1
|
Nagargoje AA, Deshmukh TR, Shaikh MH, Khedkar VM, Shingate BB. Anticancer perspectives of monocarbonyl analogs of curcumin: A decade (2014-2024) review. Arch Pharm (Weinheim) 2024; 357:e2400197. [PMID: 38895952 DOI: 10.1002/ardp.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Monocarbonyl analogs of curcumin (MACs) represent structurally modified versions of curcumin. The existing literature indicates that MACs exhibit enhanced anticancer properties compared with curcumin. Numerous research articles in recent years have emphasized the significance of MACs as effective anticancer agents. This review focuses on the latest advances in the anticancer potential of MACs, from 2014 to 2024, including discussions on their mechanism of action, structure-activity relationship (SAR), and in silico molecular docking studies.
Collapse
Affiliation(s)
- Amol A Nagargoje
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
- Department of Chemistry, Khopoli Municipal Council College, Khopoli, Maharashtra, India
| | - Tejshri R Deshmukh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
| | - Mubarak H Shaikh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
- Department of Chemistry, Radhabai Kale Mahila Mahavidyalaya, Ahmednagar, Maharashtra, India
| | - Vijay M Khedkar
- School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| | - Bapurao B Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra, India
| |
Collapse
|
2
|
Zhao YY, Li J, Wang HQ, Zheng HB, Ma SW, Zhou GZ. Activation of autophagy promotes the inhibitory effect of curcumin analog EF-24 against MDA-MB-231 cancer cells. J Biochem Mol Toxicol 2024; 38:e23642. [PMID: 38348710 DOI: 10.1002/jbt.23642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
Breast cancer is the leading cause of cancer deaths in women worldwide. EF-24, an analog of curcumin, has been shown to possess promising anticancer effects. However, the underlying mechanism remains elusive. In the present study, the inhibitory effect of EF-24 against one breast cancer cell line, MDA-MB-231, and its anti-migration ability were assessed by MTT, wound healing, and Transwell assay. Furthermore, we found that EF-24 could induce initiation of autophagy as evidenced by fluorescence and electron microscope observation. EF-24 also induced mitochondrial apoptosis in MDA-MB-231 cells as detected by Hoechst 33342 staining, flow cytometry analysis, and western blot analysis. In addition, the early autophagy inhibitor 3-MA could reduce the cleavage of PARP protein and protect cells from EF-24-induced apoptosis, while the autophagy inducer (rapamycin) could enhance the anticancer effect of EF-24 in MDA-MB-231 cells, which suggest that EF-24 induces crosstalk between autophagy and apoptosis, which herein participate in the antiproliferative effect of EF-24 in breast cancer cells. Moreover, removal of EF-24-activated ROS with NAC significantly reversed migration ability of MDA-MB-231 cells, indicating that EF-24 exerted an inhibitory effect through a ROS-mediating pathway. These results will help to elucidate the antitumor mechanism of curcumin analogs and to explore future potential clinical applications.
Collapse
Affiliation(s)
- Yin-Yin Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Jun Li
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Hao-Qi Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Hao-Bo Zheng
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Shi-Wei Ma
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Guang-Zhou Zhou
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
3
|
Sazdova I, Keremidarska-Markova M, Dimitrova D, Mitrokhin V, Kamkin A, Hadzi-Petrushev N, Bogdanov J, Schubert R, Gagov H, Avtanski D, Mladenov M. Anticarcinogenic Potency of EF24: An Overview of Its Pharmacokinetics, Efficacy, Mechanism of Action, and Nanoformulation for Drug Delivery. Cancers (Basel) 2023; 15:5478. [PMID: 38001739 PMCID: PMC10670065 DOI: 10.3390/cancers15225478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
EF24, a synthetic monocarbonyl analog of curcumin, shows significant potential as an anticancer agent with both chemopreventive and chemotherapeutic properties. It exhibits rapid absorption, extensive tissue distribution, and efficient metabolism, ensuring optimal bioavailability and sustained exposure of the target tissues. The ability of EF24 to penetrate biological barriers and accumulate at tumor sites makes it advantageous for effective cancer treatment. Studies have demonstrated EF24's remarkable efficacy against various cancers, including breast, lung, prostate, colon, and pancreatic cancer. The unique mechanism of action of EF24 involves modulation of the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, disrupting cancer-promoting inflammation and oxidative stress. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through inhibiting the NF-κB pathway and by regulating key genes by modulating microRNA (miRNA) expression or the proteasomal pathway. In summary, EF24 is a promising anticancer compound with a unique mechanism of action that makes it effective against various cancers. Its ability to enhance the effects of conventional therapies, coupled with improvements in drug delivery systems, could make it a valuable asset in cancer treatment. However, addressing its solubility and stability challenges will be crucial for its successful clinical application.
Collapse
Affiliation(s)
- Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Daniela Dimitrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Jane Bogdanov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Rudolf Schubert
- Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany;
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Mitko Mladenov
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| |
Collapse
|
4
|
Liu X, Cui H, Li M, Chai Z, Wang H, Jin X, Dai F, Liu Y, Zhou B. Tumor killing by a dietary curcumin mono-carbonyl analog that works as a selective ROS generator via TrxR inhibition. Eur J Med Chem 2023; 250:115191. [PMID: 36758308 DOI: 10.1016/j.ejmech.2023.115191] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023]
Abstract
In comparison with normal cells, cancer cells feature intrinsic oxidative stress, thereby being more vulnerable to further production of reactive oxygen species (ROS) by pro-oxidative anticancer agents (PAAs). However, PAAs also inevitably generate ROS in normal cells, resulting in their narrow therapeutic window and toxic side effects that greatly limit their clinical application. To develop PAAs that generate ROS selectively in cancer cells over in normal cells, we rationally designed three series of 21 dietary curcumin 5-carbon mono-carbonyl analogs differentiated by either placement of the cyclohexanone, piperidone, and methylpiperidone linkers, or introduction of electron-withdrawing trifluoromethyl and electron-donating methoxyl groups on its two aromatic rings in the ortho, meta, or para position to the linkers. From the designed molecules, 2c, characterized of the presence of the meta-CF3-substituted mode and the piperidone linker, was identified as a potent selective ROS-generating agent, allowing its ability to kill selectively human non-small cell lung cancer NCI-H460 (IC50 = 0.44 μM) over human normal lung MRC-5 cells with a selectivity index of 32.0. Additionally, it was more potent and selective than the conventional chemotherapeutic agents (5-fluorouracil and camptothecin) did. Mechanistical investigation reveals that by means of its Michael acceptor unit and structure characteristics as described above, 2c could covalently modify the Sec-498 residue of intracellular thioredoxin reductase (TrxR) to generate ROS selectively, resulting in ROS-dependent apoptosis and ferroptosis of NCI-H460 cells. Noticeably, 2c inhibited significantly the growth of NCI-H460 cell xenograft tumor in nude mice without obvious toxicity to liver and kidney. Together, this work highlights a practical strategy of targeting TrxR overexpressed in cancer cells to develop PAAs capable of generating ROS selectively, as evidenced by the example of 2c.
Collapse
Affiliation(s)
- Xuefeng Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; School of Pharmacy, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China
| | - Hongmei Cui
- School of Public Health, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Mi Li
- College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China; Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China
| | - Zuohu Chai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Haibo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China; Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China.
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| |
Collapse
|
5
|
Fomina MV, Freidzon AY, Kuz’mina LG, Moiseeva AA, Starostin RO, Kurchavov NA, Nuriev VN, Gromov SP. Synthesis, Structure and Photochemistry of Dibenzylidenecyclobutanones. Molecules 2022; 27:7602. [PMID: 36364429 PMCID: PMC9653593 DOI: 10.3390/molecules27217602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 09/10/2023] Open
Abstract
A series of symmetrical dibenzylidene derivatives of cyclobutanone were synthesized with the goal of studying the physicochemical properties of cross-conjugated dienones (ketocyanine dyes). The structures of the products were established and studied by X-ray diffraction and by NMR and electronic spectroscopy. All the products had E,E-geometry. The oxidation and reduction potentials of the dienones were determined by cyclic voltammetry. The potentials were shown to depend on the nature, position, and number of substituents in the benzene rings. A linear correlation was found between the difference of the electrochemical oxidation and reduction potentials and the energy of the long-wavelength absorption maximum. This correlation can be employed to analyze the properties of other compounds of this type. Quantum chemistry was used to explain the observed regularities in the electrochemistry, absorption, and fluorescence of the dyes. The results are in good agreement with the experimental redox potentials and spectroscopy data.
Collapse
Affiliation(s)
- Marina V. Fomina
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, 119421 Moscow, Russia
| | - Alexandra Y. Freidzon
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, 119421 Moscow, Russia
| | - Lyudmila G. Kuz’mina
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy Prosp. 31, 119991 Moscow, Russia
| | - Anna A. Moiseeva
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman O. Starostin
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nikolai A. Kurchavov
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, 119421 Moscow, Russia
| | - Vyacheslav N. Nuriev
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, 119421 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey P. Gromov
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Novatorov Str. 7A-1, 119421 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
6
|
Liu XF, Wang Q, Zheng JF, Chai ZH, Dai F, Jin XJ, Zhou B. Developing dietary curcumin mono-carbonyl piperidinone analogs as Nrf2-dependent cytoprotectors against oxidative damage: Structure-activity relationship and mechanisms. Free Radic Biol Med 2022; 186:66-75. [PMID: 35550920 DOI: 10.1016/j.freeradbiomed.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
Abstract
Developing nuclear factor erythroid-2 related factor 2 (Nrf2)-dependent cytoprotectors against oxidative damage is of concern because they can effectively reduce the risk of oxidative stress-related diseases, such as cancer and inflammation. This work was aimed to develop more active Nrf2-dependent cytoprotectors than curcumin, a well-known dietary Nrf2 activator and cancer chemopreventive agent. Herein we designed a panel of curcumin-inspired mono-carbonyl piperidinone analogs differentiated by placing distinct electron-withdrawing and electron-donating groups on its two aromatic rings in the ortho, meta, or para position to the linker of α, β-unsaturated piperidinone. Among these, the ortho-fluorine-substituted CN-2F surfaced as a promising lead molecule, which was significantly superior to the parent curcumin in protecting HepG2 cells from oxidative damage induced by tert-butyl hydroperoxide. Mechanically, by virtue of its Michael receptor units and ortho-substituted mode, CN-2F activated Nrf2 signaling by covalently modifying Cys-151 and Cys-288 residues at Keap1, promoting phosphorylation of JNK, ERK and p38, as well as inhibiting Nrf2 degradation. This work reveals the structural determinants and the activity mechanisms of CN-2F as an Nrf2-dependent cytoprotector, and gives useful information on how to design curcumin-inspired Nrf2 activators and cytoprotectors.
Collapse
Affiliation(s)
- Xue-Feng Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; School of Pharmacy, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; College of Pharmacy, Gansu University of Traditional Chinese Medicine, 35 Dingxi East Road, Gansu, 730000, China
| | - Qi Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Jia-Fang Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Zuo-Hu Chai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| | - Xiao-Jie Jin
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, 35 Dingxi East Road, Gansu, 730000, China.
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| |
Collapse
|
7
|
Fomina MV, Vatsadze SZ, Freidzon AY, Kuz’mina LG, Moiseeva AA, Starostin RO, Nuriev VN, Gromov SP. Structure-Property Relationships of Dibenzylidenecyclohexanones. ACS OMEGA 2022; 7:10087-10099. [PMID: 35382345 PMCID: PMC8973102 DOI: 10.1021/acsomega.1c06129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
A series of symmetrical dibenzylidene derivatives of cyclohexanone were synthesized with the goal of studying the physicochemical properties of cross-conjugated dienones (ketocyanine dyes). The structures of the products were established and studied by X-ray diffraction, NMR spectroscopy, and electronic spectroscopy. All products had the E,E-geometry. The oxidation and reduction potentials of the dienones were determined by cyclic voltammetry. The potentials were shown to depend on the nature, position, and number of substituents in the benzene rings. A linear correlation was found between the difference of the electrochemical oxidation and reduction potentials and the energy of the long-wavelength absorption maximum. This correlation can be employed to analyze the properties of other compounds of this type. The frontier orbital energies and the vertical absorption and emission transitions were calculated using quantum chemistry. The results are in good agreement with experimental redox potentials and spectroscopic data.
Collapse
Affiliation(s)
- Marina V. Fomina
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”,
Russian Academy of Sciences, Novatorov str. 7A-1, Moscow 119421, Russian Federation
| | - Sergey Z. Vatsadze
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Moscow 119991, Russian Federation
| | - Alexandra Ya. Freidzon
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”,
Russian Academy of Sciences, Novatorov str. 7A-1, Moscow 119421, Russian Federation
| | - Lyudmila G. Kuz’mina
- N.S.
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy
of Sciences, Leninskiy prosp. 31, Moscow 119991, Russian Federation
| | - Anna A. Moiseeva
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Moscow 119991, Russian Federation
| | - Roman O. Starostin
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Moscow 119991, Russian Federation
| | - Vyacheslav N. Nuriev
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”,
Russian Academy of Sciences, Novatorov str. 7A-1, Moscow 119421, Russian Federation
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Moscow 119991, Russian Federation
| | - Sergey P. Gromov
- Photochemistry
Center of RAS, FSRC “Crystallography and Photonics”,
Russian Academy of Sciences, Novatorov str. 7A-1, Moscow 119421, Russian Federation
- Department
of Chemistry, M.V. Lomonosov Moscow State
University, Moscow 119991, Russian Federation
| |
Collapse
|
8
|
NF- κB-Related Metabolic Gene Signature Predicts the Prognosis and Immunotherapy Response in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5092505. [PMID: 35036435 PMCID: PMC8753254 DOI: 10.1155/2022/5092505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022]
Abstract
Background Sufficient evidence indicated the crucial role of NF-κB family played in gastric cancer (GC). The novel discovery that NF-κB could regulate cancer metabolism and immune evasion greatly increased its attraction in cancer research. However, the correlation among NF-κB, metabolism, and cancer immunity in GC still requires further improvement. Methods TCGA, hTFtarget, and MSigDB databases were employed to identify NF-κB-related metabolic genes (NFMGs). Based on NFMGs, we used consensus clustering to divide GC patients into two subtypes. GSVA was employed to analyze the enriched pathway. ESTIMATE, CIBERSORT, ssGSEA, and MCPcounter algorithms were applied to evaluate immune infiltration in GC. The tumor immune dysfunction and exclusion (TIDE) algorithm was used to predict patients' response to immunotherapy. We also established a NFMG-related risk score by using the LASSO regression model and assessed its efficacy in TCGA and GSE62254 datasets. Results We used 27 NFMGs to conduct an unsupervised clustering on GC samples and classified them into two clusters. Cluster 1 was characterized by high active metabolism, tumor mutant burden, and microsatellite instability, while cluster 2 was featured with high immune infiltration. Compared to cluster 2, cluster 1 had a better prognosis and higher response to immunotherapy. In addition, we constructed a 12-NFMG (ADCY3, AHCY, CHDH, GUCY1A2, ITPA, MTHFD2, NRP1, POLA1, POLR1A, POLR3A, POLR3K, and SRM) risk score. Followed analysis indicated that this risk score acted as an effectively prognostic factor in GC. Conclusion Our data suggested that GC subtypes classified by NFMGs may effectively guide prognosis and immunotherapy. Further study of these NFMGs will deepen our understanding of NF-κB-mediated cancer metabolism and immunity.
Collapse
|
9
|
Lin H, Chen X, Zhang C, Yang T, Deng Z, Song Y, Huang L, Li F, Li Q, Lin S, Jin D. EF24 induces ferroptosis in osteosarcoma cells through HMOX1. Biomed Pharmacother 2021; 136:111202. [PMID: 33453607 DOI: 10.1016/j.biopha.2020.111202] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE EF24, a synthetic analogue of curcumin, was developed as an anti-tumor compound to induce apoptosis, inhibit proliferation and metastasis in various cancers. However, whether EF24 induces ferroptosis in osteosarcoma cells or not, and its underlying mechanism remains largely elusive. METHODS After EF24 combining with or without other compounds treatments, mRNA expression profiles were proceeded by RNA sequencing. Cytotoxicity was measured by cell counting kit-8 assay. Cell death was quantified by flow cytometer. Gene expression was quantified by real-time PCR. Protein level was detected by western blot. Malonydialdehyde (MDA) level was measured by lipid peroxidation MDA assay kit. Reactive oxygen species (ROS) level was measured by ROS Assay Kit. Ferric ion was measured by Iron Assay kit. RESULTS EF24 significantly induced cell death in osteosarcoma cell lines, and this effect was significantly reversed by ferrostatin-1, but not Z-VAD(Ome)-FMK, MRT68921 or necrosulfonamide. EF24 significantly increased MDA level, ROS level and intracellular ferric ion level, these effects were significantly attenuated by ferrostatin-1. EF24 upregulated HMOX1 expression in a dose dependent manner, overexpression of HMOX1 facilitated EF24 to induce ferroptosis in osteosarcoma cell lines. HMOX1 knockdown attenuated EF24-induced cytotoxicity and attenuated EF24-induced inhibition of Glutathione Peroxidase 4 (GPX4) expression. CONCLUSION Our results showed that EF24 upregulated HMOX1 to suppress GPX4 expression to induce ferroptosis by increasing MDA level, ROS level and intracellular ferric ion level. Thus, EF24 might serve as a potential agent for the treatment of HMOX1-positive osteosarcoma patients.
Collapse
Affiliation(s)
- Haiyingjie Lin
- Department of Orthopedic, The Third Affiliated Hospital of Southern Medical University, No. 183 Zhongshan Dadao West, 510630, Guangzhou, China
| | - Xiaoting Chen
- Clinical Department of Guangdong Metabolic Disease Research Centre of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, 510000, Guangzhou, China
| | - Chengyong Zhang
- Clinical Department of Guangdong Metabolic Disease Research Centre of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, 510000, Guangzhou, China
| | - Tingting Yang
- Clinical Department of Guangdong Metabolic Disease Research Centre of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, 510000, Guangzhou, China
| | - Zhendong Deng
- Clinical Department of Guangdong Metabolic Disease Research Centre of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, 510000, Guangzhou, China
| | - Yuwei Song
- Central Laboratory of The First Affiliated Hospital of Jinan University, No. 613 Huangpu Dadao West, 510630, Guangzhou, China
| | - Lanlan Huang
- Clinical Department of Guangdong Metabolic Disease Research Centre of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, 510000, Guangzhou, China
| | - Fuxiang Li
- Clinical Department of Guangdong Metabolic Disease Research Centre of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, 510000, Guangzhou, China
| | - Qingchu Li
- Department of Orthopedic, The Third Affiliated Hospital of Southern Medical University, No. 183 Zhongshan Dadao West, 510630, Guangzhou, China.
| | - Shaoqiang Lin
- Clinical Department of Guangdong Metabolic Disease Research Centre of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, 510000, Guangzhou, China.
| | - Dadi Jin
- Department of Orthopedic, The Third Affiliated Hospital of Southern Medical University, No. 183 Zhongshan Dadao West, 510630, Guangzhou, China.
| |
Collapse
|
10
|
Voce DJ, Bernal GM, Cahill KE, Wu L, Mansour N, Crawley CD, Campbell PAS, Arina A, Weichselbaum RR, Yamini B. CDK1 is up-regulated by temozolomide in an NF-κB dependent manner in glioblastoma. Sci Rep 2021; 11:5665. [PMID: 33707466 PMCID: PMC7952566 DOI: 10.1038/s41598-021-84912-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/23/2021] [Indexed: 12/29/2022] Open
Abstract
The alkylating agent, temozolomide (TMZ), is the most commonly used chemotherapeutic for the treatment of glioblastoma (GBM). The anti-glioma effect of TMZ involves a complex response that includes G2-M cell cycle arrest and cyclin-dependent kinase 1 (CDK1) activation. While CDK1 phosphorylation is a well-described consequence of TMZ treatment, we find that TMZ also robustly induces CDK1 expression. Analysis of this pathway demonstrates that CDK1 is regulated by NF-κB via a putative κB-site in its proximal promoter. CDK1 was induced in a manner dependent on mature p50 and the atypical inhibitor κB protein, BCL-3. Treatment with TMZ induced binding of NF-κB to the κB-site as assessed by gel shift analysis and chromatin immunoprecipitation. Examination of a CDK1 promoter-reporter demonstrated the functional relevance of the κB-site and underlined the requirement of p50 and BCL-3 for activation. Targeted knockdown of CDK1 or chemical inhibition with the selective CDK1 inhibitor, RO-3306, potentiated the cytotoxic effect of TMZ. These results identify CDK1 as an NF-κB target gene regulated by p50 and BCL-3 and suggest that targeting CDK1 may be a strategy to improve the efficacy of TMZ against GBM.
Collapse
Affiliation(s)
- David J Voce
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Giovanna M Bernal
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Kirk E Cahill
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Longtao Wu
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Nassir Mansour
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Clayton D Crawley
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Paige-Ashley S Campbell
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Ainhoa Arina
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Bakhtiar Yamini
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
11
|
Shi Q, Meng Z, Tian XX, Wang YF, Wang WH. Identification and validation of a hub gene prognostic index for hepatocellular carcinoma. Future Oncol 2021; 17:2193-2208. [PMID: 33620260 DOI: 10.2217/fon-2020-1112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims: We aim to provide new insights into the mechanisms of hepatocellular carcinoma (HCC) and identify key genes as biomarkers for the prognosis of HCC. Materials & methods: Differentially expressed genes between HCC tissues and normal tissues were identified via the Gene Expression Omnibus tool. The top ten hub genes screened by the degree of the protein nodes in the protein-protein interaction network also showed significant associations with overall survival in HCC patients. Results: A prognostic model containing a five-gene signature was constructed to predict the prognosis of HCC via multivariate Cox regression analysis. Conclusion: This study identified a novel five-gene signature (CDK1, CCNB1, CCNB2, BUB1 and KIF11) as a significant independent prognostic factor.
Collapse
Affiliation(s)
- Q Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Z Meng
- The People's Hospital of Henan Province, Zhengzhou, Henan, 450003, China
| | - X X Tian
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Y F Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - W H Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
12
|
Zhao Y, Zheng Z, Zhang M, Wang Y, Hu R, Lin W, Huang C, Xu C, Wu J, Deng H. Design, synthesis, and evaluation of mono-carbonyl analogues of curcumin (MCACs) as potential antioxidants against periodontitis. J Periodontal Res 2021; 56:656-666. [PMID: 33604902 DOI: 10.1111/jre.12862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE The application of curcumin is limited by its instability. Mono-carbonyl analogues of curcumin (MCACs) are structurally stable, yet the intermediate bridging ketones in their skeletons account for increased toxicity. This study aimed to synthesize and screen MCACs that exhibit low cytotoxicity and high antioxidant ability, and the effects of MCACs on experimental periodontitis were also investigated. MATERIALS AND METHODS The cytotoxicity of MCACs on MC3 T3-E1 was determined by MTT assay. The antioxidant capacity was investigated by the cell viability against H2 O2 -induced damage and the level of reactive oxygen species (ROS) and malondialdehyde (MDA). The localization and protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was detected by immunofluorescence and western blot, respectively. In addition, MCAC was intragastrically administrated in rats with ligature-induced experimental periodontitis. The effects were assessed by bone resorption, as well as the immunohistology staining of inflammatory and oxidative stress markers. RESULTS MCACs with cyclopentanone and containing pyrone showed lower toxicity than natural curcumin were synthesized (1A-10A, 1H-10H), among which, 1A exhibited the most potent cytoprotective effect against H2 O2 -induced damage. Such effects could be explained by the reduced MDA and ROS level, possibly through the nucleus translocation of Nrf2 and the induction of HO-1. Micro-CT results further indicated that 1A significantly reduced bone loss, along with an increased level of Nrf2 and HO-1, and decreased TNF-α and IL-1β. CONCLUSION The present study has synthesized a novel antioxidant MCAC 1A with good biosafety and stability. MCAC 1A could serve as a host response modulator with preventive and protective effects on periodontitis.
Collapse
Affiliation(s)
- Ya Zhao
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Menghan Zhang
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Rongdang Hu
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Weijia Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenyang Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chuchu Xu
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Deng
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Fioravanti R, Tomassi S, Di Bello E, Romanelli A, Plateroti AM, Benedetti R, Conte M, Novellino E, Altucci L, Valente S, Mai A. Properly Substituted Cyclic Bis-(2-bromobenzylidene) Compounds Behaved as Dual p300/CARM1 Inhibitors and Induced Apoptosis in Cancer Cells. Molecules 2020; 25:molecules25143122. [PMID: 32650558 PMCID: PMC7397249 DOI: 10.3390/molecules25143122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
Bis-(3-bromo-4-hydroxy)benzylidene cyclic compounds have been reported by us as epigenetic multiple ligands, but different substitutions at the two wings provided analogues with selective inhibition. Since the 1-benzyl-3,5-bis((E)-3-bromobenzylidene)piperidin-4-one 3 displayed dual p300/EZH2 inhibition joined to cancer-selective cell death in a panel of tumor cells and in in vivo xenograft models, we prepared a series of bis((E)-2-bromobenzylidene) cyclic compounds 4a–n to test in biochemical (p300, PCAF, SIRT1/2, EZH2, and CARM1) and cellular (NB4, U937, MCF-7, SH-SY5Y) assays. The majority of 4a–n exhibited potent dual p300 and CARM1 inhibition, sometimes reaching the submicromolar level, and induction of apoptosis mainly in the tested leukemia cell lines. The most effective compounds in both enzyme and cellular assays carried a 4-piperidone moiety and a methyl (4d), benzyl (4e), or acyl (4k–m) substituent at N1 position. Elongation of the benzyl portion to 2-phenylethyl (4f) and 3-phenylpropyl (4g) decreased the potency of compounds at both the enzymatic and cellular levels, but the activity was promptly restored by introduction of a ketone group into the phenylalkyl substituent (4h–j). Western blot analyses performed in NB4 and MCF-7 cells on selected compounds confirmed their inhibition of p300 and CARM1 through decrease of the levels of acetyl-H3 and acetyl-H4, marks for p300 inhibition, and of H3R17me2, mark for CARM1 inhibition.
Collapse
Affiliation(s)
- Rossella Fioravanti
- Dipartimento di Chimica e Tecnologie del Farmaco, ‘Sapienza’ Università di Roma, 00185 Roma, Italy; (R.F.); (E.D.B.); (A.R.)
| | - Stefano Tomassi
- Dipartimento di Farmacia, Università di Napoli ‘Federico II’, 80131 Napoli, Italy; (S.T.); (E.N.)
| | - Elisabetta Di Bello
- Dipartimento di Chimica e Tecnologie del Farmaco, ‘Sapienza’ Università di Roma, 00185 Roma, Italy; (R.F.); (E.D.B.); (A.R.)
| | - Annalisa Romanelli
- Dipartimento di Chimica e Tecnologie del Farmaco, ‘Sapienza’ Università di Roma, 00185 Roma, Italy; (R.F.); (E.D.B.); (A.R.)
| | - Andrea Maria Plateroti
- Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso–Nesmos, ‘Sapienza’ Università di Roma, 00185 Roma, Italy;
| | - Rosaria Benedetti
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, 80138 Napoli, Italy; (R.B.); (M.C.); (L.A.)
| | - Mariarosaria Conte
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, 80138 Napoli, Italy; (R.B.); (M.C.); (L.A.)
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli ‘Federico II’, 80131 Napoli, Italy; (S.T.); (E.N.)
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, 80138 Napoli, Italy; (R.B.); (M.C.); (L.A.)
| | - Sergio Valente
- Dipartimento di Chimica e Tecnologie del Farmaco, ‘Sapienza’ Università di Roma, 00185 Roma, Italy; (R.F.); (E.D.B.); (A.R.)
- Correspondence: (S.V.); (A.M.)
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, ‘Sapienza’ Università di Roma, 00185 Roma, Italy; (R.F.); (E.D.B.); (A.R.)
- Correspondence: (S.V.); (A.M.)
| |
Collapse
|
14
|
Monroe JD, Hodzic D, Millay MH, Patty BG, Smith ME. Anti-Cancer and Ototoxicity Characteristics of the Curcuminoids, CLEFMA and EF24, in Combination with Cisplatin. Molecules 2019; 24:molecules24213889. [PMID: 31671767 PMCID: PMC6864451 DOI: 10.3390/molecules24213889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we investigated whether the curcuminoids, CLEFMA and EF24, improved cisplatin efficacy and reduced cisplatin ototoxicity. We used the lung cancer cell line, A549, to determine the effects of the curcuminoids and cisplatin on cell viability and several apoptotic signaling mechanisms. Cellular viability was measured using the MTT assay. A scratch assay was used to measure cell migration and fluorescent spectrophotometry to measure reactive oxygen species (ROS) production. Western blots and luminescence assays were used to measure the expression and activity of apoptosis-inducing factor (AIF), caspases-3/7, -8, -9, and -12, c-Jun N-terminal kinases (JNK), mitogen-activated protein kinase (MAPK), and proto-oncogene tyrosine-protein kinase (Src). A zebrafish model was used to evaluate auditory effects. Cisplatin, the curcuminoids, and their combinations had similar effects on cell viability (IC50 values: 2-16 μM) and AIF, caspase-12, JNK, MAPK, and Src expression, while caspase-3/7, -8, and -9 activity was unchanged or decreased. Cisplatin increased ROS yield (1.2-fold), and curcuminoid and combination treatments reduced ROS (0.75-0.85-fold). Combination treatments reduced A549 migration (0.51-0.53-fold). Both curcuminoids reduced auditory threshold shifts induced by cisplatin. In summary, cisplatin and the curcuminoids might cause cell death through AIF and caspase-12. The curcuminoids may potentiate cisplatin's effect against A549 migration, but may counteract cisplatin's effect to increase ROS production. The curcuminoids might also prevent cisplatin ototoxicity.
Collapse
Affiliation(s)
- Jerry D Monroe
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| | - Denis Hodzic
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| | - Matthew H Millay
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| | - Blaine G Patty
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| | - Michael E Smith
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| |
Collapse
|
15
|
He Y, Li W, Hu G, Sun H, Kong Q. Bioactivities of EF24, a Novel Curcumin Analog: A Review. Front Oncol 2018; 8:614. [PMID: 30619754 PMCID: PMC6297553 DOI: 10.3389/fonc.2018.00614] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Curcumin is an attractive agent due to its multiple bioactivities. However, the low oral bioavailability and efficacy profile hinders its clinical application. To improve the bioavailability, many analogs of curcumin have been developed, among which EF24 is an excellent representative. EF24 has enhanced bioavailability over curcumin and shows more potent bioactivity, including anti-cancer, anti-inflammatory, and anti-bacterial. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through its inhibitory effect on the nuclear factor kappa B (NF-κB) pathway and by regulating key genes through microRNA (miRNA) or the proteosomal pathway. Based on the current structure, more potent EF24 analogs have been designed and synthesized. However, some roles of EF24 remain unclear, such as whether it induces or inhibits reactive oxygen species (ROS) production and whether it stimulates or inhibits the mitogen activated kinase-like protein (MAPK) pathway. This review summarizes the known biological and pharmacological activities and mechanisms of action of EF24.
Collapse
Affiliation(s)
- Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Wen Li
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Guangrong Hu
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Sun
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingpeng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
16
|
Vinayak M. Molecular Action of Herbal Antioxidants in Regulation of Cancer Growth: Scope for Novel Anticancer Drugs. Nutr Cancer 2018; 70:1199-1209. [DOI: 10.1080/01635581.2018.1539187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Manjula Vinayak
- Biochemistry & Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
17
|
Zhu M, Wang J, Xie J, Chen L, Wei X, Jiang X, Bao M, Qiu Y, Chen Q, Li W, Jiang C, Zhou X, Jiang L, Qiu P, Wu J. Design, synthesis, and evaluation of chalcone analogues incorporate α,β-Unsaturated ketone functionality as anti-lung cancer agents via evoking ROS to induce pyroptosis. Eur J Med Chem 2018; 157:1395-1405. [PMID: 30196062 DOI: 10.1016/j.ejmech.2018.08.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/22/2022]
Abstract
Chalcone, a natural structure, demonstrates many pharmacological activities including anticancer, and one promising mechanism is to modulate the generation of ROS. It has been known that pyroptosis is associated with anticancer effects, whereas there is fewer researches about ROS-mediated pyroptosis triggered by chemotherapy drugs. Moreover, incorporation of a α,β-unsaturated ketone unit into chalcone may be an effective strategy for development of chemotherapy drugs. Hence, a number of chalcone analogues bearing a α,β-unsaturated ketone were synthesized from chalcone analogues 1 with modest anticancer activities as the lead compound. Structure-activity relationship (SAR) studies confirmed the function of α,β-unsaturated ketone to improve anticancer activity. Notably, compound 8, bearing a α,β-unsaturated ketone, is the most potent inhibitor of cancer, with IC50 values on NCI-H460, A549 and H1975 cells of 2.3 ± 0.3, 3.2 ± 0.0 and 5.7 ± 1.4 μM, respectively. Besides, 8 showed antiproliferative ability against NCI-H460 cells in a time- and concentration-dependent manner through modulating ROS to induce caspase-3-mediated pyroptosis, and displayed a better safety profile in vivo. Overall, these results demonstrated that compound 8 is a candidate agent and a potential lead compound for development of chemotherapy drugs, and can be used as a probe to further examine the mechanism of ROS-dependent pyroptosis.
Collapse
Affiliation(s)
- Min Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiabing Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Jingwen Xie
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liping Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoyan Wei
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xing Jiang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Miao Bao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanyi Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qian Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wulan Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; College of Information Science and Computer Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chengxi Jiang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoou Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Peihong Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
18
|
Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H, Cao D, Liao Q. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther 2018; 11:2063-2073. [PMID: 29695914 PMCID: PMC5905465 DOI: 10.2147/ott.s161109] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer is a group of cells that malignantly grow and proliferate uncontrollably. At present, treatment modes for cancer mainly comprise surgery, chemotherapy, radiotherapy, molecularly targeted therapy, gene therapy, and immunotherapy. However, the curative effects of these treatments have been limited thus far by specific characteristics of tumors. Abnormal activation of signaling pathways is involved in tumor pathogenesis and plays critical roles in growth, progression, and relapse of cancers. Targeted therapies against effectors in oncogenic signaling have improved the outcomes of cancer patients. NFκB is an important signaling pathway involved in pathogenesis and treatment of cancers. Excessive activation of the NFκB-signaling pathway has been documented in various tumor tissues, and studies on this signaling pathway for targeted cancer therapy have become a hot topic. In this review, we update current understanding of the NFκB-signaling pathway in cancer.
Collapse
Affiliation(s)
- Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Lu Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
- Department of Medical Microbiology, Immunology, and Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| |
Collapse
|