be a promising neuroprotectant for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Liping Liao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Caibao Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jianwen Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jinguo Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xinhua Li
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jin Wen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Shujia Zhou
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jie Liang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yaoqiang Lao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
41
|
|
42
|
Crystal structure of 6-iodo-3-phenyl-2-propylquinazolin-4(3 H)-one, C 17H 15IN 2O. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2019-0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C17H15IN2O, monoclinic, C2 (no. 5), a = 23.6958(12) Å, b = 5.5334(2) Å, c = 15.9712(9) Å, β = 132.329(3)°, V = 1548.16(13) Å3, Z = 4, R
gt(F) = 0.046, wR
ref(F
2) = 0.093, T = 296(2) K.
Collapse
|
43
|
Gatadi S, Pulivendala G, Gour J, Malasala S, Bujji S, Parupalli R, Shaikh M, Godugu C, Nanduri S. Synthesis and evaluation of new 4(3H)-Quinazolinone derivatives as potential anticancer agents. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Alkahtani HM, Abdalla AN, Obaidullah AJ, Alanazi MM, Almehizia AA, Alanazi MG, Ahmed AY, Alwassil OI, Darwish HW, Abdel-Aziz AAM, El-Azab AS. Synthesis, cytotoxic evaluation, and molecular docking studies of novel quinazoline derivatives with benzenesulfonamide and anilide tails: Dual inhibitors of EGFR/HER2. Bioorg Chem 2020; 95:103461. [PMID: 31838290 DOI: 10.1016/j.bioorg.2019.103461] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/11/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022]
Abstract
We synthesized a new series of 2-[(3-(4-sulfamoylphenethyl)-4(3H)-quinazolinon-2-yl)thio]anilide derivatives (2-16) and evaluated their cytotoxic activity against breast adenocarcinoma (MCF-7), colorectal adenocarcinoma (HT-29), and acute myeloid leukemia (HL-60 and K562) cells. To reveal their selectivity toward cancer cells, the compounds were also tested against the human fibroblast cell line, MRC-5. Compounds 1-5 exhibited potent cytotoxic activity against the tested cell lines with IC50 values of 0.65-3.86, 0.68-4.60, 0.41-1.45, 0.42-4.07, and 3.77-25.55 μM, respectively compared to sorafenib, the standard drug (IC50 2.50, 2.50, and 3.14 μM against MCF-7, HT-29, and HL60 cells, respectively). Interestingly, compounds 1-5 displayed selectivity toward the cancer cell lines over MRC-5 (IC50 3.77-25.55 μM). These compounds also displayed potent inhibitory activity against EGFR and HER2 kinases (IC50 0.09-0.43 and 0.15-0.33 μM, respectively) compared to the standard drug, sorafenib (IC50 0.11 and 0.13 μM, respectively). Likewise, compounds 1, 4, and 5 showed strong inhibitory activity against VEGFR2 (IC50 0.34, 0.28 and 0.39 μM, respectively) compared to sorafenib (IC50 0.17 μM). We also employed molecular docking to identify the structural features required for the EGFR/HER2 inhibitory activity of the new series. Ultimately, compounds 1, 4, and 5 were demonstrated to be candidates for further preclinical investigations.
Collapse
Affiliation(s)
- Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mashael G Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed Y Ahmed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Osama I Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, 3163, P.O. Box 3660, Riyadh 11481, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
45
|
Reddy MM, Sivaramakrishna A. Remarkably flexible quinazolinones—synthesis and biological applications. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Manne Madhava Reddy
- Department of Chemistry, School of Advanced SciencesVellore Institute of Technology (VIT) Vellore Tamil Nadu India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced SciencesVellore Institute of Technology (VIT) Vellore Tamil Nadu India
| |
Collapse
|
46
|
Dige NC, Mahajan PG, Raza H, Hassan M, Vanjare BD, Hong H, Hwan Lee K, latip J, Seo SY. Ultrasound mediated efficient synthesis of new 4-oxoquinazolin-3(4H)-yl)furan-2-carboxamides as potent tyrosinase inhibitors: Mechanistic approach through chemoinformatics and molecular docking studies. Bioorg Chem 2019; 92:103201. [DOI: 10.1016/j.bioorg.2019.103201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
|
47
|
El-Azab AS, Abdel-Aziz AAM, Bua S, Nocentini A, Alanazi MM, AlSaif NA, Al-Suwaidan IA, Hefnawy MM, Supuran CT. Synthesis and comparative carbonic anhydrase inhibition of new Schiff's bases incorporating benzenesulfonamide, methanesulfonamide, and methylsulfonylbenzene scaffolds. Bioorg Chem 2019; 92:103225. [PMID: 31493707 DOI: 10.1016/j.bioorg.2019.103225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/07/2023]
Abstract
Herein, we report the synthesis, characterization, and carbonic anhydrase (CA) inhibition of the newly synthesized Schiff's bases 4-18 with benzenesulfonamide, methanesulfonamide, and methylsulfonylbenzene scaffolds. The compound inhibition profiles against human CA (hCA) isoforms I, II, IX, and XII were compared to those of the standard inhibitors, acetazolamide (AAZ) and SLC-0111 (a CA inhibitor in Phase II clinical trials for the treatment of hypoxic tumors). The hCA I was inhibited by compounds 4a-8a with inhibition constants (KI) in the range 93.5-428.1 nM (AAZ and SLC-0111: KI, 250.0 and 5080.0 nM, respectively). Compounds 4a-8a proved to be effective hCA II inhibitors, with KI ranging from 18.2 to 133.3 nM (AAZ and SLC-0111: KI, 12.0 and 960.0 nM, respectively). Compounds 4a-8a effectively inhibited hCA IX, with KI in the range 8.5-24.9 nM; these values are superior or equivalent to that of AAZ and SLC-0111 (KI, 25.0 and 45.0 nM, respectively). Compounds 4a-8a displayed effective hCA XII inhibitory activity with KI values ranging from 8.6 to 43.2 nM (AAZ and SLC-0111: KI, 5.7 and 4.5 nM, respectively). However, compounds 9b-13b and 14c-18c were found to be micromolar CA inhibitors. For molecular docking studies, compounds 5a, 6a, and 8a were selected.
Collapse
Affiliation(s)
- Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Silvia Bua
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Al-Suwaidan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed M Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
48
|
Design and synthesis of sulfur cross-linked 1,3,4-oxadiazole-nitro(furan/thiophene)-propenones as dual inhibitors of inflammation and tuberculosis: molecular docking and Hirshfeld surface analysis. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02507-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Zhao Y, Liu F, He G, Li K, Zhu C, Yu W, Zhang C, Xie M, Lin J, Zhang J, Jin Y. Discovery of arylamide-5-anilinoquinazoline-8-nitro derivatives as VEGFR-2 kinase inhibitors: Synthesis, in vitro biological evaluation and molecular docking. Bioorg Med Chem Lett 2019; 29:126711. [PMID: 31668972 DOI: 10.1016/j.bmcl.2019.126711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 01/07/2023]
Abstract
Herein, we embarked on a structural optimization campaign aiming at the discovery of novel anticancer agents with our previously reported XL-6f as a lead compound. A library of 23 compounds has been synthesized based on the highly conserved active site of VEGFR-2. Several title compounds exhibited selective inhibitory activities against VEGFR-2, which also displayed selective anti-proliferation potency against HepG2 cell. All synthesized compounds were evaluated for anti-angiogenesis capability. Compound 7o showed the most potent anti-angiogenesis ability, the efficient cytotoxic activities (in vitro against HUVEC and HepG2 cell lines with IC50 values of 0.58 and 0.23 µM, respectively). The molecular docking analysis revealed 7o is a Type-II inhibitor of VEGFR-2 kinase. In general, these results indicated these arylamide-5-anilinoquinazoline-8-nitro derivatives are promising inhibitors of VEGFR-2 for the potential treatment of anti-angiogenesis.
Collapse
Affiliation(s)
- Yongqiang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Feifei Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Guojing He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Ke Li
- Biomedical Department, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, PR China.
| | - Changcheng Zhu
- Institute of Drug Research and Development, Kunming Pharmaceutical Corporation, Kunming 650100, PR China
| | - Wei Yu
- Pharmaceutical Department, Kunming General Hospital of Chengdu Military Command, Kunming 650118, PR China
| | - Conghai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Mingjin Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| | - Jihong Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
50
|
El-Azab AS, Abdel-Aziz AAM, Bua S, Nocentini A, AlSaif NA, Almehizia AA, Alanazi MM, Hefnawy MM, Supuran CT. New anthranilic acid-incorporating N-benzenesulfonamidophthalimides as potent inhibitors of carbonic anhydrases I, II, IX, and XII: Synthesis, in vitro testing, and in silico assessment. Eur J Med Chem 2019; 181:111573. [PMID: 31394463 DOI: 10.1016/j.ejmech.2019.111573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
Abstract
The carbonic anhydrase (CA) inhibitory activity of newly synthesized compounds 4-21 against the human CA (hCA) isoforms I, II, IX, and XII was measured and compared to that of standard sulfonamide inhibitors, acetazolamide (AAZ) and SLC-0111. Among this series; benzensulfonamides 6-11 gave the best potent hCA inhibitors with inhibition constants (KIs) ranging from 81.9 to 456.6 nM (AAZ and SLC-0111: KIs, 250.0 and 5080 nM, respectively). Compounds 6-11 proved to be effective hCA II inhibitors (KIs, 8.9-51.5 nM); they were almost equally potent to AAZ (KI, 12.0 nM) and had superior potency to SLC-0111 (KI, 960.0 nM). For hCA IX inhibition, compounds 6-11 proved to be potent inhibitors, with KI values of 3.9-36.0 nM, which were greater than or equal to that of AAZ and greater than that of SLC-0111 (KIs, 25.0 and 45.0 nM, respectively). For hCA XII inhibitory activity, compounds 6-11 displayed effective inhibition with KI values ranging from 4.6 to 86.3 nM and were therefore comparable to AAZ and SLC-0111 (KIs, 5.7 and 4.5 nM, respectively). Molecular docking studies of compounds 6, 7, 10, and 11 were conducted using the crystal structures of hCA isozymes I, II, IX, and XII to study their binding interactions for further lead optimization.
Collapse
Affiliation(s)
- Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Silvia Bua
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohamed M Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|