1
|
Deng W, Xiong X, Lu M, Huang S, Luo Y, Wang Y, Ying Y. Curcumin suppresses colorectal tumorigenesis through restoring the gut microbiota and metabolites. BMC Cancer 2024; 24:1141. [PMID: 39267014 PMCID: PMC11395590 DOI: 10.1186/s12885-024-12898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Curcumin has been reported to have activity for prevention and therapy of CRC, yet its underlying mechanisms remain largely unknown. Recently, emerging evidence suggests that the gut microbiota and its metabolites contribute to the causation and progression of Colorectal cancer (CRC). In this study, we aimed to investigate if curcumin affects the tumorigenesis of CRC by modulating gut microbiota and its metabolites. METHODS Forty male C57BL/6JGpt mice were randomly divided into four groups: negative control (NC), curcumin control, CRC model, and curcumin treatment (CRC-Cur) groups. CRC mouse model was induced by using azoxymethane (AOM) and dextran sodium sulfate (DSS), and the mice in CRC model and curcumin treatment groups received oral PBS or curcumin (150 mg/kg/day), respectively. Additionally, fecal samples were collected. 16 S rRNA sequencing and Liquid Chromatography Mass Spectrometry (LC-MS)-based untargeted metabolomics were used to observe the changes of intestinal flora and intestinal metabolites. RESULTS Curcumin treatment restored colon length and structural morphology, and significantly inhibited tumor formation in AOM/DSS-induced CRC model mice. The 16S rRNA sequencing analysis indicated that the diversity and richness of core and total species of intestinal microflora in the CRC group were significantly lower than those in the NC group, which were substantially restored in the curcumin treatment group. Curcumin reduced harmful bacteria, including Ileibacterium, Monoglobus and Desulfovibrio, which were elevated in CRC model mice. Moreover, curcumin increased the abundance of Clostridia_UCG-014, Bifidobacterium and Lactobacillus, which were decreased in CRC model mice. In addition, 13 different metabolites were identified. Compared to the NC group, ethosuximide, xanthosine, and 17-beta-estradiol 3-sulfate-17-(beta-D-glucuronide) were elevated in the CRC model group, whereas curcumin treatment significantly reduced their levels. Conversely, glutamylleucine, gamma-Glutamylleucine, liquiritin, ubenimex, 5'-deoxy-5'-fluorouridine, 7,8-Dihydropteroic acid, neobyakangelicol, libenzapril, xenognosin A, and 7,4'-dihydroxy-8-methylflavan were decreased in the CRC group but notably upregulated by curcumin. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis revealed enrichment in seven pathways, including folate biosynthesis (P < 0.05). CONCLUSIONS The gut microecological balance was disrupted in AOM/DSS-induced CRC mice, accompanied by metabolite dysbiosis. Curcumin restored the equilibrium of the microbiota and regulated metabolites, highly indicating that curcumin may alleviate the development of AOM/DSS induced colorectal cancer in mice by regulating intestinal flora homeostasis and intestinal metabolites.
Collapse
Affiliation(s)
- Wenxin Deng
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious Diseases, Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Xiaojian Xiong
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious Diseases, Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, P.R. China
| | - Mingyang Lu
- Queen Mary School, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Shibo Huang
- The Clinical Trial Research Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, P.R. China
| | - Yunfei Luo
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Yujie Wang
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious Diseases, Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, P.R. China
| | - Ying Ying
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious Diseases, Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, P.R. China.
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Jia G, Qi K, Hou B, Yue K, Xu T, Jiang Y, Li X. Design, synthesis, and biological evaluation of novel HDAC/CD13 dual inhibitors for the treatment of cancer. Eur J Med Chem 2023; 260:115752. [PMID: 37647727 DOI: 10.1016/j.ejmech.2023.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Aminopeptidase N (APN/CD13) plays a role in tumors progression, but its inhibitor lacks cytotoxicity and is used as an adjuvant drug in cancer treatment. Histone deacetylases (HDACs) are a type of epigenetic targets, and HDAC inhibitors are cytotoxic and exhibit synergistic effects with other anticancer agents. Herein, a novel series of HDAC/CD13 dual inhibitors were rationally designed and synthesized to combine the anti-metastasis and anti-invasion of CD13 inhibitor with the cytotoxic of HDAC inhibitor. The representative compound 12 exhibited more potent inhibitory activity against human CD13, HDAC1-3, and antiproliferative activity than positive controls bestatin and SAHA. Compound 12 effectively induced apoptosis in MV4-11 cells, while arresting A549 cells in G2/M phase. Moreover, 12 exhibited significantly better anti-metastasis and anti-invasion effects than mono-inhibitors 32 and 38, indicating that it is a promising anti-cancer agent for further investigation.
Collapse
Affiliation(s)
- Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Kangjing Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Baogeng Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Kairui Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Tongqiang Xu
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China.
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
3
|
Mironiuk-Puchalska E, Karatsai O, Żuchowska A, Wróblewski W, Borys F, Lehka L, Rędowicz MJ, Koszytkowska-Stawińska M. Development of 5-fluorouracil-dichloroacetate mutual prodrugs as anticancer agents. Bioorg Chem 2023; 140:106784. [PMID: 37639758 DOI: 10.1016/j.bioorg.2023.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
5-Fluorouracil (5-FU) is one of the most widely applied chemotherapeutic agents with a broad spectrum of activity. However, despite this versatile activity, its use poses many limitations. Herein, novel derivatives of 5-FU and dichloroacetic acid have been designed and synthesized as a new type of codrugs, also known as mutual prodrugs, to overcome the drawbacks of 5-FU and enhance its therapeutic efficiency. The stability of the obtained compounds has been tested at various pH values using different analytical techniques, namely HPLC and potentiometry. The antiproliferative activity of the new 5-FU derivatives was assessed in vitro on SK-MEL-28 and WM793 human melanoma cell lines in 2D culture as well as on A549 human lung carcinoma, MDA-MB-231 breast adenocarcinoma, LL24 normal lung tissue, and HMF normal breast tissue as a multicellular 3D spheroid model cultured in standard (static) conditions and with the use of microfluidic systems, which to a great extent resembles the in vivo environment. In all cases, new mutual prodrugs showed a higher cytotoxic activity toward cancer models and lower to normal cell models than the parent 5-FU itself.
Collapse
Affiliation(s)
- Ewa Mironiuk-Puchalska
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St., 00-664 Warsaw, Poland.
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur St., 02-093-Warsaw, Poland
| | - Agnieszka Żuchowska
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St., 00-664 Warsaw, Poland
| | - Wojciech Wróblewski
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St., 00-664 Warsaw, Poland
| | - Filip Borys
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St., 00-664 Warsaw, Poland
| | - Lilya Lehka
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur St., 02-093-Warsaw, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology Polish Academy of Science, 3 Pasteur St., 02-093-Warsaw, Poland
| | | |
Collapse
|
4
|
Zhang J, Sun S, Liu J, Zhang L, Guo D, Zhang N, Zhao J, Kong D, Xu T, Wang X, Xu W, Li X, Jiang Y. Discovery of a Novel Ubenimex Derivative as a First-in-Class Dual CD13/Proteasome Inhibitor for the Treatment of Cancer. Molecules 2023; 28:6343. [PMID: 37687169 PMCID: PMC10489073 DOI: 10.3390/molecules28176343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The CD13 inhibitor ubenimex is used as an adjuvant drug with chemotherapy for the treatment of cancer due to its function as an immunoenhancer, but it has limitations in its cytotoxic efficacy. The proteasome inhibitor ixazomib is a landmark drug in the treatment of multiple myeloma with a high anti-cancer activity. Herein, we conjugated the pharmacophore of ubenimex and the boric acid of ixazomib to obtain a dual CD13 and proteasome inhibitor 7 (BC-05). BC-05 exhibited potent inhibitory activity on both human CD13 (IC50 = 0.13 μM) and the 20S proteasome (IC50 = 1.39 μM). Although BC-05 displayed lower anti-proliferative activity than that of ixazomib in vitro, an advantage was established in the in vivo anti-cancer efficacy and prolongation of survival time, which may be due to its anti-metastatic and immune-stimulating activity. A pharmacokinetic study revealed that BC-05 is a potentially orally active agent with an F% value of 24.9%. Moreover, BC-05 showed more favorable safety profiles than those of ixazomib in preliminary toxicity studies. Overall, the results indicate that BC-05 is a promising drug candidate for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Jian Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China; (J.Z.)
| | - Simin Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China (X.L.)
| | - Jinyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China (X.L.)
| | - Liang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China (X.L.)
| | - Di Guo
- College of Pharmacy, Weifang Medical University, Weifang 261053, China; (J.Z.)
| | - Naixin Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jun Zhao
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Tongqiang Xu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xuejian Wang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China; (J.Z.)
| | - Wenfang Xu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China (X.L.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China (X.L.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| |
Collapse
|
5
|
Wang X, Wang A, Feng W, Wang D, Guo X, Wang X, Miao Q, Liu M, Xia G. Novel 5-Fluorouracil Carbonate-Loaded Liposome: Preparation, In Vitro, and In Vivo Evaluation as an Antitumor Agent. Mol Pharm 2022; 19:2061-2076. [PMID: 35731595 DOI: 10.1021/acs.molpharmaceut.1c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic drug against many types of cancers, especially colorectal cancer. However, its short plasma half-life and serious adverse reactions limit its wide clinical applications. To overcome these shortcomings, a novel lipophilic 5-FU carbonate [XL-01, (5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl) methyl tetradecyl carbonate] was designed, synthesized, and encapsulated into liposome (LipoXL-01) by a thin-film dispersion method through formulation screening and optimization. LipoXL-01 was characterized by a particle size of around 100 nm, polydispersity index of 0.200, ζ-potential value of -41 mV, encapsulation efficiency of 93.9%, and drug-loading efficiency of 11.6%. The cellular uptake of LipoXL-01 was increased in a concentration-dependent manner on HCT15 cells. LipoXL-01 could enhance the induction of cell apoptosis and the inhibition of cell migration and arrest the ability of the cell cycle at the S-phase on HCT15 cells better than 5-FU. Additionally, LipoXL-01 exhibited a slow drug release profile with a cumulative release rate of 12% in 8 h. The results of pharmacokinetic and biodistribution studies revealed that LipoXL-01 had a long plasma half-life (7.21 h) and a high tumor accumulation (733 nmol/g at 8 h). The in vivo antitumor effect study also showed that LipoXL-01 had more potent efficacy than 5-FU (65 vs 48% of the tumor-inhibition rate). Simultaneously, negligible systemic toxicity was observed via analyzing the body weight as well as hematological and pathological parameters in the tested mice. The current study suggested that LipoXL-01 might be a promising nanocandidate for chemotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoru Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qingfang Miao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
He X, Tang J, Yan HZ, Wang JX, Li HQ, Duan XW, Yu SY, Hou XL, Liao GB, Liu W. Anemoside B4 sensitizes human colorectal cancer to fluorouracil-based chemotherapy through src-mediated cell apoptosis. Aging (Albany NY) 2021; 13:25365-25376. [PMID: 34890366 PMCID: PMC8714157 DOI: 10.18632/aging.203751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Currently, 5-Fluorouracil (5-FU) based chemotherapy is the primary option for colorectal cancer after surgery, whereas chemotherapy resistance related mortality is observed in a large proportion of patients. Anemoside B4 (AB4) is a triterpene saponin, which exhibits a considerable activity in oncotherapy. In this study, we explored the efficacy of AB4 in FU-based chemotherapy in colorectal cancer cells and the underlying molecular mechanisms. Our results indicated a significant synergistic activity of AB4 in 5-FU treated colorectal cancer cells. Furthermore, AB4 treatment eliminated colorectal cancer stem cells by promoting apoptotic cell death in 5-FU resistant colorectal cancer cells. Mechanically, AB4 activated caspase-9 pathway in 5-FU resistant colorectal cancer cells. Elevated Src activity induced cell apoptosis and cancer stem cells elimination effects in AB4 treated colorectal cancer cells. In conclusion, AB4 showed promising sensitization effect in the FU-based chemotherapy of colorectal cancer. Our study may pave a way to ameliorate FU-based chemotherapeutic efficiency in colorectal cancer.
Collapse
Affiliation(s)
- Xing He
- Department of Gastroenterology, The 901 Hospital of Joint Logistics Support Force, Hefei 230031, Anhui, China
| | - Jun Tang
- Department of Gastroenterology, The 901 Hospital of Joint Logistics Support Force, Hefei 230031, Anhui, China
| | - He-Zhong Yan
- Department of Gastroenterology, The 901 Hospital of Joint Logistics Support Force, Hefei 230031, Anhui, China
| | - Jiao-Xue Wang
- Department of Gastroenterology, The 901 Hospital of Joint Logistics Support Force, Hefei 230031, Anhui, China
| | - Hai-Qing Li
- Department of Gastroenterology, The 901 Hospital of Joint Logistics Support Force, Hefei 230031, Anhui, China
| | - Xiao-Wei Duan
- Department of Gastroenterology, The 901 Hospital of Joint Logistics Support Force, Hefei 230031, Anhui, China
| | - Sen-Yuan Yu
- Department of Gastroenterology, The 901 Hospital of Joint Logistics Support Force, Hefei 230031, Anhui, China
| | - Xi-Lu Hou
- Department of Gastroenterology, The 901 Hospital of Joint Logistics Support Force, Hefei 230031, Anhui, China
| | - Guo-Bin Liao
- Department of Gastroenterology, The 901 Hospital of Joint Logistics Support Force, Hefei 230031, Anhui, China
| | - Wei Liu
- Department of Gastroenterology, The 901 Hospital of Joint Logistics Support Force, Hefei 230031, Anhui, China
| |
Collapse
|
7
|
Yue K, Hou X, Jia G, Zhang L, Zhang J, Tan L, Wang X, Zhang Z, Li P, Xu W, Li X, Jiang Y. Design, synthesis and biological evaluation of hybrid of ubenimex-fluorouracil for hepatocellular carcinoma therapy. Bioorg Chem 2021; 116:105343. [PMID: 34544027 DOI: 10.1016/j.bioorg.2021.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
In our previous study, we discovered a ubenimex-fluorouracil (5FU) conjugates BC-02, which displays significant in vivo anti-tumor activity, however, the instability of BC-02 in plasma limits its further development as a drug candidate. Herein, we designed and synthesized four novel ubenimex-5FU conjugates by optimizing the linkers between ubenimex and 5FU based on BC-02. Representative compound 20 is more stable than BC-02 in human plasma and displays about 100 times higher CD13 inhibitory activity than the positive control ubenimex. Meanwhile, the antiproliferative activity of 20 was comparable with 5FU in vitro. The preliminary mechanism study indicated that compound 20 exhibited significant anti-invasion and anti-angiogenesis activities in vitro. Furthermore, compound 20 obviously inhibits tumor growth and metastasis in vivo and prolong the survival time of tumor-bearing mice. Our study may have an important implication reference for the design of more druglike mutual prodrug, and compound 20 can be used as a lead compound for further design and development.
Collapse
Affiliation(s)
- Kairui Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Xiaohan Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Liang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jian Zhang
- College of Pharmacy, Weifang Medical University, 261053 Wei'fang, Shandong, PR China
| | - Leqiao Tan
- Weifang Bochuang International Biological Medicinal Institute, Weifang, Shandong 261061, PR China
| | - Xuejian Wang
- College of Pharmacy, Weifang Medical University, 261053 Wei'fang, Shandong, PR China
| | - Zhaolin Zhang
- Weifang Bochuang International Biological Medicinal Institute, Weifang, Shandong 261061, PR China
| | - Peixia Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Wenfang Xu
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, PR China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
8
|
Ciaffaglione V, Modica MN, Pittalà V, Romeo G, Salerno L, Intagliata S. Mutual Prodrugs of 5-Fluorouracil: From a Classic Chemotherapeutic Agent to Novel Potential Anticancer Drugs. ChemMedChem 2021; 16:3496-3512. [PMID: 34415107 PMCID: PMC9290623 DOI: 10.1002/cmdc.202100473] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Indexed: 12/18/2022]
Abstract
The development of potent antitumor agents with a low toxicological profile against healthy cells is still one of the greatest challenges facing medicinal chemistry. In this context, the “mutual prodrug” approach has emerged as a potential tool to overcome undesirable physicochemical features and mitigate the side effects of approved drugs. Among broad‐spectrum chemotherapeutics available for clinical use today, 5‐fluorouracil (5‐FU) is one of the most representative, also included in the World Health Organization model list of essential medicines. Unfortunately, severe side effects and drug resistance phenomena are still the primary limits and drawbacks in its clinical use. This review describes the progress made over the last ten years in developing 5‐FU‐based mutual prodrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
9
|
Zhao MJ, Cheng L, Huang YJ, Tao Y, Gu X, Zheng JQ. Establishment and Validation of an ICP-MS Method for Simultaneous Measurement of 24 Elemental Impurities in Ubenimex APIs According to USP/ICH guidelines. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200423103711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
To control the potential presence of heavy metals in pharmaceuticals, the United States
Pharmacopeia (USP) and International Conference on Harmonization (ICH) have put forth new requirements and
guidelines. USP <232> and ICH Q3D specify 24 elemental impurities and their concentration limits in consideration of
the permitted daily exposure (PDE) of different drug categories (oral, parenteral and inhalation). while USP <233>
describes more information about sample preparation and method validation procedure.
Objective:
To establish and verify an ICP-MS method for the determination of 24 elemental impurities (Cd, Pb, As, Hg,
Co, V, Ni, Tl, Au, Pd, Ir, Os, Ph, Ru, Se, Ag, Pt, Li, Sb, Ba, Mo, Cu, Sn, Cr) in ubenimex APIs according to USP/ICH
guidelines.
Method:
Samples were analyzed by ICP-MS after direct dissolution in diluted acid solution. All elements were detected
in He/HEHe mode (except for Li, which was in No gas mode).
Results:
The spiked recoveries were within 80-120% except Hg (79.4% at 0.5J level in HEHe mode) and Cd (121.9%
at 0.5J level in HE mode). The RSD of repeatability (N = 6) for all elements were < 7.0% and intermediate precision (N
= 12) were < 9.0%. The correlation coefficients of linear (R) for 24 elements were all > 0.998. The limits of detection
(LOD) were < 1 ng/mL except that Ni was 1.23 ng/mL in HEHe mode. The contents of 24 elements in 3 batches of
samples were significantly lower than the actual target limit of ICH, while the highest content of Pd did not exceed 10
μg/g.
Conclusion:
The established method was proved to be simple, sensitive and accurate. It successfully applied to the
elemental impurity determination in 3 batches of ubenimex APIs from different manufactories. This method also
provided technical guidance for determination of multiple elements in pharmaceutical products.
Collapse
Affiliation(s)
- Ming-Juan Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang,China
| | - Lei Cheng
- Zhejiang Institute for Food and Drug Control (Key Laboratory of Core Technology for Generic Drug Evaluation, China Drug Administration), Hangzhou, Zhejiang,China
| | - Yu-Jia Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang,China
| | - Ying Tao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang,China
| | - Xiao Gu
- Zhejiang Institute for Food and Drug Control (Key Laboratory of Core Technology for Generic Drug Evaluation, China Drug Administration), Hangzhou, Zhejiang,China
| | - Jin-Qi Zheng
- Zhejiang Institute for Food and Drug Control (Key Laboratory of Core Technology for Generic Drug Evaluation, China Drug Administration), Hangzhou, Zhejiang,China
| |
Collapse
|
10
|
Liu L, Borlak J. Advances in Liver Cancer Stem Cell Isolation and their Characterization. Stem Cell Rev Rep 2021; 17:1215-1238. [PMID: 33432485 DOI: 10.1007/s12015-020-10114-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Over the last decade research on cancer stem cells (CSC) significantly contributed to a better understanding of tumor biology. Given their similarity to normal stem cells, i.e. self-renewal and pluripotency the need arises to develop robust protocols for the isolation and characterization of CSCs. As with other malignancies, hepatic tumors are composed of a heterogeneous population of cells including liver cancer stem cells (LCSC). Yet, a precise understanding of why stem cells become cancerous is still lacking. There is unmet need to develop robust protocols for the successful isolation of LCSCs from human tissue resection material as to assist in the development of molecular targeted therapies. Here we review the research progress made in the isolation and characterization of LCSCs by considering a wide range of cell surface markers and sorting methods, as applied to side populations, microsphere cultures and the gradient centrifugation method. We emphasize the different fluorescence activated cell sorting methods and the possibility to enrich LCSCs by immunomagnetic beads. We review the specificity of functional assays by considering ABCG transporter and ALDH1 enzyme activities and evaluate the in vivo tumorigenicity of LCSCs in highly sensitive bioassays. Finally, we evaluate different LCSC markers in association with viral and non-viral liver disease and explore the potential of novel drug delivery systems targeting CD133, EpCAM, CD13 and CD90 for the development of molecular targeted therapies. Graphical Abstract.
Collapse
Affiliation(s)
- Lu Liu
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
11
|
Song W, Xu X, Gao C, Zhang Y, Wu J, Liu J, Chen X, Luo Q, Liu L. Open Gate of Corynebacterium glutamicum Threonine Deaminase for Efficient Synthesis of Bulky α-Keto Acids. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01672] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Song
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Yuxuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
12
|
Mao J, Zhang H, Wang X, Gao J, Tang J, Zhang J. Design, synthesis, and biological evaluation of 4-phenoxybenzenesulfonyl pyrrolidine derivatives as matrix metalloproteinase inhibitors. Biosci Trends 2020; 14:192-199. [PMID: 32389938 DOI: 10.5582/bst.2020.01051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A series of 4-phenoxybenzenesulfonyl pyrrolidine derivatives were designed, synthesized, and evaluated as matrix metalloproteinases (MMPs) inhibitors. All of the synthesized compounds displayed inhibitory activity against MMP-2 and MMP-9. Compounds 4a, 4e, and 4i displayed more potent activity than the other compounds. While the three compounds mildly or moderately inhibited the proliferation of cancer cells, they significantly suppressed the migration and invasion of cancer cells at relatively low concentrations as determined by a wound healing assay and transwell assay. In addition, compound 4e suppressed vascular endothelial cell tube formation and sprouting of microvessels from aortic rings in vitro in a dose-dependent manner. Compound 4e markedly suppressed the pulmonary metastasis of H22 cells in mice. These findings along with molecular docking results suggested that compound 4e might be a promising candidate for further structural optimization to develop MMP inhibitors as potential anticancer agents.
Collapse
Affiliation(s)
- Jing Mao
- Department of Medical Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Hao Zhang
- Department of Medical Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Xuejian Wang
- Department of Medical Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Jianjun Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Jinbao Tang
- Department of Medical Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Jian Zhang
- Department of Medical Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
13
|
Liu H, Wang X, Yang H, Zhao Y, Ji S, Ma H, Zhou Y, Wang Y, Zhang H, Jiang W, Fang C, Feng L, Wang X. New Method for Detecting the Suppressing Effect of Enzyme Activity by Aminopeptidase N Inhibitor. Chem Pharm Bull (Tokyo) 2019; 67:155-158. [PMID: 30713276 DOI: 10.1248/cpb.c18-00667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aminopeptidase N, also known as CD13, is a transmembrance protease with many functions. CD13 is involved in inflammatory diseases and cancers. A convenient and reliable laboratory test method for detecting the suppressing effects of enzyme activity would be useful for study of CD13 inhibitors. Porcine CD13 (pCD13) was traditionally considered an enzyme source but has significant practical disadvantages. pCD13 is not a human source, and the accuracy and reliability of experimental results are greatly reduced. In this study, a modified detection method with K562-CD13 monoclonal cells, a human-derived cell line, was established to detect the suppressing effects of enzyme activity by the CD13 inhibitor. In this method, K562-CD13 monoclonal cells were used as enzyme source and L-leucine p-nitroaniline hydrochloride as substrate. Using CD13 enzyme activity analyses, we found that the ability of the catalytic substrate was weaker in K562 cells than in the other cell lines, and K562-CD13 cells expressed significantly higher levels of CD13 enzyme activity than parental K562 cells. The enzyme activity of CD13 was detected with the new method after ubenimex treatment. The enzyme activity was significantly inhibited by ubenimex in a dose-dependent manner. In summary, this study proposes a sensitive, stable, and objective laboratory method for detecting the inhibitory effect of the CD13 inhibitor.
Collapse
Affiliation(s)
- Huijie Liu
- School of Pharmacy, Weifang Medical University
| | | | - Hanlin Yang
- School of Pharmacy, Weifang Medical University
| | - Yan Zhao
- School of Pharmacy, Weifang Medical University
| | | | - Hui Ma
- School of Pharmacy, Weifang Medical University
| | - Yiting Zhou
- School of Pharmacy, Weifang Medical University
| | - Yanjie Wang
- School of Pharmacy, Weifang Medical University
| | | | | | | | - Lingjun Feng
- Two Gland Division, Affiliated Hospital of Weifang Medical University
| | | |
Collapse
|
14
|
Liu CM, Huang JY, Sheng LX, Wen XA, Cheng KG. Synthesis and antitumor activity of fluorouracil - oleanolic acid/ursolic acid/glycyrrhetinic acid conjugates. MEDCHEMCOMM 2019; 10:1370-1378. [PMID: 31673307 PMCID: PMC6786008 DOI: 10.1039/c9md00246d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/09/2019] [Indexed: 12/21/2022]
Abstract
Due to the obvious adverse effects of 5-fluorouracil that limit its clinical usefulness and considering the diverse biological activities of pentacyclic triterpenes, twelve pentacyclic triterpene-5-fluorouracil conjugates were synthesized and their antitumor activities were evaluated. The results indicated that all the single substitution targeted hybrids (7a-12a) possessed much better antiproliferative activities than the double substitution targeted hybrids (7b-12b). Hybrid 12a exhibited good antiproliferative activities against all the tested MDR cell lines. Furthermore, it was revealed that 12a could induce intracellular calcium influx, the generation of ROS, arrest the cell proliferation at the G1 phase, and activate the apoptotic signaling caspase-8, which eventually activates the apoptotic effector caspase-3 and causes the later nuclear apoptosis.
Collapse
Affiliation(s)
- Chun-Mei Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy of Guangxi Normal University , Guilin 541004 , PR China . ; ; Tel: +86 0773 2120958
| | - Jia-Yan Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy of Guangxi Normal University , Guilin 541004 , PR China . ; ; Tel: +86 0773 2120958
| | - Li-Xin Sheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy of Guangxi Normal University , Guilin 541004 , PR China . ; ; Tel: +86 0773 2120958
| | - Xiao-An Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and , State Key Laboratory of Natural Medicines , Center of Drug Discovery , China Pharmaceutical University , 24 Tongjia Xiang , Nanjing 210009 , China
| | - Ke-Guang Cheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy of Guangxi Normal University , Guilin 541004 , PR China . ; ; Tel: +86 0773 2120958
| |
Collapse
|
15
|
Cao J, Zang J, Kong X, Zhao C, Chen T, Ran Y, Dong H, Xu W, Zhang Y. Leucine ureido derivatives as aminopeptidase N inhibitors using click chemistry. Part II. Bioorg Med Chem 2019; 27:978-990. [PMID: 30737134 DOI: 10.1016/j.bmc.2019.01.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 01/06/2023]
Abstract
Aminopeptidase N (APN) has been proved to be deeply associated with cancer angiogenesis, metastasis and invasion. Therefore, APN gains increasing attention as a promising anti-tumor target. In the current study, we report the design, synthesis, biological evaluation and structure-activity relationship of one new series of leucine ureido derivatives containing the 1,2,3-triazole moiety. Among them, compound 31f was identified as the best APN inhibitor with IC50 value being two orders of magnitude lower than that of the positive control bestatin. Compound 31f possessed selective cytotoxicity to several tumor cell lines over the normal cell line human umbilical vein endothelial cells (HUVECs). Notably, when combined with 5-fluorouracil (5-Fu), 31f exhibited synergistic anti-proliferation effect against several tumor cell lines. At the same concentration, 31f exhibited much better anti-angiogenesis activities than bestatin in the HUVECs capillary tube formation assay and the rat thoracic aorta rings test. In the in vitro anti-invasion assay, 31f also exhibited superior potency over bestatin. Moreover, considerable in vivo antitumor potencies of 31f alone or in combination with 5-Fu were observed without significant toxic signs in a mouse heptoma H22 tumor transplant model.
Collapse
Affiliation(s)
- Jiangying Cao
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Jie Zang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiujie Kong
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Chunlong Zhao
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Ting Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Yingying Ran
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Hang Dong
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Wenfang Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
16
|
Zhang J, Fang C, Qu M, Wu H, Wang X, Zhang H, Ma H, Zhang Z, Huang Y, Shi L, Liang S, Gao Z, Song W, Wang X. CD13 Inhibition Enhances Cytotoxic Effect of Chemotherapy Agents. Front Pharmacol 2018; 9:1042. [PMID: 30258365 PMCID: PMC6144529 DOI: 10.3389/fphar.2018.01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Multidrug resistance (MDR) of hepatocellular carcinoma is a serious problem. Although CD13 is a biomarker in human liver cancer stem cells, the relationship between CD13 and MDR remains uncertain. This study uses liver cancer cell model to understand the role of CD13 in enhancing the cytotoxic effect of chemotherapy agents. Cytotoxic agents can induce CD13 expression. CD13 inhibitor, bestatin, enhances the antitumor effect of cytotoxic agents. Meanwhile, CD13-targeting siRNA and neutralizing antibody can enhance the cytotoxic effect of 5-fluorouracil (5FU). CD13 overexpression increases cell survival upon cytotoxic agents treatment, while the knockdown of CD13 causes hypersensitivity of cells to cytotoxic agents treatment. Mechanistically, the inhibition of CD13 leads to the increase of cellular reactive oxygen species (ROS). BC-02 is a novel mutual prodrug (hybrid drug) of bestatin and 5FU. Notably, BC-02 can inhibit cellular activity in both parental and drug-resistant cells, accompanied with significantly increased ROS level. Moreover, the survival time of Kunming mice bearing H22 cells under BC-02 treatment is comparable to the capecitabine treatment at maximum dosage. These data implicate a therapeutic method to reverse MDR by targeting CD13, and indicate that BC-02 is a potent antitumor compound.
Collapse
Affiliation(s)
- Jian Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Chunyan Fang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Meihua Qu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Huina Wu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xuejuan Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hongan Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hui Ma
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhaolin Zhang
- Weifang Bochuang International Biological Medicinal Institute, Weifang, China
| | - Yongxue Huang
- Weifang Bochuang International Biological Medicinal Institute, Weifang, China
| | - Lihong Shi
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shujuan Liang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zhiqin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Weiguo Song
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xuejian Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
17
|
Cao J, Ma C, Zang J, Gao S, Gao Q, Kong X, Yan Y, Liang X, Ding Q, Zhao C, Wang B, Xu W, Zhang Y. Novel leucine ureido derivatives as aminopeptidase N inhibitors using click chemistry. Bioorg Med Chem 2018; 26:3145-3157. [PMID: 29859750 DOI: 10.1016/j.bmc.2018.04.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
|