1
|
Zeng H, Zhang S, Nie H, Li J, Yang J, Zhuang Y, Huang Y, Zeng M. Identification of FTY720 and COH29 as novel topoisomerase I catalytic inhibitors by experimental and computational studies. Bioorg Chem 2024; 147:107412. [PMID: 38696845 DOI: 10.1016/j.bioorg.2024.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
The development of novel topoisomerase I (TOP1) inhibitors is crucial for overcoming the drawbacks and limitations of current TOP1 poisons. Here, we identified two potential TOP1 inhibitors, namely, FTY720 (a sphingosine 1-phosphate antagonist) and COH29 (a ribonucleotide reductase inhibitor), through experimental screening of known active compounds. Biological experiments verified that FTY720 and COH29 were nonintercalative TOP1 catalytic inhibitors that did not induce the formation of DNA-TOP1 covalent complexes. Molecular docking revealed that FTY720 and COH29 interacted favorably with TOP1. Molecular dynamics simulations revealed that FTY720 and COH29 could affect the catalytic domain of TOP1, thus resulting in altered DNA-binding cavity size. The alanine scanning and interaction entropy identified Arg536 as a hotspot residue. In addition, the bioinformatics analysis predicted that FTY720 and COH29 could be effective in treating malignant breast tumors. Biological experiments verified their antitumor activities using MCF-7 breast cancer cells. Their combinatory effects with TOP1 poisons were also investigated. Further, FTY720 and COH29 were found to cause less DNA damage compared with TOP1 poisons. The findings provide reliable lead compounds for the development of novel TOP1 catalytic inhibitors and offer new insights into the potential clinical applications of FTY720 and COH29 in targeting TOP1.
Collapse
Affiliation(s)
- Huang Zeng
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China.
| | - Shengyuan Zhang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Hua Nie
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, SE-75121 Uppsala, Sweden
| | - Jiunlong Yang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Yuanbei Zhuang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Yingjie Huang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Miao Zeng
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| |
Collapse
|
2
|
Guo YL, Yu JW, Cao Y, Cheng KX, Dong-Zhi SNM, Zhang YF, Ren QJ, Yin Y, Li CL. Design, synthesis, and biological evaluation of harmine derivatives as topoisomerase I inhibitors for cancer treatment. Eur J Med Chem 2024; 265:116061. [PMID: 38154256 DOI: 10.1016/j.ejmech.2023.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
A series of β-carboline derivatives were designed and synthesized by introducing the chalcone moiety into the harmine. The synthesized derivatives were evaluated their anti-proliferative activities against six human cancer cell lines (MCF-7, MDA-MB-231, HepG2, HT29, A549, and PC-3) and one normal cell line (L02). Among them, compound G11 exhibited the potent anti-proliferative activity against MCF-7 cell line, with an IC50 value of 0.34 μM. Further biological studies revealed that compound G11 inhibited colony formation of MCF-7 cells, suppressed MCF-7 cell migration by downregulating migration-associated protein MMP-2. In addition, it could induce apoptosis of MCF-7 cells by downregulating Bcl-2 and upregulating Cleaved-PARP, Bax, and phosphorylated Bim proteins. Furthermore, compound G11 can act as a Topo I inhibitor, affecting DNA synthesis and transcription, thereby inhibiting cancer cell proliferation. Moreover, compound G11 inhibited tumor growth in 4T1 syngeneic transplant mice with an inhibition rate of 43.19 % at a dose of 10 mg/kg, and 63.87 % at 20 mg/kg, without causing significant toxicity to the mice or their organs, achieving the goal of reduced toxicity and increased efficacy. All these results indicate of G11 has enormous potential as an anti-tumor agent and merits further investigation.
Collapse
Affiliation(s)
- Ya-Li Guo
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jing-Wen Yu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yan Cao
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ke-Xin Cheng
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Suo-Nan-Mu Dong-Zhi
- Tibetan Medicine Research Institute, Tibetan Traditional Medical College, Tibet, 850000, PR China
| | - Yan-Fei Zhang
- Tibetan Medicine Research Institute, Tibetan Traditional Medical College, Tibet, 850000, PR China
| | - Qing-Jia Ren
- Tibetan Medicine Research Institute, Tibetan Traditional Medical College, Tibet, 850000, PR China
| | - Yong Yin
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Cao-Long Li
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
3
|
Li XW, Fang SJ, Li YZ, Qin LQ, Chen NY, Zheng B, Mo DL, Su GF, Su JC, Pan CX. Design and synthesis of luotonin A-derived topoisomerase targeting scaffold with potent antitumor effect and low genotoxicity. Bioorg Chem 2024; 143:107015. [PMID: 38086241 DOI: 10.1016/j.bioorg.2023.107015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024]
Abstract
Conventional topoisomerase (Topo) inhibitors typically usually exert their cytotoxicity by damaging the DNAs, which exhibit high toxicity and tend to result in secondary carcinogenesis risk. Molecules that have potent topoisomerase inhibitory activity but involve less DNA damage provide more desirable scaffolds for developing novel chemotherapeutic agents. In this work, we broke the rigid pentacyclic system of luotonin A and synthesized thirty-three compounds as potential Topo inhibitors based on the devised molecular motif. Further investigation disclose that two compounds with the highest antiproliferation activity against cancer cells, 5aA and 5dD, had a distinct Topo I inhibitory mechanism different from those of the classic Topo I inhibitors CPT or luteolin, and were able to obviate the obvious cellular DNA damage typically associated with clinically available Topo inhibitors. The animal model experiments demonstrated that even in mice treated with a high dosage of 50 mg/kg 5aA, there were no obvious signs of toxicity or loss of body weight. The tumor growth inhibition (TGI) rate was 54.3 % when 20 mg/kg 5aA was given to the T24 xenograft mouse model, and 5aA targeted the cancer tissue precisely without causing damage to the liver and other major organs.
Collapse
Affiliation(s)
- Xin-Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Shu-Jun Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Ying-Ze Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Li-Qing Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Nan-Ying Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Bin Zheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China.
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, PR China.
| |
Collapse
|
4
|
Zeng H, Xie H, Ma Q, Zhuang Y, Luo B, Liao M, Nie H, He J, Tang Z, Zhang S. Identification of N-(3-(methyl(3-(orotic amido)propyl)amino)propyl) oleanolamide as a novel topoisomerase I catalytic inhibitor by rational design, molecular dynamics simulation, and biological evaluation. Bioorg Chem 2023; 139:106734. [PMID: 37473480 DOI: 10.1016/j.bioorg.2023.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
DNA topoisomerase I (TOP1) catalytic inhibitors are a promising class of antitumor agents. Oleanolic acid derivatives are potential TOP1 catalytic inhibitors. However, their inhibitory activity still needs to be enhanced, and the stability and hotspot residue sites of their interaction with TOP1 remain to be elucidated. Herein, a novel oleanolic acid derivative, OA4 (N-(3-(methyl(3-(orotic amido)propyl)amino)propyl)oleanolamide), was identified by rational design. Subsequently, molecular dynamics simulations were performed to explore the stability and conformational dynamics of the TOP1-OA4 complex. The molecular mechanics/generalized Born surface area method calculated the binding free energy and predicted Arg488, Ile535, and His632 to be hotspot residues. Biological experiments verified that OA4 is a nonintercalative TOP1 catalytic inhibitor. OA4 exhibits better proliferation inhibitory activity against tumor cells than normal cells. Furthermore, OA4 can induce apoptosis and effectively suppress the proliferation and migration of cancer cells. This work provides new insights for the development of novel TOP1 catalytic inhibitors.
Collapse
Affiliation(s)
- Huang Zeng
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Huasong Xie
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Qiaonan Ma
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Yuanbei Zhuang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Baoping Luo
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Mei Liao
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Hua Nie
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Junwei He
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhanyong Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shengyuan Zhang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China.
| |
Collapse
|
5
|
Rani P, Chahal S, Kumar R, Mayank, Kumar P, Negi A, Singh R, Kumar S, Kataria R, Joshi G, Sindhu J. Electro-organic synthesis of C-5 sulfenylated amino uracils: Optimization and exploring topoisomerase-I based anti-cancer profile. Bioorg Chem 2023; 138:106660. [PMID: 37320914 DOI: 10.1016/j.bioorg.2023.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/25/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cancer is spreading worldwide and is one of the leading causes of death. The use of existing chemotherapeutic agents is frequently limited due to side effects. As a result, it is critical to investigate new agents for cancer treatment. In this context, we developed an electrochemical method for the synthesis of a series of thiol-linked pyrimidine derivatives (3a-3p) and explored their anti-cancer potential. The biological profile of the synthesized compounds was evaluated against breast (MDAMB-231 and MCF-7) and colorectal (HCT-116) cancer cell lines. 3b and 3d emerged to be the most potent agents, with IC50 values ranging between 0.98 to 2.45 µM. Target delineation studies followed by secondary anticancer parameters were evaluated for most potent compounds, 3b and 3d. The analysis revealed compounds possess DNA intercalation potential and selective inhibition towards human topoisomerase (hTopo1). The analysis was further corroborated by DNA binding studies and in silico-based molecular modeling studies that validated the intercalating binding mode between the compounds and the DNA.
Collapse
Affiliation(s)
- Payal Rani
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sandhya Chahal
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Roshan Kumar
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Mayank
- Institut interdisciplinaire d'innovation technologique - 3IT USherbrooke, Sherbrooke, Quebec, Canada
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Arvind Negi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India; Department of Bioinformatics and Computational Biology, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar-246174, Dist. Garhwal, (Uttarakhand), India; Department of Biotechnology, Graphic Era (Deemed to be University), Bell Road, Clement Town Dehradun, Uttarakhand- 248002.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India.
| |
Collapse
|
6
|
Xu S, Yao H, Qiu Y, Zhou M, Li D, Wu L, Yang DH, Chen ZS, Xu J. Discovery of Novel Polycyclic Heterocyclic Derivatives from Evodiamine for the Potential Treatment of Triple-Negative Breast Cancer. J Med Chem 2021; 64:17346-17365. [PMID: 34844412 DOI: 10.1021/acs.jmedchem.1c01411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Evodiamine (Evo) is a quinazolinocarboline alkaloid found in Evodia rutaecarpa and exhibits moderate antiproliferative activity. Herein, we report using a scaffold-hopping approach to identify a series of novel polycyclic heterocyclic derivatives based on Evo as the topoisomerase I (Top1) inhibitor for the treatment of triple-negative breast cancer (TNBC), which is an aggressive subtype of breast cancer with limited treatment options. The most potent compound 7f inhibited cell growth in a human breast carcinoma cell line (MDA-MB-231) with an IC50 value of 0.36 μM. Further studies revealed that Top1 was the target of 7f, which directly induced irreversible Top1-DNA covalent complex formation or induced an oxidative DNA lesion through an indirect mechanism mediated by reactive oxygen species. More importantly, in vivo studies showed that 7f exhibited potent antitumor activity in a TNBC-patient-derived tumor xenograft model. These results suggest that compound 7f deserves further investigation as a promising candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yangyi Qiu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China.,Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, P. R. China
| | - Manzhen Zhou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Dahong Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China.,Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
7
|
Ibric A, Battisti V, Deckardt S, Haller AV, Lee C, Prötsch C, Langer T, Heffeter P, Schueffl HH, Marian B, Haider N. A-ring and E-ring modifications of the cytotoxic alkaloid Luotonin A: Synthesis, computational and biological studies. Bioorg Med Chem 2020; 28:115443. [PMID: 32201190 DOI: 10.1016/j.bmc.2020.115443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 11/15/2022]
Abstract
A series of new Luotonin A derivatives with substituents at rings A and E was synthesized, together with some E-ring-unsubstituted derivatives. Subsequently, the compound library was examined in silico for their binding into a previously proposed site in the DNA/topoisomerase I binary complex. Whereas no convincing correlation between docking scores and biological data from in vitro assays could be found, one novel 4,9-diamino Luotonin A derivative had strong antiproliferative activity based on massive G2/M phase arrest. As this biological activity clearly differs from the reference compound Camptothecin, this strongly indicates that at least some Luotonin A derivatives may be potent antiproliferative agents, however with a different mode of action.
Collapse
Affiliation(s)
- Amra Ibric
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Verena Battisti
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Sophie Deckardt
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Anna Veronika Haller
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Calvin Lee
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Corinna Prötsch
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Hemma Henrike Schueffl
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Brigitte Marian
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Norbert Haider
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria.
| |
Collapse
|
8
|
Kadayat TM, Park S, Shrestha A, Jo H, Hwang SY, Katila P, Shrestha R, Nepal MR, Noh K, Kim SK, Koh WS, Kim KS, Jeon YH, Jeong TC, Kwon Y, Lee ES. Discovery and Biological Evaluations of Halogenated 2,4-Diphenyl Indeno[1,2- b]pyridinol Derivatives as Potent Topoisomerase IIα-Targeted Chemotherapeutic Agents for Breast Cancer. J Med Chem 2019; 62:8194-8234. [PMID: 31398033 DOI: 10.1021/acs.jmedchem.9b00970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the aim of developing new effective topoisomerase IIα-targeted anticancer agents, we synthesized a series of hydroxy- and halogenated 2,4-diphenyl indeno[1,2-b]pyridinols using a microwave-assisted single step synthetic method and investigated structure-activity relationships. The majority of compounds with chlorophenyl group at 2-position and phenol group at the 4-position of indeno[1,2-b]pyridinols exhibited potent antiproliferative activity and topoisomerase IIα-selective inhibition. Of the 172 compounds tested, 89 showed highly potent and selective topoisomerase IIα inhibition and antiproliferative activity in the nanomolar range against human T47D breast (2.6 nM) cancer cell lines. In addition, mechanistic studies revealed compound 89 is a nonintercalative topoisomerase II poison, and in vitro studies showed it had promising cytotoxic effects in diverse breast cancer cell lines and was particularly effective at inducing apoptosis in T47D cells. Furthermore, in vivo administration of compound 89 had significant antitumor effects in orthotopic mouse model of breast cancer.
Collapse
Affiliation(s)
- Tara Man Kadayat
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
- New Drug Development Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 120-750 , Republic of Korea
| | - Aarajana Shrestha
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Hyunji Jo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 120-750 , Republic of Korea
| | - Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 120-750 , Republic of Korea
| | - Pramila Katila
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Ritina Shrestha
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Mahesh Raj Nepal
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Keumhan Noh
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Woo-Suk Koh
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Kil Soo Kim
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
- College of Veterinary Medicine , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 120-750 , Republic of Korea
| | - Eung-Seok Lee
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| |
Collapse
|
9
|
Synthesis, thymidine phosphorylase, angiogenic inhibition and molecular docking study of isoquinoline derivatives. Bioorg Chem 2019; 89:102999. [DOI: 10.1016/j.bioorg.2019.102999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/12/2019] [Accepted: 05/19/2019] [Indexed: 01/09/2023]
|
10
|
Yu P, Deng J, Cai J, Zhang Z, Zhang J, Hamid Khan M, Liang H, Yang F. Anticancer and biological properties of a Zn-2,6-diacetylpyridine bis(thiosemicarbazone) complex. Metallomics 2019; 11:1372-1386. [PMID: 31267119 DOI: 10.1039/c9mt00124g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, to develop a multi-target anticancer metal agent and achieve a "1 + 1 > 2" pharmaceutical effect, we rationally designed and synthesized five complexes (C1-C5) by synergistically exploiting the properties of Zn(ii) and a series of modified 2,6-diacetylpyridine bis(thiosemicarbazone) ligands. By investigating the structure-activity relationships, we found that the binuclear Zn(ii) complex (C5) acts against human bladder cancer cells (T-24) with significant cytotoxicity. We subsequently determined the multiple anticancer mechanisms of C5 to T-24 cells, including inhibiting the activity of topoisomerase I (Topo I), blocking the cell cycle in the S phase, and inducing apoptosis and autophagy in T-24 cells. Furthermore, C5 inhibited the migration of T-24 cells and showed a significant cytostatic effect in the T-24 3D spheroid model.
Collapse
Affiliation(s)
- Ping Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Jungang Deng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Jinhua Cai
- College of Chemistry & Chemical Engineering, Jinggangshan University, Jian, Jiangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Juzheng Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Muhammad Hamid Khan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| | - Feng Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China.
| |
Collapse
|
11
|
Machine Learning Models Combined with Virtual Screening and Molecular Docking to Predict Human Topoisomerase I Inhibitors. Molecules 2019; 24:molecules24112107. [PMID: 31167344 PMCID: PMC6601036 DOI: 10.3390/molecules24112107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
In this work, random forest (RF), support vector machine, k-nearest neighbor and C4.5 decision tree, were used to establish classification models for predicting whether an unknown molecule is an inhibitor of human topoisomerase I (Top1) protein. All these models have achieved satisfactory results, with total prediction accuracies from 89.70% to 97.12%. Through comparative analysis, it can be found that the RF model has the best forecasting effect. The parameters were further optimized to generate the best-performing RF model. At the same time, features selection was implemented to choose properties most relevant to the inhibition of Top1 from 189 molecular descriptors through a special RF procedure. Subsequently, a ligand-based virtual screening was performed from the Maybridge database by the optimal RF model and 596 hits were picked out. Then, 67 molecules with relative probability scores over 0.7 were selected based on the screening results. Next, the 67 molecules above were docked to Top1 using AutoDock Vina. Finally, six top-ranked molecules with binding energies less than −10.0 kcal/mol were screened out and a common backbone, which is entirely different from that of existing Top1 inhibitors reported in the literature, was found.
Collapse
|
12
|
Hevener K, Verstak TA, Lutat KE, Riggsbee DL, Mooney JW. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm Sin B 2018; 8:844-861. [PMID: 30505655 PMCID: PMC6251812 DOI: 10.1016/j.apsb.2018.07.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022] Open
Abstract
The DNA topoisomerase enzymes are essential to cell function and are found ubiquitously in all domains of life. The various topoisomerase enzymes perform a wide range of functions related to the maintenance of DNA topology during DNA replication, and transcription are the targets of a wide range of antimicrobial and cancer chemotherapeutic agents. Natural product-derived agents, such as the camptothecin, anthracycline, and podophyllotoxin drugs, have seen broad use in the treatment of many types of cancer. Selective targeting of the topoisomerase enzymes for cancer treatment continues to be a highly active area of basic and clinical research. The focus of this review will be to summarize the current state of the art with respect to clinically used topoisomerase inhibitors for targeted cancer treatment and to discuss the pharmacology and chemistry of promising new topoisomerase inhibitors in clinical and pre-clinical development.
Collapse
Affiliation(s)
- KirkE. Hevener
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|