1
|
Elmuradov B, Okmanov R, Juraev B, Dräger G, Butenschön H. New Tricyclic Aryl Quinazoline Derivatives by Suzuki-Miyaura Cross-Coupling. ChemistryOpen 2024:e202400197. [PMID: 39329258 DOI: 10.1002/open.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Indexed: 09/28/2024] Open
Abstract
A number of new deoxyvasicinone (2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-one) and mackinazolinone (6,7,8,9-tetrahydro-11H-pyrido[2,1-b]quinazolin-11-one) derivatives with aryl substituents at C7/C8 and at C5 are reported. These compounds are rare representatives of their kind and were prepared in high yields by Suzuki-Miyaura cross-coupling reactions between 7-bromo-2,3-dihydro[2,1-b]quinazoline-9-(1H)-one, 5,7-dibromo-2,3-dihydro[2,1-b]quinazoline-9-(1H)-one or 8-bromomackinazolinone and respective arylboronic acids with palladium acetate as the catalyst. The products were characterized spectroscopically and, in addition, by X-ray crystal structure analyses in six cases.
Collapse
Affiliation(s)
- Burkhon Elmuradov
- Leibniz Universität Hannover, Institut für Organische Chemie, Schneiderberg 1B, D-30167, Hannover, Germany
- Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, 100170, Mirzo-Ulugbek str. 77, Tashkent, Uzbekistan
| | - Rasul Okmanov
- Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, 100170, Mirzo-Ulugbek str. 77, Tashkent, Uzbekistan
| | - Bakhromjon Juraev
- Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, 100170, Mirzo-Ulugbek str. 77, Tashkent, Uzbekistan
| | - Gerald Dräger
- Leibniz Universität Hannover, Institut für Organische Chemie, Schneiderberg 1B, D-30167, Hannover, Germany
| | - Holger Butenschön
- Leibniz Universität Hannover, Institut für Organische Chemie, Schneiderberg 1B, D-30167, Hannover, Germany
| |
Collapse
|
2
|
Jiang B, Zhang C, Fan TG, Ran YS, Shen YT, Qu Y, Li YM. Cascade Cyclization of N-Cyanamide Alkenes for the Divergent Synthesis of Azido-, Nitro-, and Alkenyl-Containing Pyrroloquinazolinones. Org Lett 2024; 26:8028-8033. [PMID: 39283295 DOI: 10.1021/acs.orglett.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Radical cascade cyclizations of N-cyanamide alkenes have been developed for the divergent synthesis of pyrroloquinazolinones bearing azido, alkenyl, and nitro groups by controlling the reaction conditions. The reaction temperature and the loading of the base play important roles in the different reaction pathways. These reactions are characterized by wide functional group compatibility and mild conditions.
Collapse
Affiliation(s)
- Bo Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Cui Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Tai-Gang Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yu-Song Ran
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yun-Tao Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yuan Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
3
|
Luo W, Zhang C, Dong L. Rhodium(III)-Catalyzed Annulation Synthesis of Difluorinated Quinazolinone Derivatives Using an Amide Carbonyl as the Directing Group. J Org Chem 2024; 89:9627-9640. [PMID: 38888955 DOI: 10.1021/acs.joc.3c02596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The use of amide carbonyl groups of substrates as weakly coordinating directing groups has received a significant amount of attention. Recently, difluoromethylene alkynes have been successfully used in fluorination reactions, resulting in the preparation of various fluorine-containing compounds. This work describes a [4+2] annulation method for creating a range of fluorinated quinolino[2,1-b]quinazolinone derivatives. The derivatives are formed through Rh(III)-catalyzed cascade cyclization of 3-phenylquinazolinones and gem-difluoromethylene alkynes.
Collapse
Affiliation(s)
- Wen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Raji Reddy C, Neeliveettil A, Ajaykumar U, Punna N, Neuville L, Masson G. Access to N-Fused Quinazolinones by Radical-Promoted Cascade Annulations of Alkenyl N-Cyanamides with Aromatic Aldehydes. J Org Chem 2024; 89:7115-7124. [PMID: 38691342 DOI: 10.1021/acs.joc.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A cascade radical cyclization of alkenyl N-cyanamides with aromatic aldehydes has been achieved for an expeditious synthesis of keto-methylated dihydropyrrolo-quinazolinones. Benzoyl radicals, generated from aryl aldehydes in the presence of di-tert-butyl peroxide (DTBP), promoted the domino annulations leading to distinctive functionalized quinazolinones in good yields. In addition, the robustness of the present protocol is validated by employing heterocyclic and natural product-based aldehydes.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anootha Neeliveettil
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagender Punna
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Geraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
5
|
Verma A, Waiker DK, Singh N, Singh A, Saraf P, Bhardwaj B, Kumar P, Krishnamurthy S, Srikrishna S, Shrivastava SK. Lead optimization based design, synthesis, and pharmacological evaluation of quinazoline derivatives as multi-targeting agents for Alzheimer's disease treatment. Eur J Med Chem 2024; 271:116450. [PMID: 38701714 DOI: 10.1016/j.ejmech.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and β-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aβ aggregation inhibition in a self- and AChE-induced Aβ aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aβ-induced cognitive deficits in the Aβ-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aβ and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.
Collapse
Affiliation(s)
- Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Neha Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Abhinav Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Bhagwati Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
6
|
Dong S, Xia J, Wang F, Yang L, Xing S, Du J, Zhang T, Li Z. Discovery of novel deoxyvasicinone derivatives with benzenesulfonamide substituents as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2024; 264:116013. [PMID: 38052155 DOI: 10.1016/j.ejmech.2023.116013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023]
Abstract
A series of deoxyvasicinone derivatives with benzenesulfonamide substituents were designed and synthesized to find a multifunctional anti-Alzheimer's disease (AD) drug. The results of the biological activity evaluation indicated that most compounds demonstrated selective inhibition of acetylcholinesterase (AChE). Among them, g17 exhibited the most potent inhibitory effect on AChE (IC50 = 0.24 ± 0.04 μM). Additionally, g17 exhibited promising properties as a metal chelator and inhibitor of amyloid β peptides self-aggregation (68.34 % ± 1.16 %). Research on oxidative stress has shown that g17 displays neuroprotective effects and effectively suppresses the intracellular accumulation of reactive oxygen species. Besides, g17 demonstrated remarkable anti-neuroinflammatory effects by significantly reducing the production of pro-inflammatory cytokines (such as NO, IL-1β, and TNF-α) and inhibiting the expression of inflammatory mediators iNOS and COX-2. In vivo studies showed that g17 significantly improved AD model mice's cognitive and memory abilities. Histological examination of mouse hippocampal tissue sections using hematoxylin and eosin staining revealed that g17 effectively mitigates neuronal damage. Considering the multifunctional properties of g17, it is regarded as a promising lead compound for treating AD.
Collapse
Affiliation(s)
- Shuanghong Dong
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jucheng Xia
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fang Wang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lili Yang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Siqi Xing
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jiyu Du
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tingting Zhang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zeng Li
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Song B, Nie L, Bozorov K, Kuryazov R, Zhao J, Aisa HA. Design, combinatorial synthesis and cytotoxic activity of 2-substituted furo[2,3-d]pyrimidinone and pyrrolo[2,3-d]pyrimidinone library. Mol Divers 2023; 27:1767-1783. [PMID: 36197552 DOI: 10.1007/s11030-022-10529-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/11/2022] [Indexed: 11/28/2022]
Abstract
A facile protocol was developed for the combinatorial synthesis of furo[2,3-d]pyrimidinone and pyrrolo[2,3-d]pyrimidinone library via a one-pot condensation, from 2-amino furans/pyrroles. Herein reported process required a similar reaction condition, providing mild access to two diverse series of natural product-like heterocycles. Both furo[2,3-d]pyrimidinones and pyrrolo[2,3-d]pyrimidinones were evaluated in vitro against a panel of human cancer cell lines including against human cancer HeLa (cervical), MCF-7 (breast) and HT-29 (colon) cell lines. Derivative 12n ((2-(4-chlorophenyl)-1-methyl-6,7,8,9-tetrahydropyrido[1,2-a]pyrrolo[2,3-d]pyrimidin-4(1H)-one)) showed high activity (IC50 = 6.55 ± 0.31 µM) against the HeLa cell line. These products could be subjected to a various modification and therefore represent important skeletons for the anticancer drug discovery.
Collapse
Affiliation(s)
- Buer Song
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, People's Republic of China
| | - Lifei Nie
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, People's Republic of China
| | - Khurshed Bozorov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, People's Republic of China
- Faculty of Chemistry, Samarkand State University, University blv. 15, Samarkand, Uzbekistan, 140104
| | - Rustamkhon Kuryazov
- Faculty of Chemistry, Samarkand State University, University blv. 15, Samarkand, Uzbekistan, 140104
- Urgench State University, Kh. Olimjon st. 14, Urgench, Uzbekistan, 220100
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, People's Republic of China.
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, People's Republic of China.
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, People's Republic of China.
| |
Collapse
|
8
|
Dan W, Cao Y, Sun Y, Zhang J, Liu J, Gao J, Han R, Dai J. Novel N 1 or N 9 modified α-carboline analogues as potential ligands in Alzheimer's disease therapy: Synthesis and neurobiological activity evaluation. Bioorg Chem 2023; 133:106378. [PMID: 36736035 DOI: 10.1016/j.bioorg.2023.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
A series of new α-carboline analogues modified at N1 or N9 positions by alkyl, benzyl and phenyl were synthesized and characterized as potential ligands for AD therapy. These compounds exhibited multifunctional neurobiological activities including anti-neuroinflammatory, neuroprotective and cholinesterase inhibition. Among them, compound 5d with good drug-like properties and no cytotoxicity, showed potent inhibitory activity against NO production (IC50 = 1.45 μM), which could suppress the expression levels of iNOS and COX-2 in a dose-dependent manner. Further mechanism exploration indicated that compound 5d could regulate the NF-κB signaling pathway by decreasing the phosphorylation of IκB-α and p65. Notably, compound 5d could effectively decrease the LPS-induced aberrations in zebrafish. Compounds 3b, 4f, 5c, 5g, 5m and 6i exhibited potential neuroprotective activity (cell viability > 70 %) in the H2O2-induced PC-12 neuronal death model and rescued the SOD activity. In particular, compounds 3b, 4f, and 5g activated the Nrf2 signaling pathway, and improved the expressions of antioxidant proteins NQO-1 and HO-1, which alleviated the head cell apoptosis in zebrafish. Additionally, compound 6i exhibited potential inhibitory activity against BuChE with IC50 of 0.77 μM. Overall, this work provided some lead compounds based on α-carboline used for AD therapy.
Collapse
Affiliation(s)
- Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Yidan Cao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Yifan Sun
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jiaoyue Zhang
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jinyi Liu
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jixiang Gao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Rui Han
- Institute of Basic and Transitional Medicine, Xi'an Medical University, Shannxi, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| |
Collapse
|
9
|
Zhang Z, Wang J, Guo S, Fan J, Fan X. t-BuOK-Catalyzed Regio- and Stereoselective Intramolecular Hydroamination Reaction Leading to Phthalazinoquinazolinone Derivatives. J Org Chem 2023; 88:1282-1291. [PMID: 36594406 DOI: 10.1021/acs.joc.2c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report herein an efficient and practical strategy for the preparation of 5H-phthalazino[1,2-b]quinazolin-8(6H)-one derivatives through a t-BuOK-catalyzed intramolecular hydroamination reaction of functionalized quinazolinones under extremely mild reaction conditions. A variety of quinazolinone substrates are well tolerated to furnish the corresponding products in good to high yields via an exclusive 6-exo-dig cyclization process. The present protocol has the advantages of readily obtainable starting materials, broad substrate scope, and high regio- and stereoselectivity.
Collapse
Affiliation(s)
- Ziyi Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Jin Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, Henan, China
| | - Shenghai Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Jing Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
10
|
Patel S, Bansoad AV, Singh R, Khatik GL. BACE1: A Key Regulator in Alzheimer's Disease Progression and Current Development of its Inhibitors. Curr Neuropharmacol 2022; 20:1174-1193. [PMID: 34852746 PMCID: PMC9886827 DOI: 10.2174/1570159x19666211201094031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease with no specific disease-modifying treatment. β-secretase (BACE1) is considered the potential and rationale target because it is involved in the rate-limiting step, which produces toxic Aβ42 peptides that leads to deposits in the form of amyloid plaques extracellularly, resulting in AD. OBJECTIVE This study aims to discuss the role and implications of BACE1 and its inhibitors in the management of AD. METHODS We have searched and collected the relevant quality work from PubMed using the following keywords "BACE1", BACE2", "inhibitors", and "Alzheimer's disease". In addition, we included the work which discusses the role of BACE1 in AD and the recent work on its inhibitors. RESULTS In this review, we have discussed the importance of BACE1 in regulating AD progression and the current development of BACE1 inhibitors. However, the development of a BACE1 inhibitor is very challenging due to the large active site of BACE1. Nevertheless, some of the BACE1 inhibitors have managed to enter advanced phases of clinical trials, such as MK-8931 (Verubecestat), E2609 (Elenbecestat), AZD3293 (Lanabecestat), and JNJ-54861911 (Atabecestat). This review also sheds light on the prospect of BACE1 inhibitors as the most effective therapeutic approach in delaying or preventing AD progression. CONCLUSION BACE1 is involved in the progression of AD. The current ongoing or failed clinical trials may help understand the role of BACE1 inhibition in regulating the Aβ load and cognitive status of AD patients.
Collapse
Affiliation(s)
| | - Ankush Vardhaman Bansoad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Rakesh Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, ,Address correspondence to this author at the Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, India, 226002; E-mail: ,
| |
Collapse
|
11
|
A Network Pharmacology Approach to Reveal the Underlying Mechanisms of Rhizoma Dioscoreae Nipponicae in the Treatment of Asthma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4749613. [PMID: 35399637 PMCID: PMC8986377 DOI: 10.1155/2022/4749613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
Background In this study, network pharmacological methods were used to analyze the targets of Rhizoma Dioscoreae Nipponicae (RDN) and investigate the potential underlying mechanism of RDN in the treatment of asthma. Methods Asthma-related targets were obtained from the GeneCards and DisGeNET databases. The bioactive components of RDN were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database, and the targets of these compounds were predicted using the BATMAN-TCM database. The network of RDN component targets was constructed using Cytoscape. A protein-protein interaction (PPI) network was constructed in Cytoscape to determine the potential targets of RDN for the treatment of asthma. The hub genes of RDN in the treatment of asthma were screened using network topological parameters. Gene ontology (GO) and the KEGG pathways were analyzed. Molecular docking and in vivo experiments were performed to validate the network pharmacology results. Results A total of four bioactive components and 55 targets were identified. The results of the enrichment analysis suggested that the treatment of asthma with RDN involved signaling pathways, such as those related to systemic lupus erythematosus, alcoholism, viral carcinogenesis, the cell cycle, prostate cancer, transcriptional misregulation in cancer, hepatitis B, thyroid hormone signaling, and PI3K-AKT signaling, as well as other signaling pathways. Molecular docking showed that the active components of RDN could stably bind to the predicted target. In vivo experiments showed that RDN could regulate the expression of target genes and inhibit the activation of the PI3K-AKT signaling pathway. Conclusion To a certain extent, this study reveals the potential bioactive components and molecular mechanisms of RDN in the treatment of asthma and provides new insights for the development of new drugs for asthma.
Collapse
|
12
|
Zeng Y, Nie L, Liu L, Niu C, Li Y, Bozorov K, Zhao J, Shen J, Aisa HA. Design, Synthesis, in vitro Evaluation of a New Pyrrolo[1,2‐
a
]thiazolo[5,4‐
d
]pyrimidinone Derivatives as Cholinesterase Inhibitors Against Alzheimer's Disease. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Zeng
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Lifei Nie
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
| | - Liu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
| | - Chao Niu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Yi Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Khurshed Bozorov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- Faculty of Chemistry Samarkand State University Samarkand Uzbekistan
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Jingshan Shen
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
13
|
Haghighijoo Z, Zamani L, Moosavi F, Emami S. Therapeutic potential of quinazoline derivatives for Alzheimer's disease: A comprehensive review. Eur J Med Chem 2022; 227:113949. [PMID: 34742016 DOI: 10.1016/j.ejmech.2021.113949] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Quinazolines are considered as a promising class of bioactive heterocyclic compounds with broad properties. Particularly, the quinazoline scaffold has an impressive role in the design and synthesis of new CNS-active drugs. The drug-like properties and pharmacological characteristics of quinazoline could lead to different drugs with various targets. Among CNS disorders, Alzheimer's disease (AD) is a progressive neurodegenerative disorder with memory loss, cognitive decline and language dysfunction. AD is a complex and multifactorial disease therefore, the need for finding multi-target drugs against this devastative disease is urgent. A literature survey revealed that quinazoline derivatives have diverse therapeutic potential for AD as modulators/inhibitors of β-amyloid, tau protein, cholinesterases, monoamine oxidases, and phosphodiesterases as well as other protective effects. Thus, we describe here the most relevant and recent studies about anti-AD agents with quinazoline structure which can further aid the development and discovery of new anti-AD agents.
Collapse
Affiliation(s)
- Zahra Haghighijoo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Leila Zamani
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
14
|
Verma A, Kumar Waiker D, Bhardwaj B, Saraf P, Shrivastava SK. The molecular mechanism, targets, and novel molecules in the treatment of Alzheimer's disease. Bioorg Chem 2021; 119:105562. [PMID: 34952243 DOI: 10.1016/j.bioorg.2021.105562] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/27/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurological illness that causes dementia mainly in the elderly. The challenging obstacles related to AD has freaked global healthcare system to encourage scientists in developing novel therapeutic startegies to overcome with the fatal disease. The current treatment therapy of AD provides only symptomatic relief and to some extent disease-modifying effects. The current approach for AD treatment involves designing of cholinergic inhibitors, Aβ disaggregation inducing agents, tau inhibitors and several antioxidants. Hence, extensive research on AD therapy urgently requires a deep understanding of its pathophysiology and exploration of various chemical scaffolds to design and develop a potential drug candidate for the treatment. Various issues linked between disease and therapy need to be considered such as BBB penetration capability, clinical failure and multifaceted pathophisiology requires a proper attention to develop a lead candidate. This review article covers all probable mechanisms including one of the recent areas for investigation i.e., lipid dyshomeostasis, pathogenic involvement of P. gingivalis and neurovascular dysfunction, recently reported molecules and drugs under clinical investigations and approved by FDA for AD treatment. Our summarized information on AD will attract the researchers to understand and explore current status and structural modifications of the recently reported heterocyclic derivatives in drug development for AD therapy.
Collapse
Affiliation(s)
- Akash Verma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Digambar Kumar Waiker
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Bhagwati Bhardwaj
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Poorvi Saraf
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
15
|
Nerella A, Jeripothula M. Design, synthesis and biological evaluation of novel deoxyvasicinone-indole as multi-target agents for Alzheimer's disease. Bioorg Med Chem Lett 2021; 49:128212. [PMID: 34153471 DOI: 10.1016/j.bmcl.2021.128212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
In this study, a series of multifunctional hybrids (6a-6l) against Alzheimer's disease were designed and obtained by conjugating the pharmacophores of deoxyvasicinone and indole. These analogs of deoxyvasicinone-indole were evaluated as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and as inhibitors of amyloid aggregation (Aβ1-42) for treatment of Alzheimer's disease (AD). Subsequently, AChE induced Aβ aggregation inhibition test was also performed for selected compounds. Biological activity results demonstrated that compound 6b was the most potent and balanced dual ChEs inhibitor with IC50 values 0.12 µM and 0.15 µM for eeAChE and eqBuChE, respectively. Kinetic analysis and docking study indicated that compound 6b was a mixed-type inhibitor for both AChE and BuChE. Compound 6b also found to be the best inhibitors of self-induced Aβ1-42 aggregation with IC50 values of 1.21 µM. Compound 6b also afforded excellent inhibition of AChE-induced Aβ1-42 aggregation by 81.1%. Overall, these results indicate that 6b may be considered as lead compound for the development of highly effective anti-AD drugs.
Collapse
Affiliation(s)
- Ashok Nerella
- Department of Chemistry, Kakatiya University, Warangal, Telangana, India; Government Polytechnic, Warangal, Telangana, India
| | | |
Collapse
|
16
|
Manzoor S, Gabr MT, Rasool B, Pal K, Hoda N. Dual targeting of acetylcholinesterase and tau aggregation: Design, synthesis and evaluation of multifunctional deoxyvasicinone analogues for Alzheimer's disease. Bioorg Chem 2021; 116:105354. [PMID: 34562674 DOI: 10.1016/j.bioorg.2021.105354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Development of multitargeted ligands have demonstrated remarkable efficiency as potential therapeutics for Alzheimer's disease (AD). Herein, we reported a new series of deoxyvasicinone analogues as dual inhibitor of acetylcholinesterase (AChE) and tau aggregation that function as multitargeted ligands for AD. All the multitargeted ligands 11(a-j) and 15(a-g) were designed, synthesized, and validated by 1HNMR, 13CNMR and mass spectrometry. All the synthesized compounds 11(a-j) and 15(a-g) were screened for their ability to inhibit AChE, BACE1, amyloid fibrillation, α-syn aggregation, and tau aggregation. All the screened compounds possessed weak inhibition of BACE-1, Aβ42 and α-syn aggregation. However, several compounds were identified as potential hits in the AChE inhibitory screening assay and cellular tau aggregation screening. Among all compounds, 11f remarkably inhibited AChE activity and cellular tau oligomerization at single-dose screening (10 µM). Moreover, 11f displayed a half-maximal inhibitory concentration (IC50) value of 0.91 ± 0.05 µM and half-maximal effective concentration (EC50) value of 3.83 ± 0.51 µM for the inhibition of AChE and cellular tau oligomerization, respectively. In addition, the neuroprotective effect of 11f was determined in tau-expressing SH-SY5Y cells incubated with Aβ oligomers. These findings highlighted the potential of 11f to function as a multifunctional ligand for the development of promising anti-AD drugs.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| | - Moustafa T Gabr
- Department of Radiology, Stanford University, Stanford, CA 94305, United States.
| | - Bisma Rasool
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
17
|
Bowroju SK, Penthala NR, Lakkaniga NR, Balasubramaniam M, Ayyadevara S, Shmookler Reis RJ, Crooks PA. Novel hydroxybenzylamine-deoxyvasicinone hybrids as anticholinesterase therapeutics for Alzheimer's disease. Bioorg Med Chem 2021; 45:116311. [PMID: 34304133 DOI: 10.1016/j.bmc.2021.116311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/31/2022]
Abstract
A series of novel 2-hydroxybenzylamine-deoxyvasicinone hybrid analogs (8a-8n) have been synthesized and evaluated as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and as inhibitors of amyloid peptide (Aβ1-42) aggregation, for treatment of Alzheimer's disease (AD). These dual acting compounds exhibited good AChE inhibitory activities ranging from 0.34 to 6.35 µM. Analogs8g and 8n were found to be the most potent AChE inhibitors in the series with IC50values of 0.38 µM and 0.34 µM, respectively. All the analogs (8a-8n) exhibited weak BuChE inhibitory activities ranging from 14.60 to 21.65 µM. Analogs8g and 8n exhibited BuChE with IC50values of 15.38 µM and 14.60 µM, respectively, demonstrating that these analogs were greater than 40-fold more selective for inhibition of AChE over BuChE. Additionally, compounds8g and 8n were also found to be the best inhibitors of self-induced Aβ1-42 peptide aggregation with IC50values of 3.91 µM and 3.22 µM, respectively; 8g and 8n also inhibited AChE-induced Aβ1-42 peptide aggregation by 68.7% and 72.6%, respectively. Kinetic analysis and molecular docking studies indicate that analogs 8g and 8n bind to a new allosteric pocket (site B) on AChE. In addition, the observed inhibition of AChE-induced Aβ1-42 peptide aggregation by 8n is likely due to allosteric inhibition of the binding of this peptide at the CAS site on AChE. Overall, these results indicate that 8g and 8n are examples of dual-acting lead compounds for the development of highly effective anti-AD drugs.
Collapse
Affiliation(s)
- Suresh K Bowroju
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Naga Rajiv Lakkaniga
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | | | - Srinivas Ayyadevara
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Robert J Shmookler Reis
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, United States; BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR 72205, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
18
|
Pirolla NFF, Batista VS, Dias Viegas FP, Gontijo VS, McCarthy CR, Viegas C, Nascimento-Júnior NM. Alzheimer's Disease: Related Targets, Synthesis of Available Drugs, Bioactive Compounds Under Development and Promising Results Obtained from Multi-target Approaches. Curr Drug Targets 2021; 22:505-538. [PMID: 32814524 DOI: 10.2174/1389450121999200819144544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
We describe herein the therapeutic targets involved in Alzheimer's disease as well as the available drugs and their synthetic routes. Bioactive compounds under development are also exploited to illustrate some recent research advances on the medicinal chemistry of Alzheimer's disease, including structure-activity relationships for some targets. The importance of multi-target approaches, including some examples from our research projects, guides new perspectives in search of more effective drug candidates. This review comprises the period between 2001 and early 2020.
Collapse
Affiliation(s)
- Natália F F Pirolla
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| | - Victor S Batista
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| | - Flávia Pereira Dias Viegas
- Laboratory of Research on Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas-MG, 37133-840, Brazil
| | - Vanessa Silva Gontijo
- Laboratory of Research on Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas-MG, 37133-840, Brazil
| | - Caitlin R McCarthy
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| | - Claudio Viegas
- Laboratory of Research on Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas-MG, 37133-840, Brazil
| | - Nailton M Nascimento-Júnior
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| |
Collapse
|
19
|
Design, synthesis and biological assessment of new 1-benzyl-4-((4-oxoquinazolin-3(4 H)-yl)methyl) pyridin-1-ium derivatives (BOPs) as potential dual inhibitors of acetylcholinesterase and butyrylcholinesterase. Heliyon 2021; 7:e06683. [PMID: 33869871 PMCID: PMC8045006 DOI: 10.1016/j.heliyon.2021.e06683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/28/2020] [Accepted: 03/30/2021] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD), is among the most growing neurodegenerative diseases, which is mainly caused by the acetylcholine neurotransmitter loss in the hippocampus and cortex. Emerging of the dual Acetylcholinesterase (AChE)/Butyrylcholinesterase (BuChE) inhibitors has increased for treating Alzheimer disease. In this study, we would like to report the design and synthesis of a new sequence of 1-benzyl-4-((4-oxoquinazolin-3(4H)-yl)methyl) pyridin-1-ium derivatives (BOPs) assessed as BuChE and AChE inhibitors. Ellman's approach was used for the evaluation of AChE and BuChE inhibitory activities. Moreover, docking research was conducted to predict the action mechanism. Among all synthesized compounds, 1-(3-bromobenzyl)-3-((4-oxoquinazolin-3(4H)-yl)methyl) pyridin-1-ium bromide (BOP-1) was found to be the most active compound with dual activity for inhibition of AChE (IC50 = 5.90 ± 0.07μM), and BuChE (IC50 = 6.76 ± 0.04μM) and 1-(4-chlorobenzyl)-3-((6,7-dimethoxy-4-oxoquinazolin-3(4H)-yl)methyl) pyridin-1-ium chloride (BOP-8) showed the highest AChE inhibitory activity (IC50s = 1.11 ± 0.09 μM). The synthesized compounds BOP-1 and BOP-8 could be proposed as valuable lead compounds for further drug discovery development against AD.
Collapse
|
20
|
A review on β-carboline alkaloids and their distribution in foodstuffs: A class of potential functional components or not? Food Chem 2021; 348:129067. [PMID: 33548760 DOI: 10.1016/j.foodchem.2021.129067] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
Pharmacologically active β-carboline alkaloids (βCs) such as harman, norharman and some others are naturally present in plants and occur in many foodstuffs. They have a lot of pharmacological properties, including antitumor, antioxidant, anti-inflammatory and antimicrobial effects, and possess the potential for treating Alzheimer's disease, Parkinson's disease, depression and other central nervous system diseases. Dietary intake is proven to be an important source of βCs. Therefore, it is important to know the amounts of βCs that can be gotten from daily diets. This review summarizes the pharmacological activities, toxicology and formation of βCs, and gives collective information on contents of βCs in different foodstuffs.
Collapse
|
21
|
Huang J, Chen W, Liang J, Yang Q, Deng Z, Song Z, Peng Y. Rhodium( iii)-catalyzed annulation of 3-arylquinazolinones with alkynes via double C–H activation: an efficient route for quinolino[2,1- b]quinazolinones. Org Chem Front 2021. [DOI: 10.1039/d1qo01186c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An effective method for the synthesis of quinolino[2,1-b]quinazolinones has been described.
Collapse
Affiliation(s)
- Jian Huang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Wei Chen
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jiazhi Liang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qin Yang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhihong Deng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhibin Song
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
22
|
Du H, Jiang X, Ma M, Xu H, Liu S, Ma F. Novel deoxyvasicinone and tetrahydro-beta-carboline hybrids as inhibitors of acetylcholinesterase and amyloid beta aggregation. Bioorg Med Chem Lett 2020; 30:127659. [PMID: 33137375 DOI: 10.1016/j.bmcl.2020.127659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
A novel series of deoxyvasicinone-tetrahydro-beta-carboline hybrids were synthesized and evaluated as acetylcholinesterase (AChE) and β-amyloid peptide (Aβ) aggregation inhibitors for the treatment of Alzheimer's disease. The results revealed that the derivatives had multifunctional profiles, including AChE inhibition, Aβ1-42 aggregation inhibition, and neuroprotective properties. Inspiringly, hybrids 8b and 8d displayed excellent inhibitory activities against hAChE (IC50 = 0.93 and 1.08 nM, respectively) and Aβ1-42 self-aggregation (IC50 = 19.71 and 2.05 μM, respectively). In addition, 8b and 8d showed low cytotoxicity and good neuroprotective activity against Aβ1-42-induced damage in SH-SY5Y cells.
Collapse
Affiliation(s)
- Hongtao Du
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; College of Science, Northwest A&F University, Yangling 712100, Shaanxi Province, China.
| | - Xinyu Jiang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Meng Ma
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Huili Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Shuang Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Fang Ma
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
23
|
Haghighijoo Z, Akrami S, Saeedi M, Zonouzi A, Iraji A, Larijani B, Fakherzadeh H, Sharifi F, Arzaghi SM, Mahdavi M, Edraki N. N-Cyclohexylimidazo[1,2-a]pyridine derivatives as multi-target-directed ligands for treatment of Alzheimer's disease. Bioorg Chem 2020; 103:104146. [DOI: 10.1016/j.bioorg.2020.104146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/22/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
|
24
|
Iraji A, Khoshneviszadeh M, Firuzi O, Khoshneviszadeh M, Edraki N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg Chem 2020; 97:103649. [PMID: 32101780 DOI: 10.1016/j.bioorg.2020.103649] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/05/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that effects 50 million people worldwide. In this review, AD pathology and the development of novel therapeutic agents targeting AD were fully discussed. In particular, common approaches to prevent Aβ production and/or accumulation in the brain including α-secretase activators, specific γ-secretase modulators and small molecules BACE1 inhibitors were reviewed. Additionally, natural-origin bioactive compounds that provide AD therapeutic advances have been introduced. Considering AD is a multifactorial disease, the therapeutic potential of diverse multi target-directed ligands (MTDLs) that combine the efficacy of cholinesterase (ChE) inhibitors, MAO (monoamine oxidase) inhibitors, BACE1 inhibitors, phosphodiesterase 4D (PDE4D) inhibitors, for the treatment of AD are also reviewed. This article also highlights descriptions on the regulator of serotonin receptor (5-HT), metal chelators, anti-aggregants, antioxidants and neuroprotective agents targeting AD. Finally, current computational methods for evaluating the structure-activity relationships (SAR) and virtual screening (VS) of AD drugs are discussed and evaluated.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
25
|
Tang Z, Li X, Yao Y, Qi Y, Wang M, Dai N, Wen Y, Wan Y, Peng L. Design, synthesis, fungicidal activity and molecular docking studies of novel 2-((2-hydroxyphenyl)methylamino)acetamide derivatives. Bioorg Med Chem 2019; 27:2572-2578. [DOI: 10.1016/j.bmc.2019.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
26
|
Du H, Liu X, Xie J, Ma F. Novel Deoxyvasicinone-Donepezil Hybrids as Potential Multitarget Drug Candidates for Alzheimer's Disease. ACS Chem Neurosci 2019; 10:2397-2407. [PMID: 30720268 DOI: 10.1021/acschemneuro.8b00699] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this study, we designed and synthesized a series of deoxyvasicinone-donepezil hybrids and determined whether they could be used as novel multitarget inhibitors for Alzheimer's disease. In vitro studies showed that most of the hybrids demonstrated moderate to potent inhibition of hAChE, BACE1, and Aβ1-42 aggregation. In particular, the hybrids 10a, 10d, 11a, and 11j exhibited excellent inhibitory activities against hAChE (IC50 = 56.14, 5.91, 3.29, and 8.65 nM, respectively), BACE1 (IC50 = 0.834, 0.167, 0.129, and 0.085 μM, respectively), and Aβ1-42 aggregation (IC50 = 13.26, 19.43, 9.26, and 5.41 μM, respectively). In addition, 10a and 11a exhibited very low cytotoxicity and showed remarkable neuroprotective activity against Aβ1-42-induced damage in SH-SY5Y cells.
Collapse
Affiliation(s)
- Hongtao Du
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Xinlian Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
- Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Jusen Xie
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
- Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Fang Ma
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
27
|
Piechowska P, Zawirska-Wojtasiak R, Mildner-Szkudlarz S. Bioactive β-Carbolines in Food: A Review. Nutrients 2019; 11:E814. [PMID: 30978920 PMCID: PMC6520841 DOI: 10.3390/nu11040814] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/09/2019] [Indexed: 12/02/2022] Open
Abstract
Harman and norharman, two neuroactive β-carbolines, are present in several plants and in thermally processed foods. They exhibited a wide spectrum of biological and pharmacological effects, including antioxidant, neuroprotective, and anti-inflammatory effects. In this article, we review the progress of recent research on the presence of these compounds in food, as well as their various biological and neuroactive properties. Our findings strongly suggest that some foods, especially coffee, can act as a rich source of β-carbolines, which may possibly be associated with a reduced risk for serious neurodegenerative diseases, such as Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Paulina Piechowska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - Renata Zawirska-Wojtasiak
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - Sylwia Mildner-Szkudlarz
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| |
Collapse
|
28
|
Zhang Y, Shao Y, Gong J, Zhu J, Cheng T, Chen J. Selenium-Catalyzed Oxidative C–H Amination of (E)-3-(Arylamino)-2-styrylquinazolin-4(3H)-ones: A Metal-Free Synthesis of 1,2-Diarylpyrazolo[5,1-b]quinazolin-9(1H)-ones. J Org Chem 2019; 84:2798-2807. [DOI: 10.1021/acs.joc.8b03179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yetong Zhang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Julin Gong
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jianghe Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tianxing Cheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
29
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
30
|
Ţînţaş ML, Gembus V, Alix F, Barré A, Coadou G, Truong L, Sebban M, Papamicaël C, Oulyadi H, Levacher V. Rational design of carbamate-based dual binding site and central AChE inhibitors by a “biooxidisable” prodrug approach: Synthesis, in vitro evaluation and docking studies. Eur J Med Chem 2018; 155:171-182. [DOI: 10.1016/j.ejmech.2018.05.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/10/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
|