1
|
Niharika DG, Salaria P, Reddy MA. Integrated computational approaches for identification of potent pyrazole-based glycogen synthase kinase-3β (GSK-3β) inhibitors: 3D-QSAR, virtual screening, docking, MM/GBSA, EC, MD simulation studies. Mol Divers 2024:10.1007/s11030-024-11026-0. [PMID: 39560899 DOI: 10.1007/s11030-024-11026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Glycogen synthase kinase-3β (GSK-3β) has emerged as a crucial target due to its substantial contribution in various cellular processes. Dysfunctional GSK-3β activity can lead to ion channel disturbances, sustain abnormal excitability, and contribute to the pathogenesis of epilepsy and other GSK-3β-related disorders. A set of 82 pyrazole analogs was utilized to study its structural features using a three-dimensional quantitative structure-activity relationship (3D-QSAR), virtual screening, molecular docking, and molecular dynamics. The QSAR model, validated using internal and external methods, demonstrated robustness with a high correlation coefficient r2training = 0.99, cross-validation coefficient q2 = 0.79, r2test = 0.69, and r2external = 0.74. The "Average of Actives" in the Activity Atlas model identified 17 molecules as active. Subsequent pharmacophore-based virtual screening of 17 actives yielded 70 compounds, which were selected as the prediction set to determine the potential GSK-3β inhibitors. Docking studies pinpointed compound P66 as the promising lead compound, with a docking score of - 10.555 kcal/mol. These findings were further supported by electrostatic potential (ESP), electrostatic complementarity (EC), and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) analyses. Furthermore, a 500 ns molecular dynamics (MD) simulation confirmed the structural and conformational stability of the lead complex throughout the simulation period. As a result, this study suggests that compound P66 holds the potential to be a potent lead candidate for the inhibition of GSK-3β, offering a novel therapeutic approach for GSK-3β related disorders, including epilepsy.
Collapse
Affiliation(s)
- Desu Gayathri Niharika
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Punam Salaria
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| | - M Amarendar Reddy
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India.
| |
Collapse
|
2
|
Mishra A, Thakur A, Sharma R, Onuku R, Kaur C, Liou JP, Hsu SP, Nepali K. Scaffold hopping approaches for dual-target antitumor drug discovery: opportunities and challenges. Expert Opin Drug Discov 2024; 19:1355-1381. [PMID: 39420580 DOI: 10.1080/17460441.2024.2409674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Scaffold hopping has emerged as a practical tactic to enrich the synthetic bank of small molecule antitumor agents. Specifically, it enables the chemist to refine the lead compound's pharmacodynamic, pharmacokinetic, and physiochemical properties. Scaffold hopping opens up fresh molecular territory beyond established patented chemical domains. AREA COVERED The authors present the scaffold hopping-based drug design strategies for dual inhibitory antitumor structural templates in this review. Minor modifications, structure rigidification and simplification (ring-closing and opening), and complete structural overhauls were the strategies employed by the medicinal chemist to generate a library of bifunctional inhibitors. In addition, the review presents an overview of the computational methods of scaffold hopping (software and programs) and organopalladium catalysis leveraged for the synthesis of templates designed via scaffold hopping. EXPERT OPINION The medicinal chemist has demonstrated remarkable prowess in furnishing dual inhibitory antitumor chemical architectures. Scaffold hopping-based drug design strategies have yielded a plethora of pharmacodynamically superior dual modulatory antitumor agents. An integrated approach involving computational advancements, synthetic methodology advancements, and conventional drug design strategies is required to increase the number of scaffold-hopping-assisted drug discovery campaigns.
Collapse
Affiliation(s)
- Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Raphael Onuku
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| |
Collapse
|
3
|
Di Martino S, De Rosa M. The Benzoxazole Heterocycle: A Comprehensive Review of the Most Recent Medicinal Chemistry Developments of Antiproliferative, Brain-Penetrant, and Anti-inflammatory Agents. Top Curr Chem (Cham) 2024; 382:33. [PMID: 39432195 DOI: 10.1007/s41061-024-00477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024]
Abstract
The benzoxazole is one of the most widely exploited heterocycles in drug discovery. Natural occurring and synthetic benzoxazoles show a broad range of biological activities. Many benzoxazoles are available for treating several diseases, and, to date, a few are in clinical trials. Moreover, an ever-increasing number of benzoxazole derivatives are under investigation in the early drug discovery phase and as potential hit or lead compounds. This perspective is an attempt to thoroughly review the rational design, the structure-activity relationship, and the biological activity of the most notable benzoxazoles developed during the past 5 years (period 2019-to date) in cancers, neurological disorders, and inflammation. We also briefly overviewed each target and its role in the disease. The huge amount of work examined suggests the great potential of the scaffold and the high interest of the scientific community in novel biologically active compounds containing the benzoxazole core.
Collapse
Affiliation(s)
- Simona Di Martino
- Medicinal Chemistry Group, Fondazione Ri.MED, via Filippo Marini 14, 90128, Palermo, Italy
| | - Maria De Rosa
- Medicinal Chemistry Group, Fondazione Ri.MED, via Filippo Marini 14, 90128, Palermo, Italy.
| |
Collapse
|
4
|
Shafiq N, Jannat A, Munir H, Rashid M, Parveen S. Exploring the potential of FDA approved anti-diabetic drugs for repurposing against COVID-19: a core combination of multiple computational strategies and integrated artificial intelligence. J Biomol Struct Dyn 2024; 42:6556-6576. [PMID: 37455488 DOI: 10.1080/07391102.2023.2234993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The latest variant of coronavirus is omicron. The World Health Organization (WHO) designated variation 'B.1.1.529' named omicron as a variant of concern (VOC) on 26 November 2021. By September 2020, it will have infected over 16 million patients and killed over 600,000 people over the world. This very infectious viral illness still poses a danger to world health; it has also become the greatest problem the world is facing and become the main area of research. The development of vaccines is insufficient to stop their spread and serious effects. Despite several reputable pharmaceutical firms claiming to have developed a cure for COVID-19. For that purpose, the field-based 3D-QSAR model has been used to analyze a series of anti-diabetic drugs to repurpose them against COVID-19. The LOO verified partial least square (PLS) model generates satisfactory q2 (0.4) and r2 (0.5) values. By using this model 10 compounds were screened out of 55 FDA approved anti-diabetic drugs (built-up library). Additionally, these substances were examined using molecular docking screening and ADMET. Finally, the drugs L8, and L23 were discovered to be the lead drugs. Density functional theory at the B3LYP/6-311G* technique was used to examine structural geometries, electronic characteristics, and molecular electrostatic potential (MEP). This work will greatly assist in the detection and development of leads for early drug development to control COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Aqsa Jannat
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Huma Munir
- Green Chemistry Lab., Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Maryam Rashid
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Shagufta Parveen
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Tayal S, Singh V, Bhatnagar S. 3D-QSAR and ADMET studies of morpholino-pyrimidine inhibitors of DprE1 from Mycobacterium tuberculosis. J Biomol Struct Dyn 2023:1-20. [PMID: 38112325 DOI: 10.1080/07391102.2023.2294496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
DprE1 is involved in the synthesis of Mycobacterium tuberculosis cell wall and is a potent drug target for Tuberculosis (TB) treatment. The structure and dynamics of the loops L-I and L-II flanking the inhibitor binding site was studied using molecular dynamics (MD) simulation and MMPBSA in Amber v18. Docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) of 55 Morpholino-pyrimidine (MP) inhibitors was carried out using Autodock v1.2.0 and Forge v10. ADMET analysis was done using SwissADME and pkCSM. All MP inhibitors docked in the DprE1 binding pocket, making contacts with L-II residues. MD studies showed that L-I and L-II unfold in the absence of the inhibitor but fold stably structure with reduced protein motions in the presence of MP-38, the highest affinity inhibitor. This was confirmed by k-means clustering and secondary structure analysis. L-II residues, L317, F320 and R325 contributed most towards the MMPBSA binding free energy of MP-38. A robust field-based 3D-QSAR model showed values of r2train = 0.982, r2test = 0.702 and q2 = 0.516. The MP inhibitor field points were broadly divided into negative electrostatics near the A, B rings and hydrophobic electrostatics near the D, E rings. Addition of negative groups at methanone position and ring B as well as addition of hydrophobic and bulky groups at ring E will improve activity. Highly active compounds 47, 49 and 50 of MP series exhibited highly favourable drug-like properties. SAR and ADMET insights attained from this model will help in the development of active DprE1 inhibitors in future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonali Tayal
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| | - Vasundhara Singh
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| |
Collapse
|
6
|
Raju B, Sapra B, Silakari O. 3D-QSAR assisted identification of selective CYP1B1 inhibitors: an effective bioisosteric replacement/molecular docking/electrostatic complementarity analysis. Mol Divers 2023; 27:2673-2693. [PMID: 36441444 DOI: 10.1007/s11030-022-10574-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
Cytochrome P450-1B1 is a majorly overexpressed drug-metabolizing enzyme in tumors and is responsible for inactivation and subsequent resistance to a variety of anti-cancer drugs, i.e., docetaxel, tamoxifen, and cisplatin. In the present study, a 3D quantitative structure-activity relationship (3D-QSAR) model has been constructed for the identification, design, and optimization of novel CYP1B1 inhibitors. The model has been built using a set of 148 selective CYP1B1 inhibitors. The developed model was evaluated based on certain statistical parameters including q2 and r2 which showed the acceptable predictive and descriptive capability of the generated model. The developed 3D-QSAR model assisted in understanding the key molecular fields which were firmly related to the selective CYP1B1 inhibition. A theoretic approach for the generation of new lead compounds with optimized CYP1B1 receptor affinity has been performed utilizing bioisosteric replacement analysis. These generated molecules were subjected to a developed 3D-QSAR model to predict the inhibitory activity potentials. Furthermore, these compounds were scrutinized through the activity atlas model, molecular docking, electrostatic complementarity, molecular dynamics, and waterswap analysis. The final hits might act as selective CYP1B1 inhibitors which could address the issue of resistance. This 3D-QSAR includes several chemically diverse selective CYP1B1 receptor ligands and well accounts for the individual ligand's inhibition affinities. These features of the developed 3D-QSAR model will ensure future prospective applications of the model to speed up the identification of new potent and selective CYP1B1 receptor ligands.
Collapse
Affiliation(s)
- Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Bharti Sapra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
7
|
De Luca L, Lombardo L, Mirabile S, Marrazzo A, Dichiara M, Cosentino G, Amata E, Gitto R. Discovery and computational studies of piperidine/piperazine-based compounds endowed with sigma receptor affinity. RSC Med Chem 2023; 14:1734-1742. [PMID: 37731701 PMCID: PMC10507793 DOI: 10.1039/d3md00291h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
Herein, we describe our efforts to identify sigma receptor 1 (S1R) ligands through a screening campaign on our in-house collection of piperidine/piperazine-based compounds. Our investigations led to the discovery of the potent compound 2-[4-(benzyl)-1-piperidin-1-yl]-1-4-(4-phenylpiperazin-1-yl)ethanone (1) with high affinity toward S1R (Ki value of 3.2 nM) that was comparable to reference compound haloperidol (Ki value of 2.5 nM). Functional assay revealed that compound 1 acted as S1R agonist. To decipher the binding mode of this promising S1R ligand as a starting point for further structure-based optimization, we analysed the docking pose by using a S1R-structure derived from cocrystal structures of potent ligands in complex with target protein. The computational study was enriched with molecular dynamic simulations that revealed the crucial amino acid residues that interacted with the most interesting compound 1.
Collapse
Affiliation(s)
- Laura De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale Ferdinando d'Alcontres 31 98166 Messina Italy
| | - Lisa Lombardo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale Ferdinando d'Alcontres 31 98166 Messina Italy
| | - Salvatore Mirabile
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale Ferdinando d'Alcontres 31 98166 Messina Italy
| | - Agostino Marrazzo
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania Viale Andrea Doria 6 95125 Catania Italy
| | - Maria Dichiara
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania Viale Andrea Doria 6 95125 Catania Italy
| | - Giuseppe Cosentino
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania Viale Andrea Doria 6 95125 Catania Italy
| | - Emanuele Amata
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Catania Viale Andrea Doria 6 95125 Catania Italy
| | - Rosaria Gitto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale Ferdinando d'Alcontres 31 98166 Messina Italy
| |
Collapse
|
8
|
Hsieh CJ, Giannakoulias S, Petersson EJ, Mach RH. Computational Chemistry for the Identification of Lead Compounds for Radiotracer Development. Pharmaceuticals (Basel) 2023; 16:317. [PMID: 37259459 PMCID: PMC9964981 DOI: 10.3390/ph16020317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 11/19/2023] Open
Abstract
The use of computer-aided drug design (CADD) for the identification of lead compounds in radiotracer development is steadily increasing. Traditional CADD methods, such as structure-based and ligand-based virtual screening and optimization, have been successfully utilized in many drug discovery programs and are highlighted throughout this review. First, we discuss the use of virtual screening for hit identification at the beginning of drug discovery programs. This is followed by an analysis of how the hits derived from virtual screening can be filtered and culled to highly probable candidates to test in in vitro assays. We then illustrate how CADD can be used to optimize the potency of experimentally validated hit compounds from virtual screening for use in positron emission tomography (PET). Finally, we conclude with a survey of the newest techniques in CADD employing machine learning (ML).
Collapse
Affiliation(s)
- Chia-Ju Hsieh
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Pittalà V. Meet the Editorial Board Member. Mini Rev Med Chem 2022. [DOI: 10.2174/138955752214220729093948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Valeria Pittalà
- Department of Drug and Health Science
University of Catania
Catania
Italy
| |
Collapse
|
10
|
A potent estrogen receptor and microtubule specific purine-benzothiazole-based fluorescent molecular probe induces apoptotic death of breast cancer cells. Sci Rep 2022; 12:10772. [PMID: 35750870 PMCID: PMC9232585 DOI: 10.1038/s41598-022-12933-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common malignancy in women and is a heterogeneous disease at molecular level. Early detection and specificity are the key prerequisite for the treatment of this deadly cancer. To address these issues attention on the breast cancer specific receptor protein(s) is the most realistic option. Herein estrogen (E) and progesterone (Pg) receptors(R) were considered to design fluorescent molecular probes with possible therapeutic option. We adopted QSAR technique to design a library of benzothiazole-purine hybrid molecules. Molecular docking offers us three screened molecules as most potential. Among these molecules one abbreviated as “CPIB” showed blue fluorescence and detected ER positive cancer cells at 1 nM concentration. At elevated concentration, CPIB induces apoptotic deaths of same cancer cells through targeting intracellular microtubules without affecting normal cells or ER negative cells. CPIB is one of its kind with two-in-one potential of “Detection and Destroy” ability targeting ER positive breast cancer cells.
Collapse
|
11
|
Floresta G, Fallica AN, Patamia V, Sorrenti V, Greish K, Rescifina A, Pittalà V. From Far West to East: Joining the Molecular Architecture of Imidazole-like Ligands in HO-1 Complexes. Pharmaceuticals (Basel) 2021; 14:ph14121289. [PMID: 34959690 PMCID: PMC8704944 DOI: 10.3390/ph14121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
HO-1 overexpression has been reported in several cases/types of human malignancies. Unfortunately, poor clinical outcomes are reported in most of these cases, and the inhibition of HO-1 is considered a valuable and proven anticancer approach. To identify novel hit compounds suitable as HO-1 inhibitors, we report here a fragment-based approach where ligand joining experiments were used. The two most important parts of the classical structure of the HO-1 inhibitors were used as a starting point, and 1000 novel compounds were generated and then virtually evaluated by structure and ligand-based approaches. The joining experiments led us to a novel series of indole-based compounds. A synthetic pathway for eight selected molecules was designed, and the compounds were synthesized. The biological activity revealed that some molecules reach the micromolar activity, whereas molecule 4d inhibits the HO-1 with an IC50 of 1.03 μM. This study suggested that our joining approach was successful, and a novel hit compound was generated. These results are ongoing for further development.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.F.); (A.N.F.); (V.P.); (V.S.)
- Department of Analytics, Environmental & Forensics, King’s College London, London SE1 9NH, UK
| | - Antonino Nicolò Fallica
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.F.); (A.N.F.); (V.P.); (V.S.)
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.F.); (A.N.F.); (V.P.); (V.S.)
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.F.); (A.N.F.); (V.P.); (V.S.)
| | - Khaled Greish
- Department of Molecular Medicine and Nanomedicine Unit, Princess Al-Jawhara Center for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.F.); (A.N.F.); (V.P.); (V.S.)
- Correspondence: (A.R.); (V.P.)
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; (G.F.); (A.N.F.); (V.P.); (V.S.)
- Correspondence: (A.R.); (V.P.)
| |
Collapse
|
12
|
Floresta G, Fallica AN, Salerno L, Sorrenti V, Pittalà V, Rescifina A. Growing the molecular architecture of imidazole-like ligands in HO-1 complexes. Bioorg Chem 2021; 117:105428. [PMID: 34710668 DOI: 10.1016/j.bioorg.2021.105428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022]
Abstract
Up-regulation of HO-1 had been frequently reported in different cases and types of human malignancies. Since poor clinical outcomes are reported in these cases, this enzyme's inhibition is considered a valuable and proven anticancer approach. To identify novel HO-1 inhibitors suitable for drug development, we report a structure-guided fragment-based approach to identify new lead compounds. Different parts of the selected molecules were analyzed, and the different series of novel compounds were virtually evaluated. The growing experiments of the classical HO-1 inhibitors structure led us to different hit-compounds. A synthetic pathway for six selected molecules was designed, and the compounds were synthesized. The biological activity revealed that molecules 10 and 12 inhibit the HO-1 activity with an IC50 of 1.01 and 0.90 μM, respectively. This study suggested that our growing approach was successful, and these results are ongoing for further development.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK.
| | - Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Computational Drug Repurposing Resources and Approaches for Discovering Novel Antifungal Drugs against Candida albicans N-Myristoyl Transferase. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a yeast that is an opportunistic fungal pathogen and also identified as ubiquitous polymorphic species that is mainly linked with major fungal infections in humans, particularly in the immunocompromised patients including transplant recipients, chemotherapy patients, HIV-infected patients as well as in low-birth-weight infants. Systemic Candida infections have a high mortality rate of around 29 to 76%. For reducing its infection, limited drugs are existing such as caspofungin, fluconazole, terbinafine, and amphotericin B, etc. which contain unlikable side effects and also toxic. This review intends to utilize advanced bioinformatics technologies such as Molecular docking, Scaffold hopping, Virtual screening, Pharmacophore modeling, Molecular dynamics (MD) simulation for the development of potentially new drug candidates with a drug-repurpose approach against Candida albicans within a limited time frame and also cost reductive.
Collapse
|
14
|
Ye N, Qin W, Tian S, Xu Q, Wold EA, Zhou J, Zhen XC. Small Molecules Selectively Targeting Sigma-1 Receptor for the Treatment of Neurological Diseases. J Med Chem 2020; 63:15187-15217. [PMID: 33111525 DOI: 10.1021/acs.jmedchem.0c01192] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sigma-1 (σ1) receptor, an enigmatic protein originally classified as an opioid receptor subtype, is now understood to possess unique structural and functional features of its own and play critical roles to widely impact signaling transduction by interacting with receptors, ion channels, lipids, and kinases. The σ1 receptor is implicated in modulating learning, memory, emotion, sensory systems, neuronal development, and cognition and accordingly is now an actively pursued drug target for various neurological and neuropsychiatric disorders. Evaluation of the five selective σ1 receptor drug candidates (pridopidine, ANAVEX2-73, SA4503, S1RA, and T-817MA) that have entered clinical trials has shown that reaching clinical approval remains an evasive and important goal. This review provides up-to-date information on the selective targeting of σ1 receptors, including their history, function, reported crystal structures, and roles in neurological diseases, as well as a useful collation of new chemical entities as σ1 selective orthosteric ligands or allosteric modulators.
Collapse
Affiliation(s)
- Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wangzhi Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sheng Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
15
|
Zampieri D, Fortuna S, Calabretti A, Romano M, Menegazzi R, Schepmann D, Wünsch B, Mamolo MG. Synthesis, Cytotoxicity Evaluation, and Computational Insights of Novel 1,4-Diazepane-Based Sigma Ligands. ACS Med Chem Lett 2020; 11:651-656. [PMID: 32435366 DOI: 10.1021/acsmedchemlett.9b00524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
Among several potential applications, sigma receptor ligands can be used as antipsychotics, antiamnesics, and against other neurodegenerative disorders as well as neuroprotective agents. We present herein a new series of diazepane-containing derivatives as σR ligands obtained by a conformational expansion approach of our previously synthesized piperidine-based compounds. The best results were reached by benzofurane 2c, 3c and quinoline 2d, 3d-substituted diazepane derivatives, which showed the highest σR affinity. The cytotoxic activities of synthesized compounds were evaluated against two cancer cell lines, and the results indicated that none of the compounds induced significant toxicity in these cells. We also evaluated the antioxidant activity by radical scavenging capacity of our best compounds on ABTS and H2O2. The results obtained reveal that our new derivatives possess an excellent antioxidant profile and could be protective for the cells. Overall, the benzofurane derivative 2c due to its strong interaction with the active site of the receptor, as confirmed by molecular dynamic simulations, emerged as the optimum compound with high σ1R affinity, low cytotoxicity, and a potent antioxidant activity.
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1-Via Giorgieri 1, University of Trieste, 34127 Trieste, Italy
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1-Via Giorgieri 1, University of Trieste, 34127 Trieste, Italy
| | - Antonella Calabretti
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1-Via Giorgieri 1, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, Via Valerio 28/1, University of Trieste, 34127 Trieste, Italy
| | - Renzo Menegazzi
- Department of Life Sciences, Via Valerio 28/1, University of Trieste, 34127 Trieste, Italy
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - Maria Grazia Mamolo
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1-Via Giorgieri 1, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
16
|
Hu B, Joseph J, Geng X, Wu Y, Suleiman MR, Liu X, Shi J, Wang X, He Z, Wang J, Cheng M. Refined pharmacophore features for virtual screening of human thromboxane A2 receptor antagonists. Comput Biol Chem 2020; 86:107249. [PMID: 32199335 DOI: 10.1016/j.compbiolchem.2020.107249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 11/24/2022]
Abstract
For a long time, the structural basis of TXA2 receptor is limited due to the lack of crystal structure information, till the release of the crystal structure of TXA2 receptor, which deepens our understanding about ligand recognition and selectivity mechanisms of this physiologically important receptor. In this research, we report the successful implementation in the discovery of an optimal pharmacophore model of human TXA2 receptor antagonists through virtual screening. Structure-based pharmacophore models were generated based on two crystal structures of human TXA2 receptor (PDB entry 6IIU and 6IIV). Docking simulation revealed interaction modes of the virtual screening hits against TXA2 receptor, which was validated through molecular dynamics simulation and binding free energy calculation. ADMET properties were also analyzed to evaluate the toxicity and physio-chemical characteristics of the hits. The research would provide valuable insight into the binding mechanisms of TXA2 receptor antagonists and thus be helpful for designing novel antagonists.
Collapse
Affiliation(s)
- Baichun Hu
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Johnson Joseph
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaohui Geng
- School of Pharmacy, Shenyang Pharmaceutical University,Shenyang 110016, People's Republic of China
| | - Yiheng Wu
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Muhammad R Suleiman
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinyue Liu
- School of Pharmacy, Shenyang Pharmaceutical University,Shenyang 110016, People's Republic of China
| | - Jiyue Shi
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiujun Wang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222000, People's Republic of China
| | - Zhicheng He
- School of Pharmacy, Shenyang Pharmaceutical University,Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
17
|
Floresta G, Patamia V, Gentile D, Molteni F, Santamato A, Rescifina A, Vecchio M. Repurposing of FDA-Approved Drugs for Treating Iatrogenic Botulism: A Paired 3D-QSAR/Docking Approach †. ChemMedChem 2019; 15:256-262. [PMID: 31774239 DOI: 10.1002/cmdc.201900594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/24/2019] [Indexed: 12/17/2022]
Abstract
Botulinum neurotoxin (BoNT) is widely used for the treatment of spasticity, focal dystonia, chronic migraine, facial hemispasm, and facial aesthetic treatments. Generally, treatment with botulinum toxin is a safe procedure when conducted by clinicians with expertise, and local side effects are rare and transient. However, occasionally adverse effects can occur due to the spread of the drug to nontargeted muscles and organs, producing dry mouth, fatigue, and flu-like symptoms, up to signs of systemic botulism, which appears to be more frequent in children treated for spasticity than in adults. In silico 3D-QSAR and molecular docking studies were performed to build a structure-based model on selected potent known botulinum neurotoxin type A inhibitors; this was used to screen the US Food and Drug Administration (FDA) database. Thirty molecules were identified as possible light-chain BoNT/A inhibitors. In this study, we applied a well-established ligand- and structure-based methodology for the identification of hit compounds among a database of FDA-approved drugs. The identification of budesonide, protirelin, and ciclesonide followed by other compounds can be considered a starting point for investigations of selected compounds that could bypass much of the time and costs involved in the drug approval process.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Vincenzo Patamia
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, 23845, Costa Masnaga, Lecco, Italy
| | - Andrea Santamato
- Spasticity and Movement Disorders "ReSTaRt" Unit, Physical Medicine and Rehabilitation Section, OORR Hospital, University of Foggia, 71122, Foggia, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy.,Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125, Bari, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via S. Sofia 67, 95123, Catania, Italy
| |
Collapse
|
18
|
Computational Tools in the Discovery of FABP4 Ligands: A Statistical and Molecular Modeling Approach. Mar Drugs 2019; 17:md17110624. [PMID: 31683588 PMCID: PMC6891735 DOI: 10.3390/md17110624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Small molecule inhibitors of adipocyte fatty-acid binding protein 4 (FABP4) have received interest following the recent publication of their pharmacologically beneficial effects. Recently, it was revealed that FABP4 is an attractive molecular target for the treatment of type 2 diabetes, other metabolic diseases, and some type of cancers. In past years, hundreds of effective FABP4 inhibitors have been synthesized and discovered, but, unfortunately, none have reached the clinical research phase. The field of computer-aided drug design seems to be promising and useful for the identification of FABP4 inhibitors; hence, different structure- and ligand-based computational approaches have been used for their identification. In this paper, we searched for new potentially active FABP4 ligands in the Marine Natural Products (MNP) database. We retrieved 14,492 compounds from this database and filtered through them with a statistical and computational filter. Seven compounds were suggested by our methodology to possess a potential inhibitory activity upon FABP4 in the range of 97–331 nM. ADMET property prediction was performed to validate the hypothesis of the interaction with the intended target and to assess the drug-likeness of these derivatives. From these analyses, three molecules that are excellent candidates for becoming new drugs were found.
Collapse
|
19
|
Li Q, Zhang C, Ren Y. Molecular modeling technology studies of novel pyrazoylethylbenzamide derivatives as selective orexin receptor 1 antagonists. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Structure-Based Approach for the Prediction of Mu-opioid Binding Affinity of Unclassified Designer Fentanyl-Like Molecules. Int J Mol Sci 2019; 20:ijms20092311. [PMID: 31083294 PMCID: PMC6539757 DOI: 10.3390/ijms20092311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Three quantitative structure-activity relationship (QSAR) models for predicting the affinity of mu-opioid receptor (μOR) ligands have been developed. The resulted models, exploiting the accessibility of the QSAR modeling, generate a useful tool for the investigation and identification of unclassified fentanyl-like structures. The models have been built using a set of 115 molecules using Forge as a software, and the quality was confirmed by statistical analysis, resulting in being effective for their predictive and descriptive capabilities. The three different approaches were then combined to produce a consensus model and were exploited to explore the chemical landscape of 3000 fentanyl-like structures, generated by a theoretical scaffold-hopping approach. The findings of this study should facilitate the identification and classification of new μOR ligands with fentanyl-like structures.
Collapse
|
21
|
Romeo G, Prezzavento O, Intagliata S, Pittalà V, Modica MN, Marrazzo A, Turnaturi R, Parenti C, Chiechio S, Arena E, Campisi A, Sposito G, Salerno L. Synthesis, in vitro and in vivo characterization of new benzoxazole and benzothiazole-based sigma receptor ligands. Eur J Med Chem 2019; 174:226-235. [PMID: 31042618 DOI: 10.1016/j.ejmech.2019.04.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
A new set of 5-chlorobenzoxazole- and 5-chlorobenzothiazole-based derivatives containing the azepane ring as a basic moiety was designed, synthesized and evaluated through binding assays to measure their affinity and selectivity towards σ1 and σ2 receptors. Compounds 19, 22 and 24, with a four units spacer between the bicyclic scaffold and the azepane ring, showed nanomolar affinity towards both receptor subtype and the best Ki values (Ki σ1 = 1.27, 2.30, and 0.78 and Ki σ2 = 7.9, 3.8, and 7.61 nM, respectively). Evaluation of cytotoxic and apoptotic effects in MCF-7 human cancer cells was useful to assess σ2 receptor activity, while an in vivo mice model of inflammatory pain allowed to analyze σ1 receptor pharmacological properties. In vitro and in vivo results suggested that compound 19 is a σ1/σ2 agonist, compound 24 a σ1 antagonist/σ2 agonist, whereas compound 22 might act as σ1 antagonist/σ2 partial agonist. Due to their pharmacological profile, a potential therapeutic application in cancer of aforesaid novel σ1/σ2 receptor ligands, especially 22 and 24, is proposed.
Collapse
Affiliation(s)
- Giuseppe Romeo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Sebastiano Intagliata
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA; Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maria N Modica
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Santina Chiechio
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Emanuela Arena
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Agata Campisi
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giovanni Sposito
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
22
|
Zhang Z, Gu L, Wang B, Huang W, Zhang Y, Ma Z, Zeng S, Shen Z. Discovery of novel coumarin derivatives as potent and orally bioavailable BRD4 inhibitors based on scaffold hopping. J Enzyme Inhib Med Chem 2019; 34:808-817. [PMID: 30879350 PMCID: PMC6427567 DOI: 10.1080/14756366.2019.1587417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The bromodomain and extra-terminal (BET) bromodomains, particularly BRD4, have been identified as promising therapeutic targets in the treatment of many human disorders such as cancer, inflammation, obesity, and cardiovascular disease. Recently, the discovery of novel BRD4 inhibitors has garnered substantial interest. Starting from scaffold hopping of the reported compound dihydroquinazolinone (PFI-1), a series of coumarin derivatives were designed and synthesised as a new chemotype of BRD4 inhibitors. Interestingly, the representative compounds 13 exhibited potent BRD4 binding affinity and cell proliferation inhibitory activity, and especially displayed a favourable PK profile with high oral bioavailability (F = 49.38%) and metabolic stability (T1/2 = 4.2 h), meaningfully making it as a promising lead compound for further drug development.
Collapse
Affiliation(s)
- Zhimin Zhang
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| | - Lili Gu
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| | - Beibei Wang
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| | - Wenhai Huang
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| | - Yanmin Zhang
- b School of Basic Science , China Pharmaceutical University , Nanjing , PR China
| | - Zhen Ma
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| | - Shenxin Zeng
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| | - Zhengrong Shen
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| |
Collapse
|
23
|
Alam S, Khan F. 3D-QSAR, Docking, ADME/Tox studies on Flavone analogs reveal anticancer activity through Tankyrase inhibition. Sci Rep 2019; 9:5414. [PMID: 30932078 PMCID: PMC6443786 DOI: 10.1038/s41598-019-41984-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/22/2019] [Indexed: 12/28/2022] Open
Abstract
Flavones are known as an inhibitor of tankyrase, a potential drug target of cancer. We here expedited the use of different computational approaches and presented a fast, easy, cost-effective and high throughput screening method to identify flavones analogs as potential tankyrase inhibitors. For this, we developed a field point based (3D-QSAR) quantitative structure-activity relationship model. The developed model showed acceptable predictive and descriptive capability as represented by standard statistical parameters r2 (0.89) and q2 (0.67). This model may help to explain SAR data and illustrated the key descriptors which were firmly related with the anticancer activity. Using the QSAR model a dataset of 8000 flavonoids were evaluated to classify the bioactivity, which resulted in the identification of 1480 compounds with the IC50 value of less than 5 µM. Further, these compounds were scrutinized through molecular docking and ADMET risk assessment. Total of 25 compounds identified which further analyzed for drug-likeness, oral bioavailability, synthetic accessibility, lead-likeness, and alerts for PAINS & Brenk. Besides, metabolites of screened compounds were also analyzed for pharmacokinetics compliance. Finally, compounds F2, F3, F8, F11, F13, F20, F21 and F25 with predicted activity (IC50) of 1.59, 1, 0.62, 0.79, 3.98, 0.79, 0.63 and 0.64, respectively were find as top hit leads. This study is offering the first example of a computationally-driven tool for prioritization and discovery of novel flavone scaffold for tankyrase receptor affinity with high therapeutic windows.
Collapse
Affiliation(s)
- Sarfaraz Alam
- Metabolic & Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.-CIMAP, Lucknow, 226015, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Feroz Khan
- Metabolic & Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.-CIMAP, Lucknow, 226015, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
24
|
Floresta G, Amata E, Gentile D, Romeo G, Marrazzo A, Pittalà V, Salerno L, Rescifina A. Fourfold Filtered Statistical/Computational Approach for the Identification of Imidazole Compounds as HO-1 Inhibitors from Natural Products. Mar Drugs 2019; 17:md17020113. [PMID: 30759842 PMCID: PMC6409521 DOI: 10.3390/md17020113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022] Open
Abstract
Over-regulation of Heme oxygenase 1 (HO-1) has been recently identified in many types of human cancer, and in these cases, poor clinical outcomes are normally reported. Indeed, the inhibition of HO-1 is being considered as an anticancer approach. Imidazole scaffold is normally present in most of the classical HO-1 inhibitors and seems indispensable to the inhibitory activity due to its strong interaction with the Fe(II) of the heme group. In this paper, we searched for new potentially HO-1 inhibitors among three different databases: Marine Natural Products (MNP), ZINC Natural Products (ZNP) and Super Natural II (SN2). 484,527 compounds were retrieved from the databases and filtered through four statistical/computational filters (2D descriptors, 2D-QSAR pharmacophoric model, 3D-QSAR pharmacophoric model, and docking). Different imidazole-based compounds were suggested by our methodology to be potentially active in inhibiting the HO-1, and the results have been rationalized by the bioactivity of the filtered molecules reported in the literature.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Emanuele Amata
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
25
|
Salerno L, Floresta G, Ciaffaglione V, Gentile D, Margani F, Turnaturi R, Rescifina A, Pittalà V. Progress in the development of selective heme oxygenase-1 inhibitors and their potential therapeutic application. Eur J Med Chem 2019; 167:439-453. [PMID: 30784878 DOI: 10.1016/j.ejmech.2019.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Heme oxygenases (HOs) are a family of enzymes involved in the selective catabolism of free circulating heme. While HO-2 is constitutively expressed, HO-1 is strongly overexpressed under stressful stimuli (e.g., oxidative stress). Under these conditions, HO-1 exerts its strong cytoprotective activities and plays a crucial role in stimulating cell survival by removing the pro-oxidant heme and by producing carbon monoxide and biliverdin (promptly reduced to bilirubin). Unfortunately, the broad spectrum of HO-1 cytoprotective effects has been well experimentally documented both in normal and tumor cells, where the enzyme can be overexpressed, making it an exciting target in the management of some type of tumors. Development of non-competitive HO-1 inhibitors dates back in 2002 with the discovery of Azalanstat. Since then, many efforts have been devoted to the identification of selective HO-1 and HO-2 inhibitors and to unravel the molecular determinants responsible for selectivity. Molecular modeling studies supported the identification of chemical features involved in the recognition and inhibition of these enzymes. Herein, medicinal chemistry aspects and in silico studies related to the development of HO inhibitors will be discussed. The purpose of this review is to highlight recent advances in the development of new selective HO-1 and HO-2 inhibitors and covers the last six years (2013-2018).
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Valeria Ciaffaglione
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Fatima Margani
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, Bari, 70125, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
26
|
Floresta G, Dichiara M, Gentile D, Prezzavento O, Marrazzo A, Rescifina A, Amata E. Morphing of Ibogaine: A Successful Attempt into the Search for Sigma-2 Receptor Ligands. Int J Mol Sci 2019; 20:ijms20030488. [PMID: 30678129 PMCID: PMC6386901 DOI: 10.3390/ijms20030488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Ibogaine is a psychoactive indole alkaloid with high affinity for several targets including the σ2 receptor. Indeed, extensive data support the involvement of the σ2 receptor in neurological disorders, including Alzheimer’s disease, schizophrenia, alcohol abuse and pain. Due to its serious side effects which prevent ibogaine from potential clinical applications, novel ibogaine derivatives endowed with improved σ2 receptor affinity may be particularly beneficial. With the purpose to facilitate the investigation of iboga alkaloid derivatives which may serve as templates for the design of selective σ2 receptor ligands, here we report a deconstruction study on the ibogaine tricyclic moiety and a successive scaffold-hopping of the indole counterpart. A 3D-QSAR model has been applied to predict the σ2 pKi values of the new compounds, whereas a molecular docking study conducted upon the σ2 receptor built by homology modeling was used to further validate the best-scored molecules. We eventually evaluated pinoline, a carboline derivative, for σ2 receptor affinity through radioligand binding assay and the results confirmed the predicted high µM range of affinity and good selectivity. The obtained results could be helpful in the drug design process of new ibogaine simplified analogs with improved σ2 receptor binding capabilities.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Maria Dichiara
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy.
| | - Emanuele Amata
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| |
Collapse
|
27
|
Wang ZZ, Ma CY, Yang J, Gao QB, Sun XD, Ding L, Liu HM. Investigating the binding mechanism of (4-Cyanophenyl)glycine derivatives as reversible LSD1 by 3D-QSAR, molecular docking and molecular dynamics simulations. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Floresta G, Pistarà V, Christensen KE, Amata E, Marrazzo A, Gentile D, Rescifina A, Punzo F. A Pseudouridine Isoxazolidinyl Nucleoside Analogue Structural Analysis: A Morphological Approach. Molecules 2018; 23:molecules23123381. [PMID: 30572684 PMCID: PMC6321120 DOI: 10.3390/molecules23123381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/03/2022] Open
Abstract
An in silico study has been conducted upon (3′RS,5′SR)-5-[2′-benzyl-5′-hydroxymethyl-1′,2′-isoxazolidin-3′-yl]uracil through a molecular dynamics/docking approach that highlights its potential inhibitory activity upon the wild-type pseudouridine 5′-monophosphate glycosidase. The crystal structure of this compound has been solved by means of X-ray single crystal diffraction and the data inferred were used to predict its crystal morphology. These data were compared with optical microscopy images and confirmed the validity of the computed models. This robust approach, already used for several other different compounds, provides a fast and reliable tool to standardize a crystallization method in order to get similar and good quality crystals. As different crystal shapes could be associated with different polymorphic forms, this method could be considered a fast and cheap screening to choose among different and coexistent polymorphic forms. Furthermore, a match with the original crystal structure of pseudouridine 5′-monophosphate is provided.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Kirsten E Christensen
- Chemical Crystallography, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| | - Emanuele Amata
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Agostino Marrazzo
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Davide Gentile
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Francesco Punzo
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
29
|
Floresta G, Cilibrizzi A, Abbate V, Spampinato A, Zagni C, Rescifina A. FABP4 inhibitors 3D-QSAR model and isosteric replacement of BMS309403 datasets. Data Brief 2018; 22:471-483. [PMID: 30619925 PMCID: PMC6312796 DOI: 10.1016/j.dib.2018.12.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
The data have been obtained from FABP4 inhibitor molecules previously published. The 120 compounds were used to build a 3D-QSAR model. The development of the QSAR model has been undertaken with the use of Forge software using the PM3 optimized structure and the experimental IC50 of each compound. The QSAR model was also employed to predict the activity of 3000 new isosteric derivatives of BMS309403. The isosteric replacement was also validated by the synthesis and the biological screening of three new compounds reported in the related research article “3D-QSAR assisted identification of FABP4 inhibitors: An effective scaffold hopping analysis/QSAR evaluation” (Floresta et al., 2019).
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.,Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.,Institute of Pharmaceutical Science, King׳s College London, Stamford Street, London SE1 9NH, UK
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King׳s College London, Stamford Street, London SE1 9NH, UK.,King׳s Forensics, School of Population Health & Environmental Sciences, King׳s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Vincenzo Abbate
- King׳s Forensics, School of Population Health & Environmental Sciences, King׳s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Ambra Spampinato
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Chiara Zagni
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
30
|
Floresta G, Cilibrizzi A, Abbate V, Spampinato A, Zagni C, Rescifina A. 3D-QSAR assisted identification of FABP4 inhibitors: An effective scaffold hopping analysis/QSAR evaluation. Bioorg Chem 2018; 84:276-284. [PMID: 30529845 DOI: 10.1016/j.bioorg.2018.11.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 02/09/2023]
Abstract
Following on the recent publication of pharmacologically relevant effects, small molecule inhibitors of adipocyte fatty-acid binding protein 4 (FABP4) have attracted high interest. FABP4 is mainly expressed in macrophages and adipose tissue, where it regulates fatty acid storage and lipolysis, being also an important mediator of inflammation. In this regard, FABP4 recently demonstrated an interesting molecular target for the treatment of type 2 diabetes, other metabolic diseases and some type of cancers. In the past years, hundreds of effective FABP4 inhibitors have been synthesized. In this paper, a quantitative structure-activity relationship (QSAR) model has been produced, in order to predict the bioactivity of FABP4 inhibitors. The methodology has been combined with a scaffold-hopping approach, allowing to identify three new molecules that act as effective inhibitors of this protein. These molecules, synthesized and tested for their FABP4 inhibitor activity, showed IC50 values between 3.70 and 5.59 μM, with a high level of agreement with the predicted values.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy; Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK.
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK; King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Vincenzo Abbate
- King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Ambra Spampinato
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Chiara Zagni
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
31
|
Floresta G, Amata E, Barbaraci C, Gentile D, Turnaturi R, Marrazzo A, Rescifina A. A Structure- and Ligand-Based Virtual Screening of a Database of "Small" Marine Natural Products for the Identification of "Blue" Sigma-2 Receptor Ligands. Mar Drugs 2018; 16:md16100384. [PMID: 30322188 PMCID: PMC6212963 DOI: 10.3390/md16100384] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Sigma receptors are a fascinating receptor protein class whose ligands are actually under clinical evaluation for the modulation of opioid analgesia and their use as positron emission tomography radiotracers. In particular, peculiar biological and therapeutic functions are associated with the sigma-2 (σ2) receptor. The σ2 receptor ligands determine tumor cell death through apoptotic and non-apoptotic pathways, and the overexpression of σ2 receptors in several tumor cell lines has been well documented, with significantly higher levels in proliferating tumor cells compared to quiescent ones. This acknowledged feature has found practical application in the development of cancer cell tracers and for ligand-targeting therapy. In this context, the development of new ligands that target the σ2 receptors is beneficial for those diseases in which this protein is involved. In this paper, we conducted a search of new potential σ2 receptor ligands among a database of 1517 “small” marine natural products constructed by the union of the Seaweed Metabolite and the Chemical Entities of Biological Interest (ChEBI) Databases. The structures were passed through two filters that were constituted by our developed two-dimensional (2D) and three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) statistical models, and successively docked upon a σ2 receptor homology model that we built according to the FASTA sequence of the σ2/TMEM97 (SGMR2_HUMAN) receptor.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Emanuele Amata
- Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Carla Barbaraci
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Rita Turnaturi
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| |
Collapse
|
32
|
Floresta G, Apirakkan O, Rescifina A, Abbate V. Discovery of High-Affinity Cannabinoid Receptors Ligands through a 3D-QSAR Ushered by Scaffold-Hopping Analysis. Molecules 2018; 23:molecules23092183. [PMID: 30200181 PMCID: PMC6225167 DOI: 10.3390/molecules23092183] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023] Open
Abstract
Two 3D quantitative structure–activity relationships (3D-QSAR) models for predicting Cannabinoid receptor 1 and 2 (CB1 and CB2) ligands have been produced by way of creating a practical tool for the drug-design and optimization of CB1 and CB2 ligands. A set of 312 molecules have been used to build the model for the CB1 receptor, and a set of 187 molecules for the CB2 receptor. All of the molecules were recovered from the literature among those possessing measured Ki values, and Forge was used as software. The present model shows high and robust predictive potential, confirmed by the quality of the statistical analysis, and an adequate descriptive capability. A visual understanding of the hydrophobic, electrostatic, and shaping features highlighting the principal interactions for the CB1 and CB2 ligands was achieved with the construction of 3D maps. The predictive capabilities of the model were then used for a scaffold-hopping study of two selected compounds, with the generation of a library of new compounds with high affinity for the two receptors. Herein, we report two new 3D-QSAR models that comprehend a large number of chemically different CB1 and CB2 ligands and well account for the individual ligand affinities. These features will facilitate the recognition of new potent and selective molecules for CB1 and CB2 receptors.
Collapse
MESH Headings
- Cannabinoid Receptor Agonists/chemistry
- Cannabinoid Receptor Agonists/metabolism
- Cannabinoid Receptor Antagonists/chemistry
- Cannabinoid Receptor Antagonists/metabolism
- Drug Design
- Hydrophobic and Hydrophilic Interactions
- Ligands
- Models, Molecular
- Molecular Conformation
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Molecular Structure
- Protein Binding
- Quantitative Structure-Activity Relationship
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/chemistry
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/chemistry
- Receptors, Cannabinoid/metabolism
- Software
- Static Electricity
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK.
| | - Orapan Apirakkan
- King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Vincenzo Abbate
- King's Forensics, School of Population Health & Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
33
|
Floresta G, Pittalà V, Sorrenti V, Romeo G, Salerno L, Rescifina A. Development of new HO-1 inhibitors by a thorough scaffold-hopping analysis. Bioorg Chem 2018; 81:334-339. [PMID: 30189413 DOI: 10.1016/j.bioorg.2018.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 01/18/2023]
Abstract
HO-1 inhibition is considered a valuable anticancer approach. In fact, up-regulation of HO-1 had been repeatedly reported in many types of human malignancies, and in these clinical cases, poor outcomes are reported. To identify novel HO-1 inhibitors suitable for drug development, a scaffold-hopping strategy calculation was utilized to design novel derivatives. Different parts of the selected molecule were analyzed and the different series of novel compounds were virtually evaluated. The calculation for the linker moiety of the classical HO-1 inhibitors structure led us to compounds 5 and 6. A synthetic pathway for the two molecules was designed and the compounds were synthesized. The biological activity revealed an HO-1 inhibition of 0.9 and 54 μM for molecules 5 and 6 respectively. This study suggested that our scaffold-hopping approach was successful and these results are ongoing for further development.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
34
|
Design, synthesis and pharmacological evaluation of N4,N6-disubstituted pyrimidine-4,6-diamine derivatives as potent EGFR inhibitors in non-small cell lung cancer. Eur J Med Chem 2018; 157:1300-1325. [PMID: 30195240 DOI: 10.1016/j.ejmech.2018.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/11/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
Abstract
A novel series of 4, 6-disubstituted pyrimidines derivatives were designed, synthesized, and evaluated as epidermal growth factor receptor (EGFR) inhibitors for non-small cell lung cancer(NSCLC). 4, 6-disubstituted pyrimidines as core structure was utilized to substitute the lead structure AZD3759 of the quinazoline basic skeleton via an approach involving scaffold hopping. It was found that compound Yfq07 exhibited the best inhibitory effect compared with AZD3759 in vitro and in vivo: Yfq07 exhibited a competitive ATP inhibitory effect, multiple target effects, and further featured a stronger activity against H3255, A431, HCC827, PC-9 and H1975 compared to AZD3759. Moreover, a stronger pro-apoptotic effect, inhibition of cell G2/M phase on A431, H3255, HCC827 and H1975 could also be observed. In this study, the ultimate goal was changing the core structure to improve other epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) properties while retaining the overall potency. Yfq07 was further explored as an effective 4, 6-pyrimidine anticancer agent for the treatment of human NSCLC.
Collapse
|
35
|
Floresta G, Amata E, Dichiara M, Marrazzo A, Salerno L, Romeo G, Prezzavento O, Pittalà V, Rescifina A. Identification of Potentially Potent Heme Oxygenase 1 Inhibitors through 3D-QSAR Coupled to Scaffold-Hopping Analysis. ChemMedChem 2018; 13:1336-1342. [DOI: 10.1002/cmdc.201800176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/21/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
- Department of Chemical Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Emanuele Amata
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Maria Dichiara
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Agostino Marrazzo
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Loredana Salerno
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Giuseppe Romeo
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Orazio Prezzavento
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Valeria Pittalà
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| | - Antonio Rescifina
- Department of Drug Sciences; University of Catania; Viale A. Doria 6 95125 Catania Italy
| |
Collapse
|
36
|
Novel Structural Insight into Inhibitors of Heme Oxygenase-1 (HO-1) by New Imidazole-Based Compounds: Biochemical and In Vitro Anticancer Activity Evaluation. Molecules 2018; 23:molecules23051209. [PMID: 29783634 PMCID: PMC6099553 DOI: 10.3390/molecules23051209] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
In this paper, the design, synthesis, and molecular modeling of a new azole-based HO-1 inhibitors was reported, using compound 1 as a lead compound, in which an imidazole moiety is linked to a hydrophobic group by means of an ethanolic spacer. The tested compounds showed a good inhibitor activity and possessed IC50 values in the micromolar range. These results were obtained by targeting the hydrophobic western region. Molecular modeling studies confirmed a consolidated binding mode in which the nitrogen of the imidazolyl moiety coordinated the heme ferrous iron, meanwhile the hydrophobic groups were located in the western region of HO-1 binding pocket. Moreover, the new compounds were screened for in silico ADME-Tox properties to predict drug-like behavior with convincing results. Finally, the in vitro antitumor activity profile of compound 1 was investigated in different cancer cell lines and nanomicellar formulation was synthesized with the aim of improving compound's 1 water solubility. Finally, compound 1 was tested in melanoma cells in combination with doxorubicin showing interesting synergic activity.
Collapse
|
37
|
Wang A, Yang Y, Jun Y, Wang B, Lv K, Liu M, Guo H, Lu Y. Synthesis, evaluation and CoMFA/CoMSIA study of nitrofuranyl methyl N-heterocycles as novel antitubercular agents. Bioorg Med Chem 2018; 26:2073-2084. [PMID: 29551372 DOI: 10.1016/j.bmc.2018.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 11/29/2022]
Abstract
A series of novel nitrofuranyl methyl N-heterocycles based on the structure of IIIM-MCD-211 were designed and synthesized. Compounds 6d, 8b and 12a show excellent activity against MTB H37Rv strain (MIC: 0.031-0.062 μg/mL) roughly comparable to INH and IIIM-MCD-211. In addition, a three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on the above mentioned chemical series employing comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques. The developed CoMFA and CoMSIA models display high external predictability (r2pred of 0.954 and 0.935, respectively) and good statistical robustness. More importantly, the newly designed compounds 16a and 16b (MIC: <0.016 μg/mL) based on the two models, as expected, were found to be more active than 12a and IIIM-MCD-21. Design and synthesis of more potent nitrofuranyl methyl N-heterocycles as anti-TB agents are currently in progress.
Collapse
Affiliation(s)
- Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yangsheng Jun
- Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of parmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Huiyuan Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of parmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|