1
|
Pont I, Felipe R, Frías JC, Chicote JU, García-España A, García-España E, Albelda MT. An Effective Liposome-Based Nanodelivery System for Naphthalene Derivative Polyamines with Antitumor Activity. Biomolecules 2024; 14:1347. [PMID: 39595524 PMCID: PMC11591986 DOI: 10.3390/biom14111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
This study focuses on the development of a novel liposome-based nanodelivery system designed to encapsulate polyamine-1, a compound with potential anti-tumor properties. The main objective of this work was to enhance the therapeutic and imaging potential of polyamine-1 by incorporating it into liposome-based nanoparticles, which were functionalized with a gadolinium complex for imaging purposes and a fluorescent phospholipid for tracking applications. These nanoparticles were characterized by measuring their size, shape, polydispersity index, zeta potential and encapsulation efficiency. In vitro experiments were conducted to evaluate the antitumor activity, specifically determining the cytotoxicity of both free and encapsulated polyamine-1 in cancerous and non-cancerous cell lines. Additionally, the study shows the enhanced signal intensity of gadolinium-loaded liposomes by T1-weighted MRI, highlighting their imaging potential. The experimental results suggest that this liposome-based nanodelivery system not only has therapeutic potential in targeted cancer therapy but also could be advantageous for diagnostic imaging, particularly in MRI applications.
Collapse
Affiliation(s)
- Isabel Pont
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46010 Valencia, Spain; (I.P.); (R.F.); (E.G.-E.)
| | - Rubén Felipe
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46010 Valencia, Spain; (I.P.); (R.F.); (E.G.-E.)
| | - Juan C. Frías
- Departamento de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain;
| | - Javier U. Chicote
- Unitat de Recerca, Hospital Joan XXIII, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Roviri i Virgili, 43002 Tarragona, Spain;
| | - Antonio García-España
- Unitat de Recerca, Hospital Joan XXIII, Institut de Investigació Sanitaria Pere Virgili (IISPV), Universitat Roviri i Virgili, 43002 Tarragona, Spain;
| | - Enrique García-España
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46010 Valencia, Spain; (I.P.); (R.F.); (E.G.-E.)
| | - M. Teresa Albelda
- Department of Inorganic Chemistry, University of Valencia, 46010 Burjassot, Spain
| |
Collapse
|
2
|
Ruan W, Xie Z, Wang Y, Xia L, Guo Y, Qiao D. An Overview of Naphthylimide as Specific Scaffold for New Drug Discovery. Molecules 2024; 29:4529. [PMID: 39407459 PMCID: PMC11478049 DOI: 10.3390/molecules29194529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Naphthylimides play a pivotal role as aromatic heterocyclic compounds, serving as the foundational structures for numerous pharmacologically significant drugs. These drugs encompass antibacterial, antifungal, anticancer, antimalarial, antiviral, anti-inflammatory, antithrombotic, and antiprotozoal agents. The planar and heteroaromatic characteristics of naphthylimides grant them a strong ability to intercalate into DNA. This intercalation property renders naphthylimide derivatives highly valuable for various biological activities. The advantageous pharmacological activity and ease of synthesis associated with naphthylimides and their derivatives provide significant benefits in the design and development of new compounds within this class. Currently, only a few such molecules are undergoing preclinical and clinical evaluations. In this paper, we have compiled the literature on naphthylimides reported by researchers from 2006 to 2024. Our focus lies on exploring the pharmacological activities of their analogues from a drug development and discovery perspective, while examining their structure-activity relationship and mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | - Yuping Guo
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (W.R.); (Z.X.); (Y.W.); (L.X.)
| | - Dan Qiao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (W.R.); (Z.X.); (Y.W.); (L.X.)
| |
Collapse
|
3
|
Syatkin SP, Blagonravov ML, Hilal A, Sungrapova KY, Sokuev RI, Korzun IA, Goryachev VA. Influence of Some Heterocyclic, Cyclic, and Nitrogen-Containing Compounds on Oxidative Deamination of Polyamines in a Cell-Free Test System. Bull Exp Biol Med 2024; 177:307-312. [PMID: 39123088 DOI: 10.1007/s10517-024-06179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Indexed: 08/12/2024]
Abstract
We studied the effects of some nitrogen-containing, heterocyclic, and cyclic compounds on the rate of oxidative deamination of polyamines and putrescine in tissues with a high proliferation rate. For this purpose, the specific activities of the main enzymes of polyamine oxidative degradation - spermine oxidase (SMO), polyamine oxidase (PAO), and diamine oxidase (DAO) were determined using a cell-free test system from regenerating rat liver. The compounds methyl 2-(5-formylfuran-2-yl)benzoate and 2,7-bis-[2-(diethylamino)ethoxy]-9H-fluoren-9-one (and in the form of dihydrochloride) showed mainly activating effect on oxidative degradation of putrescine, spermidine, and spermine, which indirectly indicates their antiproliferative effect. Nitrogen-free compounds inhibited this process, thus exhibiting potentially carcinogenic properties. Correlations were calculated for activity of DAO, PAO, and SMO with 5 topological indices: Wiener (W), Rouvray (R), Balaban (J) in the Trinaistich modification, detour (Ip), and electropy (Ie). The highest dependence was noted for DAO and the Balaban index (R=-0.55), for PAO and the detour index (R=0.78), and for SMO and the electropy index (R=0.53). The remaining dependencies showed insignificant correlation strength.
Collapse
Affiliation(s)
- S P Syatkin
- V. A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, RUDN University, Moscow, Russia.
| | - M L Blagonravov
- V. A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, RUDN University, Moscow, Russia
| | - A Hilal
- V. A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, RUDN University, Moscow, Russia
| | - K Yu Sungrapova
- V. A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, RUDN University, Moscow, Russia
| | - R I Sokuev
- V. A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, RUDN University, Moscow, Russia
| | - I A Korzun
- V. A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, RUDN University, Moscow, Russia
| | - V A Goryachev
- V. A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, RUDN University, Moscow, Russia
| |
Collapse
|
4
|
Tian Z, Ding T, Niu H, Mu Y, Xu N, Kong M, Zhang Y, Tian Z, Wu Y, Wang C. The substituent group effect: investigation of naphthalimide-spermidine conjugates binding to DNA by spectroscopy, molecular docking and dynamics. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Lu B, Wang L, Ran X, Tang H, Cao D. Recent Advances in Fluorescent Methods for Polyamine Detection and the Polyamine Suppressing Strategy in Tumor Treatment. BIOSENSORS 2022; 12:bios12080633. [PMID: 36005029 PMCID: PMC9405807 DOI: 10.3390/bios12080633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 12/22/2022]
Abstract
The biogenic aliphatic polyamines (spermine, spermidine, and putrescine) are responsible for numerous cell functions, including cell proliferation, the stabilization of nucleic acid conformations, cell division, homeostasis, gene expression, and protein synthesis in living organisms. The change of polyamine concentrations in the urine or blood is usually related to the presence of malignant tumors and is regarded as a biomarker for the early diagnosis of cancer. Therefore, the detection of polyamine levels in physiological fluids can provide valuable information in terms of cancer diagnosis and in monitoring therapeutic effects. In this review, we summarize the recent advances in fluorescent methods for polyamine detection (supramolecular fluorescent sensing systems, fluorescent probes based on the chromophore reaction, fluorescent small molecules, and fluorescent nanoparticles). In addition, tumor polyamine-suppressing strategies (such as polyamine conjugate, polyamine analogs, combinations that target multiple components, spermine-responsive supramolecular chemotherapy, a combination of polyamine consumption and photodynamic therapy, etc.) are highlighted. We hope that this review promotes the development of more efficient polyamine detection methods and provides a comprehensive understanding of polyamine-based tumor suppressor strategies.
Collapse
Affiliation(s)
- Bingli Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
- Correspondence:
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
6
|
Zhao P, Qiu H, Wei Q, Li Y, Gao L, Zhao P. Anti-tumor effect of novel amino acid Schiff base nickel (II) complexes on oral squamous cell carcinoma cells (CAL-27) in vitro. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Recent Developments on 1,8-Naphthalimide Moiety as Potential Target for Anticancer Agents. Bioorg Chem 2022; 121:105677. [DOI: 10.1016/j.bioorg.2022.105677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 01/07/2023]
|
8
|
Zhao Y, Mu Y, Luo W, Tian Z. Synthesis of Naphthalimide Derivatives as Cholinesterase Inhibitors with Aggregation Induced Emission Properties. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Espinoza-Culupú A, Vázquez-Ramírez R, Farfán-López M, Mendes E, Notomi Sato M, da Silva Junior PI, Borges MM. Acylpolyamine Mygalin as a TLR4 Antagonist Based on Molecular Docking and In Vitro Analyses. Biomolecules 2020; 10:E1624. [PMID: 33271940 PMCID: PMC7761503 DOI: 10.3390/biom10121624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 01/18/2023] Open
Abstract
Toll-like receptors (TLRs) are transmembrane proteins that are key regulators of innate and adaptive immune responses, particularly TLR4, and they have been identified as potential drug targets for the treatment of disease. Several low-molecular-weight compounds are being considered as new drug targets for various applications, including as immune modulators. Mygalin, a 417 Da synthetic bis-acylpolyamine, is an analog of spermidine that has microbicidal activity. In this study, we investigated the effect of mygalin on the innate immune response based on a virtual screening (VS) and molecular docking analysis. Bone marrow-derived macrophages and the cell lines J774A.1 and RAW 264.7 stimulated with lipopolysaccharide (LPS) were used to confirm the data obtained in silico. Virtual screening and molecular docking suggested that mygalin binds to TLR4 via the protein myeloid differentiation factor 2 (MD-2) and LPS. Macrophages stimulated by mygalin plus LPS showed suppressed gene expression of tumor necrosis factor (TNF-α), interleukine 6 (IL-6), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as inhibition of signaling protein p65 of the nuclear factor κB (NF-κB), resulting in decreased production of nitric oxide (NO) and TNF-α. These results indicate that mygalin has anti-inflammatory potential, being an attractive option to be explored. In addition, we reinforce the importance of virtual screening analysis to assist in the discovery of new drugs.
Collapse
Affiliation(s)
- Abraham Espinoza-Culupú
- Interunits Graduate Program in Biotechnology, USP/IBu/IPT, São Paulo 01000-000, Brazil; (A.E.-C.); (P.I.d.S.J.)
- Bacteriology Laboratory, Butantan Institute, São Paulo 01000-000, Brazil;
| | - Ricardo Vázquez-Ramírez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 00-16, Mexico;
| | - Mariella Farfán-López
- Microbiology Molecular and Biotechnology Laboratory, Universidad Nacional Mayor de San Marcos, Lima District 15081, Peru;
| | - Elizabeth Mendes
- Bacteriology Laboratory, Butantan Institute, São Paulo 01000-000, Brazil;
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, Medical School, University of São Paulo, São Paulo 01000-000, Brazil;
| | - Pedro Ismael da Silva Junior
- Interunits Graduate Program in Biotechnology, USP/IBu/IPT, São Paulo 01000-000, Brazil; (A.E.-C.); (P.I.d.S.J.)
- Laboratory for Applied Toxinology (LETA), Butantan Institute, São Paulo 01000-000, Brazil
| | - Monamaris Marques Borges
- Interunits Graduate Program in Biotechnology, USP/IBu/IPT, São Paulo 01000-000, Brazil; (A.E.-C.); (P.I.d.S.J.)
- Bacteriology Laboratory, Butantan Institute, São Paulo 01000-000, Brazil;
| |
Collapse
|
10
|
Fan J, Feng Z, Chen N. Spermidine as a target for cancer therapy. Pharmacol Res 2020; 159:104943. [PMID: 32461185 DOI: 10.1016/j.phrs.2020.104943] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Spermidine, as a natural component from polyamine members, is originally isolated from semen and also existed in many natural plants, and can be responsible for cell growth and development in eukaryotes. The supplementation of spermidine can extend health and lifespan across species. Although the elevated levels of polyamines and the regulation of rate-limiting enzymes for polyamine metabolism have been identified as the biomarkers in many cancers, recent epidemiological data support that an increased uptake of spermidine as a caloric restriction mimic can reduce overall mortality associated with cancers. The possible mechanisms between spermidine and cancer development may be related to the precise regulation of polyamine metabolism, anti-cancer immunosurveillance, autophagy, and apoptosis. Increased intake of polyamine seems to suppress tumorigenesis, but appears to accelerate the growth of established tumors. Based on these observations and the absolute requirement for polyamines in tumor growth, spermidine could be a rational target for chemoprevention and clinical therapeutics of cancers.
Collapse
Affiliation(s)
- Jingjing Fan
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Ziyuan Feng
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
11
|
Perevoshchikova KA, Nichugovskiy AI, Isagulieva AK, Morozova NG, Ivanov IV, Maslov MA, Shtil AA. Synthesis of novel lipophilic tetraamines with cytotoxic activity. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Johnson AD, Zammit R, Vella J, Valentino M, Buhagiar JA, Magri DC. Aminonaphthalimide hybrids of mitoxantrone and amonafide as anticancer and fluorescent cellular imaging agents. Bioorg Chem 2019; 93:103287. [PMID: 31561011 DOI: 10.1016/j.bioorg.2019.103287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/28/2019] [Accepted: 09/15/2019] [Indexed: 01/10/2023]
Abstract
Novel water-soluble 4-aminonaphthalimides were synthesised and their cellular fluorescent imaging, cytotoxicity and ability to induced apoptosis evaluated. The lead compound 1 was designed from the cross-fertilisation of the basic hydrophilic amino pharmacophore of mitoxantrone, and an aminonaphthalimide scaffold of the drug candidate, amonafide. The compounds are also fluorescent pH probes based on photoinduced electron transfer (PET) and internal charge transfer (ICT). The compounds are sensitive to solvent polarity with large Stoke shifts (>90 nm) and provide emissive-coloured solutions (blue to yellow). Excited state pKas of 9.0-9.3 and fluorescence quantum yields of 0.47-0.58 were determined in water. The cytotoxicity and cellular fluorescent imaging properties of the compounds were tested on human cancer cell lines K562 and MCF-7 by the MTT assay, phase contrast and fluorescence microscopy. Compounds 1 and 3 with flexible aminoalkyl chains exhibited GI50 comparable to amonafide, while 2 and 4 with a rigid piperazine moiety and butyl chain are less cytotoxic. Fluorescence microscopy with 1 allowed for the visualization of the intracellular microenvironment exemplifying the potential utility of such hybrid molecules as anticancer and fluorescent cellular imaging agents.
Collapse
Affiliation(s)
- Alex D Johnson
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD 2080, Malta
| | - Rodrianne Zammit
- Department of Biology, Faculty of Science, University of Malta, Msida, MSD 2080, Malta
| | - Jasmine Vella
- Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD 2080, Malta
| | - Mario Valentino
- Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD 2080, Malta
| | - Joseph A Buhagiar
- Department of Biology, Faculty of Science, University of Malta, Msida, MSD 2080, Malta
| | - David C Magri
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD 2080, Malta.
| |
Collapse
|
13
|
Al-Malki AL, Razvi SS, Mohammed FA, Zamzami MA, Choudhry H, Kumosani TA, Balamash KS, Alshubaily FA, ALGhamdi SA, Abualnaja KO, Abdulaal WH, Zeyadi MA, Al-Zahrani MH, Alhosin M, Asami T, Moselhy SS. Synthesis and in vitro antitumor activity of novel acylspermidine derivative N-(4-aminobutyl)-N-(3-aminopropyl)-8-hydroxy-dodecanamide (AAHD) against HepG2 cells. Bioorg Chem 2019; 88:102937. [PMID: 31048120 DOI: 10.1016/j.bioorg.2019.102937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
Naturally occurring polyamines like Putrescine, Spermidine, and Spermine are polycations which bind to the DNA, hence stabilizing it and promoting the essential cellular processes. Many synthetic polyamine analogues have been synthesized in the past few years, which have shown cytotoxic effects on different tumours. In the present study, we evaluated the antiproliferative effect of a novel, acylspermidine derivative, (N-(4-aminobutyl)-N-(3-aminopropyl)-8-hydroxy-dodecanamide) (AAHD) on HepG2 cells. Fluorescence staining was performed with nuclear stain (Hoechst 33342) and acridine orange/ethidium bromide double staining. Dose and the time-dependent antiproliferative effect were observed by WST-1 assays, and radical scavenging activity was measured by ROS. Morphological changes such as cell shrinkage & blebbing were analyzed by fluorescent microscopy. It was found that AAHD markedly suppressed the growth of HepG2 cells in a dose- and time-dependent manner. It was also noted that the modulation of ROS levels confirmed the radical scavenging activity. In the near future, AAHD can be a promising drug candidate in chalking out a neoplastic strategy to control the proliferation of tumour cells. This study indicated that AAHD induced anti-proliferative and pro-apoptotic activities on HCC. Since AAHD was active at micromolar concentrations without any adverse effects on the healthy cells (Fibroblasts), it is worthy of further clinical investigations.
Collapse
Affiliation(s)
- Abdulrahman L Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Bioactive Natural Products Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Shoeb Razvi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Furkhan Ahmed Mohammed
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taha A Kumosani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Production of Bioproducts for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khadijah S Balamash
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fawzia A Alshubaily
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shareefa A ALGhamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid O Abualnaja
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Bioactive Natural Products Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H Abdulaal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mustafa A Zeyadi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam H Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tadao Asami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | - Said S Moselhy
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Bioactive Natural Products Research Group, King Abdulaziz University, Jeddah, Saudi Arabia; Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
14
|
Xu X, Wang S, Chang Y, Ge C, Li X, Feng Y, Xie S, Wang C, Dai F, Luo W. Synthesis and biological evaluation of novel asymmetric naphthalene diimide derivatives as anticancer agents depending on ROS generation. MEDCHEMCOMM 2018; 9:1377-1385. [PMID: 30151093 PMCID: PMC6097020 DOI: 10.1039/c8md00265g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
Naphthalenetetracarboxylic diimide (NDI) is widely used as a photoelectric material in the field of medicine. A series of asymmetric naphthalene diimide derivatives were synthesized and evaluated for their anticancer properties by various experimental assays. As the representative compound, 3c exerted significantly greater inhibitory effects on hepatoma cells SMMC-7721 and Hep G2 with an IC50 value of 1.48 ± 0.43 μM and 1.70 ± 0.53 μM, respectively, than normal hepatocytes QSG-7701 with an IC50 value of 7.11 ± 0.08 μM. Treatment with compound 3c (3 μM) for 48 h resulted in apoptosis of SMMC-7721 cells and Hep G2 cells with 52.1% and 67.8% apoptotic cells, respectively. Compound 3c induced autophagy and suppressed the migration of hepatoma cells in a concentration-dependent manner, resulting from the generation of reactive oxygen species (ROS). Based on its biological ability, compound 3c was considered as a potent anticancer agent.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
- Pharmaceutical College , Henan University , Kaifeng 475004 , China
| | - Senzhen Wang
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Yuan Chang
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Chaochao Ge
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Xinna Li
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Yongli Feng
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Songqiang Xie
- Institute of Chemical Biology , Henan University , Kaifeng 475004 , China
| | - Chaojie Wang
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Fujun Dai
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| | - Wen Luo
- Key Lab of Natural Medicine and Immune Engineering , Henan University , Kaifeng 475004 , China . ;
| |
Collapse
|