1
|
Gul F, Ahmad S, Khan K, Masood R, Siddique F, Bibi M, Aljahdali SM, Aljasir MA, Jassim TS, Wei DQ, Irfan M. Identification of Novel Drug Molecules Against NS3-Like Helicase Enzyme of Alongshan Virus. Mol Biotechnol 2024:10.1007/s12033-024-01326-z. [PMID: 39643757 DOI: 10.1007/s12033-024-01326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Alongshan virus (ALSV) is a novel tick-borne virus associated with human diseases. The ALSV is a segmented flavivirus from the family Flaviviridae. It is currently considered as tick-borne arbovirus. There is a high incidence of fever and headache among patients with ALSV infection, and some patients also present with fatigue, coma, depression, nausea, myalgia/arthralgia, and skin rashes. Neither a licensed vaccine nor a drug is currently available to treat ALSV. The development of new, practical, and innovative therapeutic approaches is needed to overcome the emergence of the pathogen. Research on drugs remains a complex, time-consuming, and expensive. The field of drug development has undergone a revolution due to the use of computational approaches, which provide several benefits that speed up and improve the process of developing novel drugs. The goal of this study is to identify novel drug-like molecules against NS3-like helicase enzyme of Alongshan virus. Using molecular docking, the binding potential of the top three ligands to the specified target was determined. Molecular dynamic simulations were used to identify the stabilities of the best-docked conformations followed by energy calculations and ADMET analysis. Three potential and promising compounds were identified by performing structure-based virtual screening of non-structural protein 3 (NS3) like helicase of Alongshan virus. The best-docked complexes identified through virtual screening were BDC-23169381, BDB-26412846, BDB-2641954. All these compounds had good pharmacokinetics characteristics and were identified as drug like.
Collapse
Affiliation(s)
- Fizza Gul
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan.
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, 473006, People's Republic of China.
| | - Kalsoom Khan
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakriya University, Multan, 60800, Pakistan
| | - Mehvish Bibi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakriya University, Multan, 60800, Pakistan
| | | | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Tabarak Sabah Jassim
- Department of Plant Biotechnology, College of Biotechnology, Al-Nahrain University, Jadriya, Baghdad, Iraq
| | - Dong-Qing Wei
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, 473006, People's Republic of China
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
2
|
Sukanya S, Bellver-Sanchis A, Singh Choudhary B, Kumar S, Pérez B, Leandro Martínez Rodríguez A, Brea J, Griñán-Ferré C, Malik R. Design, synthesis, and biological evaluation of tetrahydropyrimidine analogue as GSK-3β/Aβ aggregation inhibitor and anti-Alzheimer's agent. Bioorg Chem 2024; 153:107811. [PMID: 39270527 DOI: 10.1016/j.bioorg.2024.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
The complex nature of Alzheimer's disease (AD) etiopathology is among the principal hurdles to developing effective anti-Alzheimer agents. Tau pathology and Amyloid-β (Aβ) accumulation are hallmarks and validated therapeutic strategies of AD. GSK-3β is a serine/threonine kinase involved in tau phosphorylation. Its excessive activity also contributes to the production of Aβ plaques, making GSK-3β an attractive AD target. Taking this into account, In this article, we outline the design, synthesis, and biological validation of a focused library of 1,2,3,4-tetrahydropyrimidine based derivatives as inhibitors of GSK-3β, tau phosphorylation, and Aβ accumulation. The inhibitory activity of forty nine synthetic compounds was tested against GSK-3β and other AD-relevant kinases. The kinetic experiments revealed the mode of GSK-3β inhibition by the most potent compound 44. The in- vitro drug metabolism and pharmacokinetic studies were thereafter performed. The anti-aggregation activity of the most potent GSK-3β inhibitor was tested using AD transgenic Caenorhabditis elegans (C. elegans) strain CL2006 for quantification of Aβ plaques and BR5706 C. elegans strain for tau pathology evaluation. We then evaluated the blood-brain barrier permeability and got promising results. Therefore, we present compound 44 as a potential ATP-competitive GSK-3β inhibitor with good metabolism and pharmacokinetic profile, anti-aggregation properties for amyloid beta protein, and reduction in tau-phosphorylation levels. We recommend more investigation into compound 44-based small molecules as possible targets for AD disease-modifying treatments.
Collapse
Affiliation(s)
- Sukanya Sukanya
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Bhanwar Singh Choudhary
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India
| | - Sunil Kumar
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Antón Leandro Martínez Rodríguez
- Innopharma screening platform, Biofarma research group. Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Brea
- Innopharma screening platform, Biofarma research group. Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Ruchi Malik
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
3
|
Dasgupta A, Kalidass K, Farisha S, Saha R, Ghosh S, Ampasala DR. Identification of novel brain penetrant GSK-3β inhibitors toward Alzheimer's disease therapy by virtual screening, molecular docking, dynamic simulation, and MMPBSA analysis. J Biomol Struct Dyn 2024:1-27. [PMID: 39427335 DOI: 10.1080/07391102.2024.2411524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/05/2024] [Indexed: 10/22/2024]
Abstract
One of the significant therapeutic targets for Alzheimer's disease (AD) is Glycogen Synthase Kinase-3β (GSK-3β). Inhibition of GSK-3β can prevent hyperphosphorylation of tau, and thus prevent formation and accumulation of neurofibrillary tangles and neuropil threads that block intracellular transport, trigger unfolded protein response, and increase oxidative stress, cumulatively leading to neurodegeneration. In this study, we have performed structure-based virtual screening of two small-molecule libraries from ChemDiv CNS databases using AutoDock Vina to identify hit molecules based on their binding affinities compared to that of an established GSK-3β inhibitor, indirubin-3'-monoxime (IMO). Pharmacoinformatic screening on SwissADME and pkCSM servers enabled identification of lead molecules with favorable pharmacoinformatic properties for drug likeliness, including blood brain barrier (BBB) permeability. Further, molecular dynamic simulations identified six candidate lead molecules that show stable complex formation with GSK-3β in dynamic state under physiological conditions. Principal component analysis of the dynamic state was used to plot Free Energy Landscapes (FELs) of GSK-3β-ligand complexes. STRIDE secondary structure analysis of the lowest energy conformations identified from FEL plots, and binding free energy calculations by Molecular Mechanics Poisson-Boltzmann Surface Area ((ΔGbind)MM-PBSA) of the simulation trajectories led to the identification of two ligands as potential lead molecules having favorable free energy landscape profiles as well as significantly lower (ΔGbind)MM-PBSA in dynamic state compared to that of reference inhibitor IMO. Hence, this study identifies two novel brain penetrant GSK-3β inhibitors that are likely to have therapeutic potential against Alzheimer's disease.
Collapse
Affiliation(s)
- Asmita Dasgupta
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | - Kastro Kalidass
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | - Shabnam Farisha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | - Rounak Saha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | - Sanjukta Ghosh
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| | | |
Collapse
|
4
|
Sai Varshini M, Aishwarya Reddy R, Thaggikuppe Krishnamurthy P. Unlocking hope: GSK-3 inhibitors and Wnt pathway activation in Alzheimer's therapy. J Drug Target 2024; 32:909-917. [PMID: 38838023 DOI: 10.1080/1061186x.2024.2365263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterised by progressive cognitive decline and the accumulation of amyloid-β plaques and tau tangles. The Wnt signalling pathway known for its crucial role in neurodevelopment and adult neurogenesis has emerged as a potential target for therapeutic intervention in AD. Glycogen synthase kinase-3 beta (GSK-3β), a key regulator of the Wnt pathway, plays a pivotal role in AD pathogenesis by promoting tau hyperphosphorylation and neuroinflammation. Several preclinical studies have demonstrated that inhibiting GSK-3β leads to the activation of Wnt pathway thereby promoting neuroprotective effects, and mitigating cognitive deficits in AD animal models. The modulation of Wnt signalling appears to have multifaceted benefits including the reduction of amyloid-β production, tau hyperphosphorylation, enhancement of synaptic plasticity, and inhibition of neuroinflammation. These findings suggest that targeting GSK-3β to activate Wnt pathway may represent a novel approach for slowing or halting the progression of AD. This hypothesis reviews the current state of research exploring the activation of Wnt pathway through the inhibition of GSK-3β as a promising therapeutic strategy in AD.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | | |
Collapse
|
5
|
Sharma V, Chander Sharma P, Reang J, Yadav V, Kumar Tonk R, Majeed J, Sharma K. Impact of GSK-3β and CK-1δ on Wnt signaling pathway in alzheimer disease: A dual target approach. Bioorg Chem 2024; 147:107378. [PMID: 38643562 DOI: 10.1016/j.bioorg.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Alzheimer's disease (AD) is an enigmatic neurological illness that offers few treatment options. Recent exploration has highlighted the crucial connection of the Wnt signaling pathway in AD pathogenesis, shedding light on potential therapeutic targets. The present study focuses on the dual targeting of glycogen synthase kinase-3β (GSK-3β) and casein kinase-1δ (CK-1δ) within the framework of the Wnt signaling pathway as a possible technique for AD intervention. GSK-3β and CK-1δ are multifunctional kinases known for their roles in tau hyperphosphorylation, amyloid processing, and synaptic dysfunction, all of which are major hallmarks of Alzheimer's disease. They are intricately linked to Wnt signaling, which plays a pivotal part in sustaining neuronal function and synaptic plasticity. Dysregulation of the Wnt pathway in AD contributes to cognitive decline and neurodegeneration. This review delves into the molecular mechanisms by which GSK-3β and CK-1δ impact the Wnt signaling pathway, elucidating their roles in AD pathogenesis. We discuss the potential of small-molecule inhibitors along with their SAR studies along with the multi-targetd approach targeting GSK-3β and CK-1δ to modulate Wnt signaling and mitigate AD-related pathology. In summary, the dual targeting of GSK-3β and CK-1δ within the framework of the Wnt signaling pathway presents an innovative and promising avenue for future AD therapies, offering new hope for patients and caregivers in the quest to combat this challenging condition.
Collapse
Affiliation(s)
- Vinita Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | | | - Jurnal Reang
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Vivek Yadav
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Jaseela Majeed
- School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India; Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
6
|
DasGupta D, Mehrani R, Carlson HA, Sharma S. Identifying Potential Ligand Binding Sites on Glycogen Synthase Kinase 3 Using Atomistic Cosolvent Simulations. ACS APPLIED BIO MATERIALS 2024; 7:588-595. [PMID: 37141501 DOI: 10.1021/acsabm.2c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Glycogen synthase kinase 3 β (GSK3β) is a serine/threonine kinase that phosphorylates several protein substrates in crucial cell signaling pathways. Owing to its therapeutic importance, there is a need to develop GSK3β inhibitors with high specificity and potency. One approach is to find small molecules that can allosterically bind to the GSK3β protein surface. We have employed fully atomistic mixed-solvent molecular dynamics (MixMD) simulations to identify three plausible allosteric sites on GSK3β that can facilitate the search for allosteric inhibitors. Our MixMD simulations narrow down the allosteric sites to precise regions on the GSK3β surface, thereby improving upon the previous predictions of the locations of these sites.
Collapse
Affiliation(s)
- Debarati DasGupta
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ramin Mehrani
- Department of Mechanical Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Heather A Carlson
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
7
|
Hashidoko A, Kitanosono T, Yamashita Y, Kobayashi S. Water vs. Organic Solvents: Water-Controlled Divergent Reactivity of 2-Substituted Indoles. Chem Asian J 2024:e202301045. [PMID: 38217396 DOI: 10.1002/asia.202301045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
Water is not a good solvent for most organic compounds, yet water can offer many benefits to some organic reactions, hence enriching organic chemistry. Herein, the unique divergent reactivity of 2-substituted indoles with ⋅NO sources is presented. The amount of water solvent was harnessed for a scalable, benign, and expedient synthesis of indolenine oximes, albeit with water's inability to dissolve the reactants. 2-Methoxyethyl nitrite, which has been tailored for reactions in water, empowered this protocol by enhancing the product selectivity. We further report on chemoselective transformations of the products that rely on their structural features. Our findings are expected to offer access to an underexplored chemical space. The platform is also applicable to oximinomalonate synthesis. Mechanistic studies revealed the important role of water in the reversal of stability between oxime and nitroso compounds, promoting the proton transfer.
Collapse
Affiliation(s)
- Airu Hashidoko
- Department of Chemistry, School of Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taku Kitanosono
- Department of Chemistry, School of Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
8
|
Papa A, Cursaro I, Pozzetti L, Contri C, Cappello M, Pasquini S, Carullo G, Ramunno A, Gemma S, Varani K, Butini S, Campiani G, Vincenzi F. Pioneering first-in-class FAAH-HDAC inhibitors as potential multitarget neuroprotective agents. Arch Pharm (Weinheim) 2023; 356:e2300410. [PMID: 37750286 DOI: 10.1002/ardp.202300410] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
Aiming to simultaneously modulate the endocannabinoid system (ECS) functions and the epigenetic machinery, we selected the fatty acid amide hydrolase (FAAH) and histone deacetylase (HDAC) enzymes as desired targets to develop potential neuroprotective multitarget-directed ligands (MTDLs), expecting to achieve an additive or synergistic therapeutic effect in oxidative stress-related conditions. We herein report the design, synthesis, and biological evaluation of the first-in-class FAAH-HDAC multitarget inhibitors. A pharmacophore merging strategy was applied, yielding 1-phenylpyrrole-based compounds 4a-j. The best-performing compounds (4c, 4f, and 4h) were tested for their neuroprotective properties in oxidative stress models, employing 1321N1 human astrocytoma cells and SHSY5 human neuronal cells. In our preliminary studies, compound 4h stood out, showing a balanced nanomolar inhibitory activity against the selected targets and outperforming the standard antioxidant N-acetylcysteine in vitro. Together with 4f, 4h was also able to protect 1321N1 cells from tert-butyl hydroperoxide or glutamate insult. Our study may provide the basis for the development of novel MTDLs targeting the ECS and epigenetic enzymes.
Collapse
Affiliation(s)
- Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ilaria Cursaro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Xie T, Hu G, Zhang S, Xu T, Zeng F. Palladium/Lewis Acid Co-catalyzed Cyclocarbonylation of (2-Aminoaryl)(aryl)methanols: An Access to 3-Aryl-indolin-2-ones. J Org Chem 2023; 88:12367-12375. [PMID: 37590397 DOI: 10.1021/acs.joc.3c01103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A benign approach to valuable 3-aryl-indolin-2-ones was developed based on palladium(II)/Lewis acid-cocatalyzed cyclocarbonylation of readily available (2-aminoaryl)(aryl)methanols. The protocol features producing water as the only byproduct, mild reaction conditions, and good efficiency, constituting an array of 3-arylindolin-2-ones in yields of 35 to 90%. The reaction can be easily scaled up to the gram scale in good yields.
Collapse
Affiliation(s)
- Tian Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi 710127, P. R. China
| | - Gendan Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi 710127, P. R. China
| | - Shengjun Zhang
- State Energy Key Laboratory of Clean Coal Grading Conversion, Modern Chemical Technology Department, Shaanxi Key Laboratory of Low Rank Coal Pyrolysis, Shaanxi Coal and Chemical Technology Institute Company Limited, Xi'an 710100, P. R. China
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi 710127, P. R. China
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
10
|
Carullo G, Bottoni L, Pasquini S, Papa A, Contri C, Brogi S, Calderone V, Orlandini M, Gemma S, Varani K, Butini S, Galvagni F, Vincenzi F, Campiani G. Synthesis of Unsymmetrical Squaramides as Allosteric GSK-3β Inhibitors Promoting β-Catenin-Mediated Transcription of TCF/LEF in Retinal Pigment Epithelial Cells. ChemMedChem 2022; 17:e202200456. [PMID: 36194001 DOI: 10.1002/cmdc.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Indexed: 01/14/2023]
Abstract
The glycogen synthase kinase 3β (GSK-3β) is a ubiquitous enzyme that is a validated target for the development of potential therapeutics useful in several diseases including retinal degeneration. Aiming at developing an innovative class of allosteric inhibitors of GSK-3β potentially useful for retinal degeneration, we explored the class of squaramides. The developed compounds (6 a-l) were obtained through a nontoxic one-pot synthetic protocol, which employs low-cost goods and avoids any purification step. Ethanol was used as the reaction solvent, simultaneously allowing the pure reaction products' recovery (by precipitation). Out of this set of squaramides, 6 j stood out, from computational and enzymatic converging data, as an ATP non-competitive inhibitor of GSK-3β of micromolar potency. When engaged in cellular studies using retinal pigment epithelial cells (ARPE-19) transfected with a luciferase reporter gene under the control of T-cell factor/lymphoid enhancer factor (TCF/LEF) binding sites, 6 j was able to dose-dependently induce β-catenin nuclear accumulation, as shown by the increased luciferase activity at a concentration of 2.5 μM.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Laura Bottoni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
11
|
Sindhu RK, Kaur P, Kaur P, Singh H, Batiha GES, Verma I. Exploring multifunctional antioxidants as potential agents for management of neurological disorders. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24458-24477. [PMID: 35064486 DOI: 10.1007/s11356-021-17667-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Free radical or oxidative stress may be a fundamental mechanism underlying several human neurologic diseases. Therapy using free radical scavengers (antioxidants) has the potential to prevent, delay, or ameliorate many neurologic disorders. However, the biochemistry of oxidative pathobiology is complex, and optimum antioxidant therapeutic options may vary and need to be tailored to individual diseases. In vitro and animal model studies support the potential beneficial role of various antioxidant compounds in neurological disease. Antioxidants generally play an important role in reducing or preventing the cell damage and other changes which occur in the cells like mitochondrial dysfunction, DNA mutations, and lipid peroxidation in the cell membrane. Based on their mechanism of action, antioxidants can be used to treat various neurological disorders like Huntington's disease, Alzheimer's disease, and Parkinson's disease. Vitamin E has a scavenging action for reactive oxygen species (ROS) and also prevents the lipid peroxidation. Creatine generally reduces the mitochondrial dysfunction in Parkinson's disease (PD) patients. Various metal chelators are used in PD for the prevention of accumulation of the metals. Superoxidase dismutase (SOD), lipases, and proteases act as repair enzymes in patients with AD. Accordingly, the antioxidant defense system is found to be most useful for treating various neurological disorders.
Collapse
Affiliation(s)
- Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Prabhjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Harmanpreet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Inderjeet Verma
- Department of Pharmacy Practice, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana, India
| |
Collapse
|
12
|
Development of inhibitors targeting glycogen synthase kinase-3β for human diseases: Strategies to improve selectivity. Eur J Med Chem 2022; 236:114301. [PMID: 35390715 DOI: 10.1016/j.ejmech.2022.114301] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a conserved serine/threonine kinase that participates in the transmission of multiple signaling pathways and plays an important role in the occurrence and development of human diseases, such as metabolic diseases, neurological diseases and cancer, making it to be a potential and promising drug target. To date, copious GSK-3β inhibitors have been synthesized, but only few have entered clinical trials. Most of them exerts poor selectivity, concomitant off-target effects and side effects. This review summarizes the structural characteristics, biological functions and relationship with diseases of GSK-3β, as well as the selectivity profile and therapeutic potential of different categories of GSK-3β inhibitors. Strategies for increasing selectivity and reducing adverse effects are proposed for the future design of GSK-3β inhibitors.
Collapse
|
13
|
Campiani G, Khan T, Ulivieri C, Staiano L, Papulino C, Magnano S, Nathwani S, Ramunno A, Lucena-Agell D, Relitti N, Federico S, Pozzetti L, Carullo G, Casagni A, Brogi S, Vanni F, Galatello P, Ghanim M, McCabe N, Lamponi S, Valoti M, Ibrahim O, O'Sullivan J, Turkington R, Kelly VP, VanWemmel R, Díaz JF, Gemma S, Zisterer D, Altucci L, De Matteis A, Butini S, Benedetti R. Design and synthesis of multifunctional microtubule targeting agents endowed with dual pro-apoptotic and anti-autophagic efficacy. Eur J Med Chem 2022; 235:114274. [PMID: 35344902 DOI: 10.1016/j.ejmech.2022.114274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
Abstract
Autophagy is a lysosome dependent cell survival mechanism and is central to the maintenance of organismal homeostasis in both physiological and pathological situations. Targeting autophagy in cancer therapy attracted considerable attention in the past as stress-induced autophagy has been demonstrated to contribute to both drug resistance and malignant progression and recently interest in this area has re-emerged. Unlocking the therapeutic potential of autophagy modulation could be a valuable strategy for designing innovative tools for cancer treatment. Microtubule-targeting agents (MTAs) are some of the most successful anti-cancer drugs used in the clinic to date. Scaling up our efforts to develop new anti-cancer agents, we rationally designed multifunctional agents 5a-l with improved potency and safety that combine tubulin depolymerising efficacy with autophagic flux inhibitory activity. Through a combination of computational, biological, biochemical, pharmacokinetic-safety, metabolic studies and SAR analyses we identified the hits 5i,k. These MTAs were characterised as potent pro-apoptotic agents and also demonstrated autophagy inhibition efficacy. To measure their efficacy at inhibiting autophagy, we investigated their effects on basal and starvation-mediated autophagic flux by quantifying the expression of LC3II/LC3I and p62 proteins in oral squamous cell carcinoma and human leukaemia through western blotting and by immunofluorescence study of LC3 and LAMP1 in a cervical carcinoma cell line. Analogues 5i and 5k, endowed with pro-apoptotic activity on a range of hematological cancer cells (including ex-vivo chronic lymphocytic leukaemia (CLL) cells) and several solid tumor cell lines, also behaved as late-stage autophagy inhibitors by impairing autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy.
| | - Tuhina Khan
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I, 53100, Siena, Italy
| | - Leopoldo Staiano
- Cell Biology and Disease Mechanisms, Telethon Institute of Genetics and Medicine, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Institute for Genetic and Biomedical Research, National Research Council (CNR), via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L, De Crecchio 7, 80138, Naples, IT, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Seema Nathwani
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, via G. Paolo II 132, 84084, Fisciano (SA), Italy
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biologicas Margarita Salas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Nicola Relitti
- IRBM Science Park, Via Pontina km 30, 600, 00071, Pomezia, Rome, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Alice Casagni
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Francesca Vanni
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Paola Galatello
- Department of Pharmacy, University of Salerno, via G. Paolo II 132, 84084, Fisciano (SA), Italy
| | - Magda Ghanim
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Niamh McCabe
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Health Sciences Building, BT9 7BL, Belfast, United Kingdom
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Ola Ibrahim
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Jeffrey O'Sullivan
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Richard Turkington
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Health Sciences Building, BT9 7BL, Belfast, United Kingdom
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Ruben VanWemmel
- Centro de Investigaciones Biologicas Margarita Salas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - J Fernando Díaz
- Centro de Investigaciones Biologicas Margarita Salas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L, De Crecchio 7, 80138, Naples, IT, Italy; Biogem Institute of Molecular Biology and Genetics, Via Camporeale, 83031, Ariano Irpino, Italy
| | - Antonella De Matteis
- Cell Biology and Disease Mechanisms, Telethon Institute of Genetics and Medicine, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I, 53100, Siena, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L, De Crecchio 7, 80138, Naples, IT, Italy
| |
Collapse
|
14
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
15
|
Fernandez RA, Quimque MT, Notarte KI, Manzano JA, Pilapil DY, de Leon VN, San Jose JJ, Villalobos O, Muralidharan NH, Gromiha MM, Brogi S, Macabeo APG. Myxobacterial depsipeptide chondramides interrupt SARS-CoV-2 entry by targeting its broad, cell tropic spike protein. J Biomol Struct Dyn 2021; 40:12209-12220. [PMID: 34463219 PMCID: PMC8436362 DOI: 10.1080/07391102.2021.1969281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
The severity of the COVID-19 pandemic has necessitated the search for drugs against SARS-CoV-2. In this study, we explored via in silico approaches myxobacterial secondary metabolites against various receptor-binding regions of SARS-CoV-2 spike which are responsible in recognition and attachment to host cell receptors mechanisms, namely ACE2, GRP78, and NRP1. In general, cyclic depsipeptide chondramides conferred high affinities toward the spike RBD, showing strong binding to the known viral hot spots Arg403, Gln493 and Gln498 and better selectivity compared to most host cell receptors studied. Among them, chondramide C3 (1) exhibited a binding energy which remained relatively constant when docked against most of the spike variants. Chondramide C (2) on the other hand exhibited strong affinity against spike variants identified in the United Kingdom (N501Y), South Africa (N501Y, E484K, K417N) and Brazil (N501Y, E484K, K417T). Chondramide C6 (9) showed highest BE towards GRP78 RBD. Molecular dynamics simulations were also performed for chondramides 1 and 2 against SARS-CoV-2 spike RBD of the Wuhan wild-type and the South African variant, respectively, where resulting complexes demonstrated dynamic stability within a 120-ns simulation time. Protein-protein binding experiments using HADDOCK illustrated weaker binding affinity for complexed chondramide ligands in the RBD against the studied host cell receptors. The chondramide derivatives in general possessed favorable pharmacokinetic properties, highlighting their potential as prototypic anti-COVID-19 drugs limiting viral attachment and possibly minimizing viral infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rey Arturo Fernandez
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Mark Tristan Quimque
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Chemistry Department, College of Science and Mathematics, Mindanao State University – Iligan Institute of Technology, Tibanga, Iligan City, Philippines
| | - Kin Israel Notarte
- Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Joe Anthony Manzano
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Delfin Yñigo Pilapil
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Von Novi de Leon
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - John Jeric San Jose
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Omar Villalobos
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Nisha Harur Muralidharan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, India
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, India
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
16
|
Revisiting the Proposition of Binding Pockets and Bioactive Poses for GSK-3β Allosteric Modulators Addressed to Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22158252. [PMID: 34361017 PMCID: PMC8348340 DOI: 10.3390/ijms22158252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Glycogen synthase kinase-3 beta (GSK-3β) is an enzyme pertinently linked to neurodegenerative diseases since it is associated with the regulation of key neuropathological features in the central nervous system. Among the different kinds of inhibitors of this kinase, the allosteric ones stand out due to their selective and subtle modulation, lowering the chance of producing side effects. The mechanism of GSK-3β allosteric modulators may be considered still vague in terms of elucidating a well-defined binding pocket and a bioactive pose for them. In this context, we propose to reinvestigate and reinforce such knowledge by the application of an extensive set of in silico methodologies, such as cavity detection, ligand 3D shape analysis and docking (with robust validation of corresponding protocols), and molecular dynamics. The results here obtained were consensually consistent in furnishing new structural data, in particular by providing a solid bioactive pose of one of the most representative GSK-3β allosteric modulators. We further applied this to the prospect for new compounds by ligand-based virtual screening and analyzed the potential of the two obtained virtual hits by quantum chemical calculations. All potential hits achieved will be subsequently tested by in vitro assays in order to validate our approaches as well as to unveil novel chemical entities as GSK-3β allosteric modulators.
Collapse
|
17
|
Mondal SK, Mukhoty S, Kundu H, Ghosh S, Sen MK, Das S, Brogi S. In silico analysis of RNA-dependent RNA polymerase of the SARS-CoV-2 and therapeutic potential of existing antiviral drugs. Comput Biol Med 2021; 135:104591. [PMID: 34216889 PMCID: PMC8220294 DOI: 10.1016/j.compbiomed.2021.104591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/18/2023]
Abstract
The continued sustained threat of the SARS-CoV-2 virus world-wide, urgently calls for far-reaching effective therapeutic strategies for treating this emerging infection. Accordingly, this study explores mode of action and therapeutic potential of existing antiviral drugs. Multiple sequence alignment and phylogenetic analyses indicate that the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 was mutable and similar to bat coronavirus RaTG13. Successive interactions between RdRp (nsp12 alone or in complex with cofactors nsp7-8) and viral RNA demonstrated that the binding affinity values remained the same, but the sites of interaction of RdRp (highly conserved for homologous sequences from different organisms) were altered in the presence of selected antiviral drugs such as Remdesivir, and Sofosbuvir. The antiviral drug Sofosbuvir reduced the number of hydrogen bonds formed between RdRp and RNA. Remdesivir bound more tightly to viral RNA than viral RdRp alone or the nsp12-7-8 hexadecameric complex, resulting in a significant number of hydrogen bonds being formed in the uracil-rich region. The interaction between nsp12-7-8 complex and RNA was mediated by specific interaction sites of nsp7-8. Therefore, the conserved nature of RdRp interaction sites, and alterations due to drug intervention indicate the therapeutic potential of the selected drugs. In this article, we provide additional focus on the interacting amino acids of the nsp7-8 complex and highlight crucial regions that could be targeted for precluding a correct recognition of subunits involved in the hexadecameric assembly, to rationally design molecules endowed with a significant antiviral profile.
Collapse
Affiliation(s)
- Sunil Kanti Mondal
- Department of Biotechnology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| | - Samyabrata Mukhoty
- Department of Biotechnology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Himangsu Kundu
- Department of Biotechnology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Subhajit Ghosh
- Department of Biotechnology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Suvankar Das
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| |
Collapse
|
18
|
Jankowska A, Satała G, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Multifunctional Ligands with Glycogen Synthase Kinase 3 Inhibitory Activity as a New Direction in Drug Research for Alzheimer's Disease. Curr Med Chem 2021; 28:1731-1745. [PMID: 32338201 DOI: 10.2174/0929867327666200427100453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) belongs to the most common forms of dementia that causes a progressive loss of brain cells and leads to memory impairment and decline of other thinking skills. There is yet no effective treatment for AD; hence, the search for new drugs that could improve memory and other cognitive functions is one of the hot research topics worldwide. Scientific efforts are also directed toward combating behavioral and psychological symptoms of dementia, which are an integral part of the disease. Several studies have indicated that glycogen synthase kinase 3 beta (GSK3β) plays a crucial role in the pathogenesis of AD. Moreover, GSK3β inhibition provided beneficial effects on memory improvement in multiple animal models of AD. The present review aimed to update the most recent reports on the discovery of novel multifunctional ligands with GSK3β inhibitory activity as potential drugs for the symptomatic and disease-modifying therapy of AD. Compounds with GSK3β inhibitory activity seem to be an effective pharmacological approach for treating the causes and symptoms of AD as they reduced neuroinflammation and pathological hallmarks in animal models of AD and provided relief from cognitive and neuropsychiatric symptoms. These compounds have the potential to be used as drugs for the treatment of AD, but their precise pharmacological, pharmacokinetic, toxicological and clinical profiles need to be defined.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| | - GraŻyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
19
|
Grillo A, Fezza F, Chemi G, Colangeli R, Brogi S, Fazio D, Federico S, Papa A, Relitti N, Di Maio R, Giorgi G, Lamponi S, Valoti M, Gorelli B, Saponara S, Benedusi M, Pecorelli A, Minetti P, Valacchi G, Butini S, Campiani G, Gemma S, Maccarrone M, Di Giovanni G. Selective Fatty Acid Amide Hydrolase Inhibitors as Potential Novel Antiepileptic Agents. ACS Chem Neurosci 2021; 12:1716-1736. [PMID: 33890763 DOI: 10.1021/acschemneuro.1c00192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Temporal lobe epilepsy is the most common form of epilepsy, and current antiepileptic drugs are ineffective in many patients. The endocannabinoid system has been associated with an on-demand protective response to seizures. Blocking endocannabinoid catabolism would elicit antiepileptic effects, devoid of psychotropic effects. We herein report the discovery of selective anandamide catabolic enzyme fatty acid amide hydrolase (FAAH) inhibitors with promising antiepileptic efficacy, starting from a further investigation of our prototypical inhibitor 2a. When tested in two rodent models of epilepsy, 2a reduced the severity of the pilocarpine-induced status epilepticus and the elongation of the hippocampal maximal dentate activation. Notably, 2a did not affect hippocampal dentate gyrus long-term synaptic plasticity. These data prompted our further endeavor aiming at discovering new antiepileptic agents, developing a new set of FAAH inhibitors (3a-m). Biological studies highlighted 3h and 3m as the best performing analogues to be further investigated. In cell-based studies, using a neuroblastoma cell line, 3h and 3m could reduce the oxinflammation state by decreasing DNA-binding activity of NF-kB p65, devoid of cytotoxic effect. Unwanted cardiac effects were excluded for 3h (Langendorff perfused rat heart). Finally, the new analogue 3h reduced the severity of the pilocarpine-induced status epilepticus as observed for 2a.
Collapse
Affiliation(s)
- Alessandro Grillo
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Filomena Fezza
- Department of Experimental Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00121 Rome, Italy
| | - Giulia Chemi
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Roberto Colangeli
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Domenico Fazio
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Stefano Federico
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Papa
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Nicola Relitti
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, 15261 Pennsylvania, United States
| | - Gianluca Giorgi
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Lamponi
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Beatrice Gorelli
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Mascia Benedusi
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Department, NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, 28081 North Carolina, United States
| | | | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy
- Plants for Human Health Institute, Animal Science Department, NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, 28081 North Carolina, United States
- Department of Food and Nutrition, Kyung Hee University, 02447 Seoul, South Korea
| | - Stefania Butini
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giuseppe Campiani
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio snc, 67100 L’Aquila, Italy
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Neuroscience Division, School of Biosciences, Cardiff University, CF10 3AT Cardiff, United Kingdom
| |
Collapse
|
20
|
An updated research of glycogen synthase kinase-3β inhibitors: a review. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02718-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
De Simone A, Tumiatti V, Andrisano V, Milelli A. Glycogen Synthase Kinase 3β: A New Gold Rush in Anti-Alzheimer's Disease Multitarget Drug Discovery? J Med Chem 2020; 64:26-41. [PMID: 33346659 PMCID: PMC8016207 DOI: 10.1021/acs.jmedchem.0c00931] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Alzheimer’s
disease (AD), like other multifactorial diseases,
is the result of a systemic breakdown of different physiological networks.
As result, several lines of evidence suggest that it could be more
efficiently tackled by molecules directed toward different dysregulated
biochemical targets or pathways. In this context, the selection of
targets to which the new molecules will be directed is crucial. For
years, the design of such multitarget-directed ligands (MTDLs) has
been based on the selection of main targets involved in the “cholinergic”
and the “β-amyloid” hypothesis. Recently, there
have been some reports on MTDLs targeting the glycogen synthase kinase
3β (GSK-3β) enzyme, due to its appealing properties. Indeed,
this enzyme is involved in tau hyperphosphorylation, controls a multitude
of CNS-specific signaling pathways, and establishes strict connections
with several factors implicated in AD pathogenesis. In the present
Miniperspective, we will discuss the reasons behind the development
of GSK-3β-directed MTDLs and highlight some of the recent efforts
to obtain these new classes of MTDLs as potential disease-modifying
agents.
Collapse
Affiliation(s)
- Angela De Simone
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
22
|
Relitti N, Saraswati AP, Chemi G, Brindisi M, Brogi S, Herp D, Schmidtkunz K, Saccoccia F, Ruberti G, Ulivieri C, Vanni F, Sarno F, Altucci L, Lamponi S, Jung M, Gemma S, Butini S, Campiani G. Novel quinolone-based potent and selective HDAC6 inhibitors: Synthesis, molecular modeling studies and biological investigation. Eur J Med Chem 2020; 212:112998. [PMID: 33199154 DOI: 10.1016/j.ejmech.2020.112998] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
In this work we describe the synthesis of potent and selective quinolone-based histone deacetylase 6 (HDAC6) inhibitors. The quinolone moiety has been exploited as an innovative bioactive cap-group for HDAC6 inhibition; its synthesis was achieved by applying a multicomponent reaction. The optimization of potency and selectivity of these products was performed by employing computational studies which led to the discovery of the diethylaminomethyl derivatives 7g and 7k as the most promising hit molecules. These compounds were investigated in cellular studies to evaluate their anticancer effect against colon (HCT-116) and histiocytic lymphoma (U9347) cancer cells, showing good to excellent potency, leading to tumor cell death by apoptosis induction. The small molecules 7a, 7g and 7k were able to strongly inhibit the cytoplasmic and slightly the nuclear HDAC enzymes, increasing the acetylation of tubulin and of the lysine 9 and 14 of histone 3, respectively. Compound 7g was also able to increase Hsp90 acetylation levels in HCT-116 cells, thus further supporting its HDAC6 inhibitory profile. Cytotoxicity and mutagenicity assays of these molecules showed a safe profile; moreover, the HPLC analysis of compound 7k revealed good solubility and stability profile.
Collapse
Affiliation(s)
- Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - A Prasanth Saraswati
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Giulia Chemi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Margherita Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Daniel Herp
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology, CNR, Campus A. Buzzati-Traverso. Via E. Ramarini 32, 00015, Monterotondo, Rome, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, CNR, Campus A. Buzzati-Traverso. Via E. Ramarini 32, 00015, Monterotondo, Rome, Italy
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Francesca Vanni
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Federica Sarno
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| |
Collapse
|
23
|
Chen H, Zhang X, Zhang X, Fan Z, Liu W, Lei Y, Zhu C, Ma B. Dihydrobenzoxazinone derivatives as aldose reductase inhibitors with antioxidant activity. Bioorg Med Chem 2020; 28:115699. [PMID: 33069078 DOI: 10.1016/j.bmc.2020.115699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 01/29/2023]
Abstract
Dihydrobenzoxazinone based design and synthesis produced two series of compounds as aldose reductase (ALR2) inhibitor candidates. In particular, phenolic residues were embodied into the compounds for the combination of strengthening the inhibitory acitvity and antioxidant ability to retard the progression of diabetic complications. Most of the derivatives with styryl side chains exhibited excellent activities on selective ALR2 inhibition with IC50 values ranging from 0.082 to 0.308 μM, and {8-[2-(4-hydroxy-phenyl)-vinyl]-2-oxo-2,3-dihydro-benzo[1,4]oxazin-4-yl}-acetic acid (3a) was the most potent. More significantly, most of dihydrobenzoxazinone compounds revealed not only good inhibitory effect on ALR2, but also showed powerful antioxidant activity. Notably, phenolic compound 3a was even comparable to the well-known antioxidant Trolox, confirming that the C8 p-hydroxystyryl substitution was key structure of lowering oxidative stress. Therefore, these results provided an achievement of multifunctional ALR2 inhibitors possessing capacities for both ALR2 inhibition and as antioxidants.
Collapse
Affiliation(s)
- Huan Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Xiaonan Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Zhenya Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Wenchao Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Yanqi Lei
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China
| | - Changjin Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China.
| | - Bing Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081 Beijing, China.
| |
Collapse
|
24
|
Gabr MT, Brogi S. MicroRNA-Based Multitarget Approach for Alzheimer's Disease: Discovery of the First-In-Class Dual Inhibitor of Acetylcholinesterase and MicroRNA-15b Biogenesis. J Med Chem 2020; 63:9695-9704. [PMID: 32787143 DOI: 10.1021/acs.jmedchem.0c00756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The multitarget approach in drug design is a powerful strategy in tackling the multifactorial nature of Alzheimer's disease (AD). Herein, we report a novel strategy in the design of multitargeted therapeutics for AD through dual inhibition of acetylcholinesterase (AChE) and microRNA-15b biogenesis. We performed high-throughput screening (HTS) of a chemical library to identify binders of mircoRNA-15b which is identified as a biomarker and potential therapeutic target of AD. The hits from HTS were further screened for their AChE inhibitory activity, the most widely investigated target for the development of AD therapeutics. MG-6267 was identified as the first dual inhibitor of AChE and microRNA-15b biogenesis. Cellular assays revealed the superiority of MG-6267 to single-targeted inhibitors of AChE and microRNA-15b in protecting SH-SY5Y neuroblastoma cells from amyloid-beta (Aβ)-induced cytotoxicity. This work paves the way for future research efforts aiming at the development of microRNA-based multitargeted therapeutics for AD.
Collapse
Affiliation(s)
- Moustafa T Gabr
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
25
|
Carullo G, Federico S, Relitti N, Gemma S, Butini S, Campiani G. Retinitis Pigmentosa and Retinal Degenerations: Deciphering Pathways and Targets for Drug Discovery and Development. ACS Chem Neurosci 2020; 11:2173-2191. [PMID: 32589402 DOI: 10.1021/acschemneuro.0c00358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a group of retinopathies generally caused by genetic mutations. Retinitis pigmentosa (RP) represents one of the most studied IRDs. RP leads to intense vision loss or blindness resulting from the degeneration of photoreceptor cells. To date, RP is mainly treated with palliative supplementation of vitamin A and retinoids, gene therapies, or surgical interventions. Therefore, a pharmacologically based therapy is an urgent need requiring a medicinal chemistry approach, to validate molecular targets able to deal with retinal degeneration. This Review aims at outlining the recent research efforts in identifying new drug targets for RP, especially focusing on the neuroprotective role of the Wnt/β-catenin/GSK3β pathway and apoptosis modulators (in particular PARP-1) but also on growth factors such as VEGF and BDNF. Furthermore, the role of spatiotemporally expressed G protein-coupled receptors (GPR124) in the retina and the emerging function of histone deacetylase inhibitors in promoting retinal neuroprotection will be discussed.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018−2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
26
|
Brogi S, Sirous H, Calderone V, Chemi G. Amyloid β fibril disruption by oleuropein aglycone: long-time molecular dynamics simulation to gain insight into the mechanism of action of this polyphenol from extra virgin olive oil. Food Funct 2020; 11:8122-8132. [DOI: 10.1039/d0fo01511c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insight into the mechanism of action of oleuropein aglycone as a potent anti-amyloidogenic agent.
Collapse
Affiliation(s)
- Simone Brogi
- Department of Pharmacy
- University of Pisa
- 56126 Pisa
- Italy
| | - Hajar Sirous
- Bioinformatics Research Center
- School of Pharmacy and Pharmaceutical Sciences
- Isfahan University of Medical Sciences
- 81746-73461 Isfahan
- Iran
| | | | - Giulia Chemi
- Wellcome Centre for Anti-Infectives Research
- Drug Discovery Unit
- Division of Biological Chemistry and Drug Discovery
- University of Dundee
- DD1 5EH Dundee
| |
Collapse
|
27
|
Grillo A, Chemi G, Brogi S, Brindisi M, Relitti N, Fezza F, Fazio D, Castelletti L, Perdona E, Wong A, Lamponi S, Pecorelli A, Benedusi M, Fantacci M, Valoti M, Valacchi G, Micheli F, Novellino E, Campiani G, Butini S, Maccarrone M, Gemma S. Development of novel multipotent compounds modulating endocannabinoid and dopaminergic systems. Eur J Med Chem 2019; 183:111674. [DOI: 10.1016/j.ejmech.2019.111674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 01/17/2023]
|
28
|
Computational Approaches for Drug Discovery. Molecules 2019; 24:molecules24173061. [PMID: 31443558 PMCID: PMC6749237 DOI: 10.3390/molecules24173061] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
|
29
|
Sirous H, Chemi G, Gemma S, Butini S, Debyser Z, Christ F, Saghaie L, Brogi S, Fassihi A, Campiani G, Brindisi M. Identification of Novel 3-Hydroxy-pyran-4-One Derivatives as Potent HIV-1 Integrase Inhibitors Using in silico Structure-Based Combinatorial Library Design Approach. Front Chem 2019; 7:574. [PMID: 31457006 PMCID: PMC6700280 DOI: 10.3389/fchem.2019.00574] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022] Open
Abstract
We describe herein the development and experimental validation of a computational protocol for optimizing a series of 3-hydroxy-pyran-4-one derivatives as HIV integrase inhibitors (HIV INIs). Starting from a previously developed micromolar inhibitors of HIV integrase (HIV IN), we performed an in-depth investigation based on an in silico structure-based combinatorial library designing approach. This method allowed us to combine a combinatorial library design and side chain hopping with Quantum Polarized Ligand Docking (QPLD) studies and Molecular Dynamics (MD) simulation. The combinatorial library design allowed the identification of the best decorations for our promising scaffold. The resulting compounds were assessed by the mentioned QPLD methodology using a homology model of full-length binary HIV IN/DNA for retrieving the best performing compounds acting as HIV INIs. Along with the prediction of physico-chemical properties, we were able to select a limited number of drug-like compounds potentially displaying potent HIV IN inhibition. From this final set, based on the synthetic accessibility, we further shortlisted three representative compounds for the synthesis. The compounds were experimentally assessed in vitro for evaluating overall HIV-1 IN inhibition, HIV-1 IN strand transfer activity inhibition, HIV-1 activity inhibition and cellular toxicity. Gratifyingly, all of them showed relevant inhibitory activity in the in vitro tests along with no toxicity. Among them HPCAR-28 represents the most promising compound as potential anti-HIV agent, showing inhibitory activity against HIV IN in the low nanomolar range, comparable to that found for Raltegravir, and relevant potency in inhibiting HIV-1 replication and HIV-1 IN strand transfer activity. In summary, our results outline HPCAR-28 as a useful optimized hit for the potential treatment of HIV-1 infection by targeting HIV IN.
Collapse
Affiliation(s)
- Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Giulia Chemi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Zeger Debyser
- Molecular Medicine, K.U. Leuven and IRC KULAK, Leuven, Belgium
| | - Frauke Christ
- Molecular Medicine, K.U. Leuven and IRC KULAK, Leuven, Belgium
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Naples Federico II, Naples, Italy
| |
Collapse
|
30
|
Li J, Fu Q, Liang Y, Cheng B, Li X. Microsecond molecular dynamics simulations and dynamic network analysis provide understanding of the allosteric inactivation of GSK3β induced by the L343R mutation. J Mol Model 2019; 25:111. [DOI: 10.1007/s00894-019-4003-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/21/2019] [Indexed: 12/11/2022]
|
31
|
Lu S, He X, Ni D, Zhang J. Allosteric Modulator Discovery: From Serendipity to Structure-Based Design. J Med Chem 2019; 62:6405-6421. [PMID: 30817889 DOI: 10.1021/acs.jmedchem.8b01749] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Xinheng He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
32
|
A Jocic-type approach for a practical and scalable synthesis of pyrrolonaphthoxazepine (PNOX)-based potent proapoptotic agents. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Brindisi M, Borrelli G, Brogi S, Grillo A, Maramai S, Paolino M, Benedusi M, Pecorelli A, Valacchi G, Di Cesare Mannelli L, Ghelardini C, Allarà M, Ligresti A, Minetti P, Campiani G, di Marzo V, Butini S, Gemma S. Development of Potent Inhibitors of Fatty Acid Amide Hydrolase Useful for the Treatment of Neuropathic Pain. ChemMedChem 2018; 13:2090-2103. [DOI: 10.1002/cmdc.201800397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/05/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Giuseppe Borrelli
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Alessandro Grillo
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Samuele Maramai
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Marco Paolino
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Mascia Benedusi
- Department of Life Sciences and Biotechnology; University of Ferrara; Via Borsari 46 441212 Ferrara Italy
| | - Alessandra Pecorelli
- Department of Animal Science; North Carolina State University; NC Research Campus, PHHI Building, 600 Laureate Way Kannapolis NC 28081 USA
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology; University of Ferrara; Via Borsari 46 441212 Ferrara Italy
- Department of Animal Science; North Carolina State University; NC Research Campus, PHHI Building, 600 Laureate Way Kannapolis NC 28081 USA
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology; Drug Research and Child Health; Section of Pharmacology and Toxicology (NEUROFARBA); University of Florence; Viale G. Pieraccini, 6 50139 Firenze Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology; Drug Research and Child Health; Section of Pharmacology and Toxicology (NEUROFARBA); University of Florence; Viale G. Pieraccini, 6 50139 Firenze Italy
| | - Marco Allarà
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; CNR; Via Campi Flegrei 80078 Pozzuoli (Napoli) Italy
- EPITECH Group SpA; Via Egadi 7 20144 Milano Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; CNR; Via Campi Flegrei 80078 Pozzuoli (Napoli) Italy
| | | | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Vincenzo di Marzo
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; CNR; Via Campi Flegrei 80078 Pozzuoli (Napoli) Italy
- Département de Médecine; Université Laval; 1050, Avenue de la Médecine Québec City QC G1V 0A6 Canada
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs); Department of Biotechnology, Chemistry, and Pharmacy (DoE 2018-2020); University of Siena; Via Aldo Moro 2 53100 Siena Italy
| |
Collapse
|
34
|
Hromádka R, Kejík Z, Jakubek M, Kaplánek R, Šandriková V, Urban M, Martásek P, Král V. Pigments from Filamentous Ascomycetes for Combination Therapy. Curr Med Chem 2018; 26:3812-3834. [PMID: 29600749 DOI: 10.2174/0929867325666180330091933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 11/22/2022]
Abstract
Filamentous ascomycetes (Neurospora and Monascus) have been studied for a long time because of their production of secondary metabolites such as microbial pigments. The ascomycetes represent an interesting group of compounds with high potential for medicinal applications. Many recent studies have shown their efficacy in the treatment of serious pathological states such as oncological diseases, neurodegenerative diseases and hyperlipidaemia. Nevertheless, the clinical usability of ascomycetes is still limited. However, this problem can be solved by the use of these compounds with combinations of other therapeutic agents. This strategy can suppress their side effects and improve their therapeutic efficacy. Moreover, their co-application can significantly enhance conventional therapies that are used. This review summarizes and discusses the general principles of this approach, introduced and supported by numerous examples. In addition, the prediction of the future potential application of this methodology is included.
Collapse
Affiliation(s)
- Róbert Hromádka
- C2P s.r.o. Jungmannova 101 503 51 Chlumec nad Cidlinou, Czech Republic
| | - Zdeněk Kejík
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic.,Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic.,Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Viera Šandriková
- C2P s.r.o. Jungmannova 101 503 51 Chlumec nad Cidlinou, Czech Republic
| | - Marian Urban
- Food Research Institute Prague, Radiova 1285/7, 1285/7, Prague 10, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Vladimír Král
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic.,Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|