1
|
Li SS, Chen JJ, Zhang MM, Wang WX, Zhang WY, Ma C. Design, synthesis, and biological evaluation of novel benzimidazole derivatives as anti-cervical cancer agents through PI3K/Akt/mTOR pathway and tubulin inhibition. Eur J Med Chem 2024; 271:116425. [PMID: 38636129 DOI: 10.1016/j.ejmech.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Phosphatidylinositol 3-kinase (PI3K) is one of the most attractive therapeutic targets for cervical cancer treatment. In this study, we designed and synthesized a series of benzimidazole derivatives and evaluated their anti-cervical cancer activity. Compound 4r exhibited strong antiproliferative activity in different cervical cancer cell lines HeLa, SiHa and Ca Ski, and relative lower cytotoxicity to normal hepatic and renal cell lines LO2 and HEK-293t (IC50 values were at 21.08 μM and 23.96 μM respectively). Its IC50 value was at 3.38 μM to the SiHa cells. Further mechanistic studies revealed that 4r induced apoptosis, arrested cell cycle in G2/M phase, suppressed PI3K/Akt/mTOR pathway and inhibit the polymerization of tubulin. Molecular docking study suggested that 4r formed key H-bonds action with PI3Kα (PDB ID:8EXU) and tubulin (PDB ID:1SA0). Zebrafish acute toxicity experiments showed that high concentrations of 4r did not cause death or malformation of zebrafish embryos. All these results demonstrated that 4r would be a promising lead candidate for further development of novel PI3K and tubulin dual inhibitors in cervical cancer treatment.
Collapse
Affiliation(s)
- Si-Si Li
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Jun-Jie Chen
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Miao-Miao Zhang
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Wei-Xu Wang
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Wei-Yi Zhang
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Active Components of Natural Medicine and Drug Release Technology, Xinjiang Medical University, Urumqi, 830011, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Xinjiang Medical University, Urumqi, 830011, China.
| | - Cheng Ma
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Active Components of Natural Medicine and Drug Release Technology, Xinjiang Medical University, Urumqi, 830011, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Xinjiang Medical University, Urumqi, 830011, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
2
|
Bareth D, Jain S, Kumawat J, Kishore D, Dwivedi J, Hashmi SZ. Synthetic and pharmacological developments in the hybrid s-triazine moiety: A review. Bioorg Chem 2024; 143:106971. [PMID: 38016395 DOI: 10.1016/j.bioorg.2023.106971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
This article summarizes the most recent advancements in the synthetic and pharmacological approaches along with the structure activity relationship towards the s-triazine and its derivatives. Much attention has been given to s-triazine core due to its facile synthesis, interesting pharmacology, high reactivity, and binding characteristics towards various enzymes. An array of biological applications has been demonstrated by s-triazines including antimalarial, anti-HIV, anti-viral, antimicrobial, anti-tuberculosis to name a few. In the present investigation s-triazine based molecular structures have been assembled in respect to their synthesis and medicinal properties. Further, the competence of s-triazine has been correlated and compared with the other heterocyclic moieties to substantiates-triazine a privileged scaffold. From the literature it is revealed that nucleophilic substitution at 2, 4, and 6 positions is significant for various biological applications. This article would help in assisting the chemists in designing novel molecular entities with high medicinal value.
Collapse
Affiliation(s)
- Diksha Bareth
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sonia Zeba Hashmi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
3
|
Yu Y, Gu D, Cai L, Yang H, Sheng R. Development of small-molecule inhibitors that target PI3Kβ. Drug Discov Today 2024; 29:103854. [PMID: 38070704 DOI: 10.1016/j.drudis.2023.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Phosphatidylinositol-3 kinase (PI3K) β, a subtype of class I PI3Ks, has an essential role in PTEN-deficient tumors and links to thrombosis, male fertility, and Fragile X syndrome. PI3Kβ-specific targeting therapy could be an efficacious treatment for diseases highly dependent on PI3Kβ, while mitigating the severe toxicity of pan-PI3K inhibitors. Achieving selectivity can be accomplished through three primary strategies, namely, binding to the induced lipophilic pocket, targeting the unique amino acid residue of PI3Kβ, or using atropisomerism to lock conformation. In this review, we focus on advances in the development of these β-isoform-selective PI3K inhibitors, providing potential guidance for the further development of novel clinical candidates.
Collapse
Affiliation(s)
- Yanzhen Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Dongyan Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Lvtao Cai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321000, PR China
| | - Haodong Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321000, PR China
| | - Rong Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321000, PR China.
| |
Collapse
|
4
|
Vishwakarma P, Siddiqui NF, Thakur S, Jadhav H. FDA approved fused-pyrimidines as potential PI3K inhibitors: a computational repurposing approach. J Biomol Struct Dyn 2023; 42:13497-13514. [PMID: 37909480 DOI: 10.1080/07391102.2023.2276315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Fused pyrimidine scaffold is present in several US FDA-approved drugs for various therapeutic indications. Drug repurposing (or drug repositioning) involves the analysis of existing clinically approved drugs for new therapeutic indications. Phosphoinositide-3-kinase (PI3K), via the regulatory PI3K pathway, is involved in cell growth, proliferation, differentiation, survival, and angiogenesis. It is also considered a target in anticancer drug development as it promotes the growth of cancerous cells and increases resistance to anticancer therapy. The present work employed computational techniques like molecular docking, MMGBSA analysis, and molecular dynamics simulations to explore the PI3K inhibition by FDA-approved drugs with fused pyrimidine scaffold. The work identifies Lapatinib as a pan-class I PI3K inhibitor and Dipyridamole as an γ isoform-specific PI3K inhibitor and is reported here.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pinky Vishwakarma
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, Rajasthan, India
| | - Noor Fatima Siddiqui
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, Rajasthan, India
| | - Shikha Thakur
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, Rajasthan, India
| | - Hemant Jadhav
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, Rajasthan, India
| |
Collapse
|
5
|
Gawaz M, Geisler T, Borst O. Current concepts and novel targets for antiplatelet therapy. Nat Rev Cardiol 2023; 20:583-599. [PMID: 37016032 DOI: 10.1038/s41569-023-00854-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
Platelets have a crucial role in haemostasis and atherothrombosis. Pharmacological control of platelet hyper-reactivity has become a cornerstone in the prevention of thrombo-ischaemic complications in atherosclerotic diseases. Current antiplatelet therapies substantially improve clinical outcomes in patients with coronary artery disease, but at the cost of increased risk of bleeding. Beyond their role in thrombosis, platelets are known to regulate inflammatory (thrombo-inflammatory) and microcirculatory pathways. Therefore, controlling platelet hyper-reactivity might have implications for both tissue inflammation (myocardial ischaemia) and vascular inflammation (vulnerable plaque formation) to prevent atherosclerosis. In this Review, we summarize the pathophysiological role of platelets in acute myocardial ischaemia, vascular inflammation and atherosclerotic progression. Furthermore, we highlight current clinical concepts of antiplatelet therapy that have contributed to improving patient care and have facilitated more individualized therapy. Finally, we discuss novel therapeutic targets and compounds for antiplatelet therapy that are currently in preclinical development, some of which have a more favourable safety profile than currently approved drugs with regard to bleeding risk. These novel antiplatelet targets might offer new strategies to treat cardiovascular disease.
Collapse
Affiliation(s)
- Meinrad Gawaz
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Tobias Geisler
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Novel approaches to antiplatelet therapy. Biochem Pharmacol 2022; 206:115297. [DOI: 10.1016/j.bcp.2022.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022]
|
7
|
Miceli G, Basso MG, Rizzo G, Pintus C, Tuttolomondo A. The Role of the Coagulation System in Peripheral Arterial Disease: Interactions with the Arterial Wall and Its Vascular Microenvironment and Implications for Rational Therapies. Int J Mol Sci 2022; 23:14914. [PMID: 36499242 PMCID: PMC9739112 DOI: 10.3390/ijms232314914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Peripheral artery disease (PAD) is a clinical manifestation of atherosclerotic disease with a large-scale impact on the economy and global health. Despite the role played by platelets in the process of atherogenesis being well recognized, evidence has been increasing on the contribution of the coagulation system to the atherosclerosis formation and PAD development, with important repercussions for the therapeutic approach. Histopathological analysis and some clinical studies conducted on atherosclerotic plaques testify to the existence of different types of plaques. Likely, the role of coagulation in each specific type of plaque can be an important determinant in the histopathological composition of atherosclerosis and in its future stability. In this review, we analyze the molecular contribution of inflammation and the coagulation system on PAD pathogenesis, focusing on molecular similarities and differences between atherogenesis in PAD and coronary artery disease (CAD) and discussing the possible implications for current therapeutic strategies and future perspectives accounting for molecular inflammatory and coagulation targets. Understanding the role of cross-talking between coagulation and inflammation in atherosclerosis genesis and progression could help in choosing the right patients for future dual pathway inhibition strategies, where an antiplatelet agent is combined with an anticoagulant, whose role, despite pathophysiological premises and trials' results, is still under debate.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico “P. Giaccone”, 90100 Palermo, Italy
| |
Collapse
|
8
|
Barriuso I, Worner F, Vilahur G. Novel Antithrombotic Agents in Ischemic Cardiovascular Disease: Progress in the Search for the Optimal Treatment. J Cardiovasc Dev Dis 2022; 9:397. [PMID: 36421932 PMCID: PMC9699470 DOI: 10.3390/jcdd9110397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 09/10/2024] Open
Abstract
Ischemic cardiovascular diseases have a high incidence and high mortality worldwide. Therapeutic advances in the last decades have reduced cardiovascular mortality, with antithrombotic therapy being the cornerstone of medical treatment. Yet, currently used antithrombotic agents carry an inherent risk of bleeding associated with adverse cardiovascular outcomes and mortality. Advances in understanding the pathophysiology of thrombus formation have led to the discovery of new targets and the development of new anticoagulants and antiplatelet agents aimed at preventing thrombus stabilization and growth while preserving hemostasis. In the following review, we will comment on the key limitation of the currently used antithrombotic regimes in ischemic heart disease and ischemic stroke and provide an in-depth and state-of-the-art overview of the emerging anticoagulant and antiplatelet agents in the pipeline with the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Ignacio Barriuso
- Hospital Universitario Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, 25198 Lleida, Spain
- Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Fernando Worner
- Hospital Universitario Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, 25198 Lleida, Spain
| | - Gemma Vilahur
- Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
- Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares (CiberCV), 28029 Madrid, Spain
| |
Collapse
|
9
|
Zha D, Li Y, Luo Y, Liu Y, Lin Z, Lin C, Chen S, Wu J, Yu L, Chen S, Zhang P, Wu W, Zhang C. Synthesis and in vitro anticancer evaluation of novel flavonoid-based amide derivatives as regulators of the PI3K/AKT signal pathway for TNBC treatment. RSC Med Chem 2022; 13:1082-1099. [PMID: 36324491 PMCID: PMC9491353 DOI: 10.1039/d2md00148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/18/2022] [Indexed: 07/24/2023] Open
Abstract
Aberrant activation of the PI3K/AKT pathway is considered in many malignant tumors and plays a crucial role in mediating malignancy progression, metastasis, and chemoresistance. Consequently, development of PI3K/AKT pathway targeted drugs is currently an attractive research field for tumor treatment. In this study, twenty-six flavonoid-based amide derivatives were synthesized and evaluated for their antiproliferation effects against seven cancer cell lines, including MDA-MB-231, MCF-7, HCC1937, A549, HepG2, GTL-16 and HeLa. Among them, compound 7t possessed the best specific cytotoxicity against triple negative breast cancer MDA-MB-231 cells with an IC50 value of 1.76 ± 0.91 μM and also presented inhibitory ability on clonal-formation, migration and invasion of MDA-MB-231 cells. Further cell-based mechanistic studies demonstrated that compound 7t caused cell cycle arrest of MDA-MB-231 cells at the G0/G1 phase and induced apoptosis. Meanwhile, the western blot assay revealed that compound 7t could down-regulate the expression of p-PI3K, p-AKT, and Bcl-2 and up-regulate the production of PTEN, Bax, and caspase-3. Molecular docking also showed a possible binding mode of 7t with PI3Kα. Together, compound 7t was eligible as a potential TNBC therapeutic candidate for further development.
Collapse
Affiliation(s)
- Dailong Zha
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 China
| | - Yuanzhi Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 China
| | - Yingqi Luo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 China
| | - Yingfan Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 China
| | - Zehong Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 China
| | - Chujie Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 China
| | - Siyue Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 China
| | - Jiangping Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 China
| | - Lihong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 China
| | - Shaobin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 China
| | - Peiquan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 China
| | - Wenhao Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 China
| | - Chao Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 China
| |
Collapse
|
10
|
Gharat R, Prabhu A, Khambete MP. Potential of triazines in Alzheimer's disease: A versatile privileged scaffold. Arch Pharm (Weinheim) 2022; 355:e2100388. [DOI: 10.1002/ardp.202100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Ruchita Gharat
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy Mumbai Maharashtra India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy Mumbai Maharashtra India
| | - Mihir. P. Khambete
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy Mumbai Maharashtra India
| |
Collapse
|
11
|
Selvadurai MV, Moon MJ, Mountford SJ, Ma X, Zheng Z, Jennings IG, Setiabakti NM, Iman RP, Brazilek RJ, Z Abidin NA, Chicanne G, Severin S, Nicholls AJ, Wong CHY, Rinckel JY, Eckly A, Gachet C, Nesbitt WS, Thompson PE, Hamilton JR. Disrupting the platelet internal membrane via PI3KC2α inhibition impairs thrombosis independently of canonical platelet activation. Sci Transl Med 2021; 12:12/553/eaar8430. [PMID: 32718993 DOI: 10.1126/scitranslmed.aar8430] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022]
Abstract
Arterial thrombosis causes heart attacks and most strokes and is the most common cause of death in the world. Platelets are the cells that form arterial thrombi, and antiplatelet drugs are the mainstay of heart attack and stroke prevention. Yet, current drugs have limited efficacy, preventing fewer than 25% of lethal cardiovascular events without clinically relevant effects on bleeding. The key limitation on the ability of all current drugs to impair thrombosis without causing bleeding is that they block global platelet activation, thereby indiscriminately preventing platelet function in hemostasis and thrombosis. Here, we identify an approach with the potential to overcome this limitation by preventing platelet function independently of canonical platelet activation and in a manner that appears specifically relevant in the setting of thrombosis. Genetic or pharmacological targeting of the class II phosphoinositide 3-kinase (PI3KC2α) dilates the internal membrane reserve of platelets but does not affect activation-dependent platelet function in standard tests. Despite this, inhibition of PI3KC2α is potently antithrombotic in human blood ex vivo and mice in vivo and does not affect hemostasis. Mechanistic studies reveal this antithrombotic effect to be the result of impaired platelet adhesion driven by pronounced hemodynamic shear stress gradients. These findings demonstrate an important role for PI3KC2α in regulating platelet structure and function via a membrane-dependent mechanism and suggest that drugs targeting the platelet internal membrane may be a suitable approach for antithrombotic therapies with an improved therapeutic window.
Collapse
Affiliation(s)
- Maria V Selvadurai
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Mitchell J Moon
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Simon J Mountford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Xiao Ma
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Zhaohua Zheng
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ian G Jennings
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Natasha M Setiabakti
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.,Faculty of Medicine, Universitas Indonesia, Salemba, Jakarta 10430, Indonesia
| | - Rizani P Iman
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.,Faculty of Medicine, Universitas Indonesia, Salemba, Jakarta 10430, Indonesia
| | - Rose J Brazilek
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Nurul Aisha Z Abidin
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, 31432 Toulouse CEDEX 4, France
| | - Sonia Severin
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, 31432 Toulouse CEDEX 4, France
| | - Alyce J Nicholls
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC 3800, Australia
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC 3800, Australia
| | - Jean-Yves Rinckel
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000 Strasbourg, France
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000 Strasbourg, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000 Strasbourg, France
| | - Warwick S Nesbitt
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.,Microplatforms Research Group, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
12
|
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. Phosphatidylinositol 3-kinase (PI3K) inhibitors: a recent update on inhibitor design and clinical trials (2016-2020). Expert Opin Ther Pat 2021; 31:877-892. [PMID: 33970742 DOI: 10.1080/13543776.2021.1924150] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway plays a central role in regulating cell growth and proliferation and thus has been considered as effective anticancer drug targets. Many PI3K inhibitors have been developed and progressed to various stages of clinical trials, and some have been approved as anticancer treatment. In this review, we discuss the drug design and clinical development of PI3K inhibitors over the past 4 years. We review the selectivity and potency of 47 PI3K inhibitors. Structural determinants for increasing selectivity toward PI3K subtype-selectivity or mutant selectivity are discussed. Future research direction and current clinical development in combination therapy of inhibitors involved in PI3Ks are also discussed.Area covered: This review covers clinical trial reports and patent literature on PI3K inhibitors and their selectivity published between 2016 and 2020.Expert opinion: To PI3Kα mutants (E542K, E545K, and H1047R), it is highly desirable to design and develop mutant-specific PI3K inhibitors. It is also necessary to develop subtype-selective PI3Kα inhibitors to minimize toxicity. To reduce drug resistance and to improve efficacy, future studies should include combination therapy of PI3K inhibitors with existing anticancer drugs from different pathways.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Haizhen A Zhong
- DSC 362, Department of Chemistry, The University of Nebraska at Omaha, Omaha, Nebraska, USA
| |
Collapse
|
13
|
Barrachina MN, Izquierdo I, Hermida-Nogueira L, Morán LA, Pérez A, Arroyo AB, García-Barberá N, González-Conejero R, Troitiño S, Eble JA, Rivera J, Martínez C, Loza MI, Domínguez E, García Á. The PI3Kδ Inhibitor Idelalisib Diminishes Platelet Function and Shows Antithrombotic Potential. Int J Mol Sci 2021; 22:ijms22073304. [PMID: 33804911 PMCID: PMC8037016 DOI: 10.3390/ijms22073304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Clinical management of ischemic events and prevention of vascular disease is based on antiplatelet drugs. Given the relevance of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) as a candidate target in thrombosis, the main goal of the present study was to identify novel antiplatelet agents within the existing inhibitors blocking PI3K isoforms. Methods: We performed a biological evaluation of the pharmacological activity of PI3K inhibitors in platelets. The effect of the inhibitors was evaluated in intracellular calcium release and platelet functional assays, the latter including aggregation, adhesion, and viability assays. The in vivo drug antithrombotic potential was assessed in mice undergoing chemically induced arterial occlusion, and the associated hemorrhagic risk evaluated by measuring the tail bleeding time. Results: We show that PI3K Class IA inhibitors potently block calcium mobilization in human platelets. The PI3K p110δ inhibitor Idelalisib inhibits platelet aggregation mediated by ITAM receptors GPVI and CLEC-2, preferentially by the former. Moreover, Idelalisib also inhibits platelet adhesion and aggregation under shear and adhesion to collagen. Interestingly, an antithrombotic effect was observed in mice treated with Idelalisib, with mild bleeding effects at high doses of the drug. Conclusion: Idelalisib may have antiplatelet effects with minor bleeding effects, which provides a rationale to evaluate its antithrombotic efficacy in humans.
Collapse
Affiliation(s)
- María N. Barrachina
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidade Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (M.N.B.); (I.I.); (L.H.-N.); (L.A.M.); (S.T.)
| | - Irene Izquierdo
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidade Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (M.N.B.); (I.I.); (L.H.-N.); (L.A.M.); (S.T.)
| | - Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidade Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (M.N.B.); (I.I.); (L.H.-N.); (L.A.M.); (S.T.)
| | - Luis A. Morán
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidade Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (M.N.B.); (I.I.); (L.H.-N.); (L.A.M.); (S.T.)
| | - Amparo Pérez
- Pharmacology Applied to Drug Discovery Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.P.); (M.I.L.); (E.D.)
- Grupo Biofarma, Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain
| | - Ana B. Arroyo
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, 30003 Murcia, Spain; (A.B.A.); (N.G.-B.); (R.G.-C.); (J.R.); (C.M.)
| | - Nuria García-Barberá
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, 30003 Murcia, Spain; (A.B.A.); (N.G.-B.); (R.G.-C.); (J.R.); (C.M.)
| | - Rocío González-Conejero
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, 30003 Murcia, Spain; (A.B.A.); (N.G.-B.); (R.G.-C.); (J.R.); (C.M.)
| | - Sara Troitiño
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidade Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (M.N.B.); (I.I.); (L.H.-N.); (L.A.M.); (S.T.)
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany;
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, 30003 Murcia, Spain; (A.B.A.); (N.G.-B.); (R.G.-C.); (J.R.); (C.M.)
| | - Constantino Martínez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER-U765, 30003 Murcia, Spain; (A.B.A.); (N.G.-B.); (R.G.-C.); (J.R.); (C.M.)
| | - María I. Loza
- Pharmacology Applied to Drug Discovery Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.P.); (M.I.L.); (E.D.)
- Grupo Biofarma, Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain
| | - Eduardo Domínguez
- Pharmacology Applied to Drug Discovery Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.P.); (M.I.L.); (E.D.)
- Grupo Biofarma, Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidade Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain; (M.N.B.); (I.I.); (L.H.-N.); (L.A.M.); (S.T.)
- Correspondence: ; Tel.: +34-881-815429
| |
Collapse
|
14
|
Majeed Ganai A, Khan Pathan T, Hampannavar GA, Pawar C, Obakachi VA, Kushwaha B, Deshwar Kushwaha N, Karpoormath R. Recent Advances on the s‐Triazine Scaffold with Emphasis on Synthesis, Structure‐Activity and Pharmacological Aspects: A Concise Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202004591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Tabasum Khan Pathan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Girish A. Hampannavar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
- Department of Pharmaceutical Chemistry K.L.E.U's College of Pharmacy Vidyanagar, Hubli 580031, Karnataka India
| | - Chandrakant Pawar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Vincent A. Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| |
Collapse
|
15
|
Bheemanaboina RR. Isoform-Selective PI3K Inhibitors for Various Diseases. Curr Top Med Chem 2020; 20:1074-1092. [DOI: 10.2174/1568026620666200106141717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a family of ubiquitously distributed lipid kinases that
control a wide variety of intracellular signaling pathways. Over the years, PI3K has emerged as an attractive
target for the development of novel pharmaceuticals to treat cancer and various other diseases.
In the last five years, four of the PI3K inhibitors viz. Idelalisib, Copanlisib, Duvelisib, and Alpelisib
were approved by the FDA for the treatment of different types of cancer and several other PI3K inhibitors
are currently under active clinical development. So far clinical candidates are non-selective kinase
inhibitors with various off-target liabilities due to cross-reactivities. Hence, there is a need for the discovery
of isoform-selective inhibitors with improved efficacy and fewer side-effects. The development
of isoform-selective inhibitors is essential to reveal the unique functions of each isoform and its corresponding
therapeutic potential. Although the clinical effect and relative benefit of pan and isoformselective
inhibition will ultimately be determined, with the development of drug resistance and the demand
for next-generation inhibitors, it will continue to be of great significance to understand the potential
mechanism of isoform-selectivity. Because of the important role of type I PI3K family members in
various pathophysiological processes, isoform-selective PI3K inhibitors may ultimately have considerable
efficacy in a wide range of human diseases. This review summarizes the progress of isoformselective
PI3K inhibitors in preclinical and early clinical studies for anticancer and other various diseases.
Collapse
Affiliation(s)
- Rammohan R.Y. Bheemanaboina
- Department of Chemistry and Biochemistry, Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ 07043, United States
| |
Collapse
|
16
|
Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov 2020; 19:333-352. [PMID: 32132678 DOI: 10.1038/s41573-020-0061-0] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Antiplatelet agents and anticoagulants are a mainstay for the prevention and treatment of thrombosis. However, despite advances in antithrombotic therapy, a fundamental challenge is the side effect of bleeding. Improved understanding of the mechanisms of haemostasis and thrombosis has revealed new targets for attenuating thrombosis with the potential for less bleeding, including glycoprotein VI on platelets and factor XIa of the coagulation system. The efficacy and safety of new agents are currently being evaluated in phase III trials. This Review provides an overview of haemostasis and thrombosis, details the current landscape of antithrombotic agents, addresses challenges with preventing thromboembolic events in patients at high risk and describes the emerging therapeutic strategies that may break the inexorable link between antithrombotic therapy and bleeding risk.
Collapse
|
17
|
Durrant TN, Hers I. PI3K inhibitors in thrombosis and cardiovascular disease. Clin Transl Med 2020; 9:8. [PMID: 32002690 PMCID: PMC6992830 DOI: 10.1186/s40169-020-0261-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that regulate important intracellular signalling and vesicle trafficking events via the generation of 3-phosphoinositides. Comprising eight core isoforms across three classes, the PI3K family displays broad expression and function throughout mammalian tissues, and the (patho)physiological roles of these enzymes in the cardiovascular system present the PI3Ks as potential therapeutic targets in settings such as thrombosis, atherosclerosis and heart failure. This review will discuss the PI3K enzymes and their roles in cardiovascular physiology and disease, with a particular focus on platelet function and thrombosis. The current progress and future potential of targeting the PI3K enzymes for therapeutic benefit in cardiovascular disease will be considered, while the challenges of developing drugs against these master cellular regulators will be discussed.
Collapse
Affiliation(s)
- Tom N Durrant
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
18
|
Tscharre M, Michelson AD, Gremmel T. Novel Antiplatelet Agents in Cardiovascular Disease. J Cardiovasc Pharmacol Ther 2020; 25:191-200. [DOI: 10.1177/1074248419899314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antiplatelet therapy reduces atherothrombotic risk and has therefore become a cornerstone in the treatment of cardiovascular disease. Aspirin, adenosine diphosphate P2Y12 receptor antagonists, glycoprotein IIb/IIIa inhibitors, and the thrombin receptor blocker vorapaxar are effective antiplatelet agents but significantly increase the risk of bleeding. Moreover, atherothrombotic events still impair the prognosis of many patients with cardiovascular disease despite established antiplatelet therapy. Over the last years, advances in the understanding of thrombus formation and hemostasis led to the discovery of various new receptors and signaling pathways of platelet activation. As a consequence, many new antiplatelet agents with high antithrombotic efficacy and supposedly only moderate effects on regular hemostasis have been developed and yielded promising results in preclinical and early clinical studies. Although their long journey from animal studies to randomized clinical trials and finally administration in daily clinical routine has just begun, some of the new agents may in the future become meaningful additions to the pharmacological armamentarium in cardiovascular disease.
Collapse
Affiliation(s)
- Maximilian Tscharre
- Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
- Institute of Vascular Medicine and Cardiac Electrophysiology, Karl Landsteiner Society, St Poelten, Austria
| | - Alan D. Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Thomas Gremmel
- Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
- Institute of Vascular Medicine and Cardiac Electrophysiology, Karl Landsteiner Society, St Poelten, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Structure-guided design of pure orthosteric inhibitors of αIIbβ3 that prevent thrombosis but preserve hemostasis. Nat Commun 2020; 11:398. [PMID: 31964886 PMCID: PMC6972956 DOI: 10.1038/s41467-019-13928-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
A prevailing dogma is that inhibition of vascular thrombosis by antagonizing platelet integrin αIIbβ3 cannot be achieved without compromising hemostasis, thus causing serious bleeding and increased morbidity and mortality. It is speculated that these adverse outcomes result from drug-induced activating conformational changes in αIIbβ3 but direct proof is lacking. Here, we report the structure-guided design of peptide Hr10 and a modified form of the partial agonist drug tirofiban that act as "pure" antagonists of αIIbβ3, i.e., they no longer induce the conformational changes in αIIbβ3. Both agents inhibit human platelet aggregation but preserve clot retraction. Hr10 and modified tirofiban are as effective as partial agonist drugs in inhibiting vascular thrombosis in humanized mice, but neither causes serious bleeding, establishing a causal link between partial agonism and impaired hemostasis. Pure orthosteric inhibitors of αIIbβ3 may thus provide safer alternatives for human therapy, and valuable tools to probe structure-activity relationships in integrins.
Collapse
|
20
|
Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, Tong Y, Rao Y. PROTACs: great opportunities for academia and industry. Signal Transduct Target Ther 2019; 4:64. [PMID: 31885879 PMCID: PMC6927964 DOI: 10.1038/s41392-019-0101-6] [Citation(s) in RCA: 386] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Although many kinds of therapies are applied in the clinic, drug-resistance is a major and unavoidable problem. Another disturbing statistic is the limited number of drug targets, which are presently only 20-25% of all protein targets that are currently being studied. Moreover, the focus of current explorations of targets are their enzymatic functions, which ignores the functions from their scaffold moiety. As a promising and appealing technology, PROteolysis TArgeting Chimeras (PROTACs) have attracted great attention both from academia and industry for finding available approaches to solve the above problems. PROTACs regulate protein function by degrading target proteins instead of inhibiting them, providing more sensitivity to drug-resistant targets and a greater chance to affect the nonenzymatic functions. PROTACs have been proven to show better selectivity compared to classic inhibitors. PROTACs can be described as a chemical knockdown approach with rapidity and reversibility, which presents new and different biology compared to other gene editing tools by avoiding misinterpretations that arise from potential genetic compensation and/or spontaneous mutations. PRTOACs have been widely explored throughout the world and have outperformed not only in cancer diseases, but also in immune disorders, viral infections and neurodegenerative diseases. Although PROTACs present a very promising and powerful approach for crossing the hurdles of present drug discovery and tool development in biology, more efforts are needed to gain to get deeper insight into the efficacy and safety of PROTACs in the clinic. More target binders and more E3 ligases applicable for developing PROTACs are waiting for exploration.
Collapse
Affiliation(s)
- Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084 P. R. China
| | - Hongying Gao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084 P. R. China
| | - Yiqing Yang
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084 P. R. China
| | - Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
| | - Yue Wu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
| | - Yugang Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
| | - Yan Tong
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
21
|
Developments in inhibiting platelet aggregation based on different design strategies. Future Med Chem 2019; 11:1757-1775. [PMID: 31288579 DOI: 10.4155/fmc-2018-0345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Platelet aggregation is the central event in hemostasis and thrombosis. Up to now, many agents inhibiting platelet aggregation have been approved for the treatment of thrombotic disorders. In this review, we mainly summarized the progress in the research of platelet aggregation inhibitors based on different design strategies. The advantage and challenge of corresponding targets are also discussed in this article. We hope more platelet aggregation inhibitors with efficacy and safety will be discovered in the future.
Collapse
|
22
|
Gamage SA, Spicer JA, Tsang KY, O'Connor PD, Flanagan JU, Lee W, Dickson JMJ, Shepherd PR, Denny WA, Rewcastle GW. Synthesis and Evaluation of Imidazo[1,2‐a]pyridine Analogues of the ZSTK474 Class of Phosphatidylinositol 3‐Kinase Inhibitors. Chem Asian J 2019; 14:1249-1261. [DOI: 10.1002/asia.201801762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/13/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Swarna A. Gamage
- Auckland Cancer Society Research CentreFaculty of Medical and Health SciencesThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Julie A. Spicer
- Auckland Cancer Society Research CentreFaculty of Medical and Health SciencesThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Kit Y. Tsang
- Auckland Cancer Society Research CentreFaculty of Medical and Health SciencesThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Patrick D. O'Connor
- Auckland Cancer Society Research CentreFaculty of Medical and Health SciencesThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Jack U. Flanagan
- Auckland Cancer Society Research CentreFaculty of Medical and Health SciencesThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Woo‐Jeong Lee
- Department of Molecular Medicine and PathologyFaculty of Medical and Health SciencesThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James M. J. Dickson
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- School of Biological SciencesFaculty of ScienceThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Peter R. Shepherd
- Auckland Cancer Society Research CentreFaculty of Medical and Health SciencesThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- Department of Molecular Medicine and PathologyFaculty of Medical and Health SciencesThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - William A. Denny
- Auckland Cancer Society Research CentreFaculty of Medical and Health SciencesThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Gordon W. Rewcastle
- Auckland Cancer Society Research CentreFaculty of Medical and Health SciencesThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of Auckland Private Bag 92019 Auckland 1142 New Zealand
| |
Collapse
|
23
|
Miller MS, Thompson PE, Gabelli SB. Structural Determinants of Isoform Selectivity in PI3K Inhibitors. Biomolecules 2019; 9:biom9030082. [PMID: 30813656 PMCID: PMC6468644 DOI: 10.3390/biom9030082] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/21/2019] [Indexed: 01/17/2023] Open
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are important therapeutic targets for the treatment of cancer, thrombosis, and inflammatory and immune diseases. The four highly homologous Class I isoforms, PI3K, PI3K, PI3K and PI3K have unique, non-redundant physiological roles and as such, isoform selectivity has been a key consideration driving inhibitor design and development. In this review, we discuss the structural biology of PI3Ks and how our growing knowledge of structure has influenced the medicinal chemistry of PI3K inhibitors. We present an analysis of the available structure-selectivity-activity relationship data to highlight key insights into how the various regions of the PI3K binding site influence isoform selectivity. The picture that emerges is one that is far from simple and emphasizes the complex nature of protein-inhibitor binding, involving protein flexibility, energetics, water networks and interactions with non-conserved residues.
Collapse
Affiliation(s)
- Michelle S Miller
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Departments of Medicine, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Li W, Gao C, Zhao L, Yuan Z, Chen Y, Jiang Y. Phthalimide conjugations for the degradation of oncogenic PI3K. Eur J Med Chem 2018; 151:237-247. [DOI: 10.1016/j.ejmech.2018.03.066] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
|
25
|
Jin X, Kwon W, Kim TS, Heo JN, Chung HC, Choi J, No KT. Identification of Natural Products as Novel PI3Kβ Inhibitors Through Pharmacophore-based Virtual Screening. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuemei Jin
- Department of Biotechnology; Yonsei University; Seoul 03722 Korea
| | - Woosun Kwon
- Song-Dang Institute for Cancer Research; Cancer Metastasis Research Center, Yonsei University College of Medicine; Seoul 03722 Korea
| | - Tae Soo Kim
- Song-Dang Institute for Cancer Research; Cancer Metastasis Research Center, Yonsei University College of Medicine; Seoul 03722 Korea
| | - Jung-Nyoung Heo
- Korea Research Institute of Chemical Technology; Daejeon 34114 Republic of Korea
| | - Hyun Cheol Chung
- Song-Dang Institute for Cancer Research; Cancer Metastasis Research Center, Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine; Seoul 03722 Korea
| | - Jiwon Choi
- Bioinformatics & Molecular Design Research Center (BMDRC); Yonsei University; Seoul 03722 Korea
| | - Kyoung Tai No
- Department of Biotechnology; Yonsei University; Seoul 03722 Korea
- Bioinformatics & Molecular Design Research Center (BMDRC); Yonsei University; Seoul 03722 Korea
| |
Collapse
|
26
|
Synthesis and biological evaluation of sulfonamide analogues of the phosphatidylinositol 3-kinase inhibitor ZSTK474. Bioorg Med Chem 2017; 25:5859-5874. [DOI: 10.1016/j.bmc.2017.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
|
27
|
Fu DJ, Song J, Hou YH, Zhao RH, Li JH, Mao RW, Yang JJ, Li P, Zi XL, Li ZH, Zhang QQ, Wang FY, Zhang SY, Zhang YB, Liu HM. Discovery of 5,6-diaryl-1,2,4-triazines hybrids as potential apoptosis inducers. Eur J Med Chem 2017; 138:1076-1088. [PMID: 28763643 DOI: 10.1016/j.ejmech.2017.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022]
Abstract
A series of 5,6-diaryl-1,2,4-triazines hybrids bearing a 1,2,3-triazole linker were synthesized by molecular hybridization strategy and evaluated for antiproliferative activity against three selected cancer cell lines (MGC-803, EC-109 and PC-3). The first structure-activity relationship (SAR) for these 5,6-diaryl-1,2,4-triazines is explored in this report with evaluation of 15 variants of the structural class. Among these chemical derivatives, 3-(((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-5,6-diphenyl-1,2,4-triazine (11E) showed the more potent inhibitory effect against three cell lines than 5-Fu. Cellular mechanism studies in MGC-803 cells elucidated 11E inhibited colony formation and arrested cell cycle at G2/M phase. Furthermore, compound 11E caused morphological changes, decreased mitochondrial membrane potential, and induced apoptosis through the apoptosis-related proteins in MGC-803 cells. It was the first time, to our knowledge, that 5,6-diaryl-1,2,4-triazines bearing a 1,2,3-triazole linker were used as potential apoptosis inducers.
Collapse
Affiliation(s)
- Dong-Jun Fu
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China
| | - Jian Song
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China
| | - Yu-Hui Hou
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China
| | - Ruo-Han Zhao
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China
| | - Jia-Huan Li
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China
| | - Ruo-Wang Mao
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China
| | - Jia-Jia Yang
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China
| | - Ping Li
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China
| | - Xiao-Lin Zi
- Pathology and Laboratory Medicine, University of California, Irvine, Orange, CA 92868, USA
| | - Zhong-Hua Li
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China
| | - Qing-Qing Zhang
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China
| | - Fei-Yan Wang
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yan-Bing Zhang
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China.
| | - Hong-Min Liu
- New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China; Key Laboratory of Technology of Drug Preparation, Zhengzhou University, Ministry of Education, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, China.
| |
Collapse
|
28
|
Perreault S, Chandrasekhar J, Cui ZH, Evarts J, Hao J, Kaplan JA, Kashishian A, Keegan KS, Kenney T, Koditek D, Lad L, Lepist EI, McGrath ME, Patel L, Phillips B, Therrien J, Treiberg J, Yahiaoui A, Phillips G. Discovery of a Phosphoinositide 3-Kinase (PI3K) β/δ Inhibitor for the Treatment of Phosphatase and Tensin Homolog (PTEN) Deficient Tumors: Building PI3Kβ Potency in a PI3Kδ-Selective Template by Targeting Nonconserved Asp856. J Med Chem 2017; 60:1555-1567. [DOI: 10.1021/acs.jmedchem.6b01821] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Stephane Perreault
- Gilead Sciences, Inc., 199 E. Blaine Street, Seattle, Washington 98102, United States
| | | | - Zhi-Hua Cui
- Gilead Sciences, Inc., 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Jerry Evarts
- Gilead Sciences, Inc., 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Jia Hao
- Gilead Sciences, Inc., 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Joshua A. Kaplan
- Gilead Sciences, Inc., 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Adam Kashishian
- Gilead Sciences, Inc., 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Kathleen S. Keegan
- Gilead Sciences, Inc., 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Thomas Kenney
- Gilead Sciences, Inc., 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - David Koditek
- Gilead Sciences, Inc., 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Latesh Lad
- Gilead Sciences, Inc., 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Eve-Irene Lepist
- Gilead Sciences, Inc., 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Mary E. McGrath
- Gilead Sciences, Inc., 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Leena Patel
- Gilead Sciences, Inc., 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Bart Phillips
- Gilead Sciences, Inc., 333 Lakeside
Drive, Foster City, California 94404, United States
| | - Joseph Therrien
- Gilead Sciences, Inc., 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Jennifer Treiberg
- Gilead Sciences, Inc., 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Anella Yahiaoui
- Gilead Sciences, Inc., 199 E. Blaine Street, Seattle, Washington 98102, United States
| | - Gary Phillips
- Gilead Sciences, Inc., 199 E. Blaine Street, Seattle, Washington 98102, United States
| |
Collapse
|
29
|
Development of single and mixed isoform selectivity PI3Kδ inhibitors by targeting Asn836 of PI3Kδ. Bioorg Med Chem Lett 2016; 26:4790-4794. [DOI: 10.1016/j.bmcl.2016.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/17/2022]
|